I/O- and Cache-Efficient Algorithms

Mark de Berg

TU Eindhoven
• a simple and efficient algorithm for smallest enclosing circle . . .
• . . . and its experimental analysis
• cache-oblivious algorithms
 – the model
 – smallest enclosing circle
 – more examples
• conclusions
Compute smallest enclosing circle of set P of N points in the plane.
Compute smallest enclosing circle of set \(P \) of \(N \) points in the plane.
SmallestCircle(P)
1. RandomPermute(P)
2. $D :=$ smallest circle for $P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D :=$ smallest circle for $\{P[1], \ldots, P[i]\}$
 where $P[i]$ is on the boundary
SmallestCircle(P)
1. RandomPermute(P)
2. $D :=$ smallest circle for $P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D :=$ smallest circle for \{$P[1], \ldots, P[i]$\}
 where $P[i]$ is on the boundary
SmallestCircle(P)

1. \textit{RandomPermute(P)}

2. $D :=$ smallest circle for $P[1], P[2], P[3]$

3. \textbf{for} $i := 4$ \textbf{to} N

4. \textbf{do if} $P[i] \in D$

5. \hspace{1cm} \textbf{then skip}

6. \textbf{else} $D :=$ smallest circle for \{$P[1], \ldots, P[i]$\}
 \hspace{1cm} where $P[i]$ is on the boundary

"recursive" call
SmallestCircle\((P)\)
1. RandomPermute\((P)\)
2. \(D := \text{smallest circle for } P[1], P[2], P[3]\)
3. \(\text{for } i := 4 \text{ to } N\)
4. \(\text{do if } P[i] \in D\)
5. \(\text{then skip}\)
6. \(\text{else } D := \text{smallest circle for } \{P[1], \ldots, P[i]\}\)
 \(\text{where } P[i] \text{ is on the boundary}\)

RandomPermute\((P)\)
1. \(\text{for } i := 1 \text{ to } N - 1\)
2. \(\text{do } r := \text{random integer in range } i \ldots N\)
3. \(\text{swap } P[i] \text{ and } P[r]\)
Smallest enclosing circle: analysis (1)

\[\text{RandomPermute}(P) \]
1. \textbf{for} \; i := 1 \textbf{ to } N - 1
2. \textbf{do} \; r := \text{random integer in range } i \ldots N
3. \text{swap } P[i] \text{ and } P[r]

\text{running time is } O(N)
SmallestCircle(P)
1. RandomPermute(P)
2. $D :=$ smallest circle for $P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D :=$ smallest circle for $\{P[1], \ldots, P[i]\}$

where $P[i]$ is on the boundary

E[running time]

- $P[1]$ t/m $P[i]$
- $P[i + 1]$ t/m $P[N]$
SmallestCircle(P)
1. $\text{RandomPermute}(P)$
2. $D := \text{smallest circle for } P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D := \text{smallest circle for } \{P[1], \ldots, P[i]\}$
 where $P[i]$ is on the boundary

$E[\text{running time}]$
$= O(n) + \sum_{i=4}^{N} E[\text{time for } i\text{-th iteration}]$
SmallestCircle(P)

1. RandomPermute(P)
2. $D := \text{smallest circle for } P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D := \text{smallest circle for } \{P[1], \ldots, P[i]\}$
 where $P[i]$ is on the boundary

$E[\text{running time}]$

$= O(n) + \sum_{i=4}^{N} E[\text{time for } i\text{-th iteration}]$

$= O(n) + \sum_{i=4}^{N} (O(1) + Pr[P[i] \notin D] \cdot O(i))$
SmallestCircle(P)
1. RandomPermute(P)
2. $D := \text{smallest circle for } P[1], P[2], P[3]$
3. for $i := 4$ to N
4. do if $P[i] \in D$
5. then skip
6. else $D := \text{smallest circle for } \{P[1], \ldots, P[i]\}$
 where $P[i]$ is on the boundary

$E[\text{running time}]$

= $O(n) + \sum_{i=4}^{N} E[\text{time for } i\text{-th iteration}]$

= $O(n) + \sum_{i=4}^{N} (O(1) + \Pr[P[i] \notin D] \cdot O(i))$

$\leq O(n) + \sum_{i=4}^{N} (O(1) + 3/i \cdot O(i))$
SmallestCircle\((P) \)
1. \texttt{RandomPermute}(P)
2. \(D := \text{smallest circle for } P[1], P[2], P[3] \)
3. \textbf{for } \(i := 4 \) \textbf{to } N \textbf{ do if } P[i] \in D \textbf{ then skip }
4. \textbf{else } \(D := \text{smallest circle for } \{P[1], \ldots, P[i]\} \)
5. \textbf{where } P[i] \text{ is on the boundary }

\[E[\text{running time}] = O(n) + \sum_{i=4}^{N} E[\text{time for } i\text{-th iteration}] \]
\[= O(n) + \sum_{i=4}^{N} (O(1) + \Pr[P[i] \not\in D] \cdot O(i)) \]
\[\leq O(n) + \sum_{i=4}^{N} (O(1) + 3/i \cdot O(i)) \]
\[= O(n) \]
Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program
Analysis of algorithms: massive data sets

\[T(n) = \text{# elementary operations} \] the algorithm performs in the worst case as function of \(N \), the number of input elements

additions, multiplications, comparisons, reading a value from memory, etc.

Hmmm . . . is this justified?
The analysis of algorithms: massive data sets

\[T(n) = \# \text{elementary operations} \quad \text{the algorithm performs in the worst case as function of } N, \text{the number of input elements} \]

additions, multiplications, comparisons, reading a value from memory, etc.

Hmmm . . . is this justified?

NO!

operations on data in main memory: tens of nanoseconds
disk operations: several milliseconds
Smallest enclosing circle: experiments (2)

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program
I/O-efficient algorithms: the model (Aggarwal, Vitter '88)

$M =$ size of main memory

$B =$ block size for data transport

"typical value" 8KB
I/O-efficient algorithms: the model (Aggarwal, Vitter '88)

- let algorithm handle data placement and transport
 - which data are placed together in a block
 - which blocks are kept in main memory
- analyze number of disk operations (in terms of N, B, and M)

$M =$ size of main memory

$B =$ block size for data transport

"typical value" 8KB
RandomPermute\((P)\)
1. for \(i := 1\) to \(N - 1\)
2. do \(r := \text{random integer in range } i \ldots N\)
3. swap \(P[i]\) and \(P[r]\)

analysis of (expected) number of disk operations

- \(N \leq M\): 0

 0 disk operations

- \(N > M\):

 \((N - 1) \cdot (1 - \frac{M}{N})\) disk operations

 (e.g. \((N - 1)/2\) disk operations when \(N = 2M\))
- M and B depend on platform
- even on fixed machine values of M and B may vary
 - main memory may have to be shared with other processes
 - disk-cache ”changes” block size
- two-level I/O-model too simplistic
Intel Itanium2 memory hierarchy

<table>
<thead>
<tr>
<th>Level</th>
<th>Capacity</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU registers</td>
<td>16 KB</td>
<td>1 cycle</td>
</tr>
<tr>
<td>L1 cache</td>
<td>256 KB</td>
<td>5+ cycles</td>
</tr>
<tr>
<td>L2 cache</td>
<td>6MB</td>
<td>12+ cycles</td>
</tr>
<tr>
<td>L3 cache</td>
<td>2 GB</td>
<td>> 150 cycles</td>
</tr>
<tr>
<td>Main memory</td>
<td></td>
<td>can be 10^6 cycles</td>
</tr>
<tr>
<td>Disk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion: caching behavior can also make a large difference.
Ideal: algorithm that is efficient w.r.t. disk and all cache levels

- caches are not under control of algorithm
- algorithms taking all cache-levels into account quite complicated

So what can we do ??
Algorithm designed for simple two-level memory model

Algorithm is not allowed to use the value of B and M!
Cache-oblivious algorithms: assumptions (1)

Assumptions:

- M = size of fast memory
- B = block size for data transport
Cache-oblSpacer oblivious algorithms: assumptions (1)

Assumptions:

- Blocks formed following order in which data is written to ”disk”
Cache-oblivious algorithms: assumptions (1)

Assumptions:

- Blocks formed following order in which data is written to "disk"

\[M = \text{size of fast memory} \]

\[B = \text{block size for data transport} \]
Assumptions:

- Blocks formed following order in which data is written to "disk"
Assumptions:

- Blocks formed following order in which data is written to "disk"
• Blocks formed following order in which data is written to "disk"

data
layout on disk
or
or . . .
Cache-oblivious algorithms: assumptions (2)

- Blocks formed following order in which data is written to "disk"

 \[
 \begin{array}{c}
 \text{data} \\
 \text{layout on disk}
 \end{array}
 \]

- Operating system uses optimal replacement strategy
 Note: number of cache misses for LRU is within constant from optimal [...]

- Cache is fully associative

- Tall cache assumption: \(M = \Omega(B^2) \)
Cache-oblivious algorithms: assumptions (2)

- Blocks formed following order in which data is written to "disk"

\[
\text{data} \quad \text{layout on disk} \quad \text{or} \quad \text{or} \quad \text{or} \ldots
\]

- Operating system uses optimal replacement strategy
 Note: number of cache misses for LRU is within constant from optimal [...]

- Cache is fully associative

- Tall cache assumption: \(M = \Omega(B^2) \)

Then: Cache-oblivious algorithm that is efficient in the 2-level memory model is efficient with respect to all cache levels, disk, etc!
Example 1: Smallest enclosing disk
A cache-oblivious algorithm for smallest enclosing circle

\textbf{CacheObliviousSmallestCircle}(P)

1. \textbf{if} (\# points in \(P\)) \(\leq 3\)
2. \textbf{then} return smallest circle for \(P\)
3. \textbf{else} \((P_1, P_2) := \text{RandomSplit}(P)\)
4. \hspace{1em} \(D := \text{CacheObliviousSmallestCircle}(P_1)\)
5. \hspace{1em} \textbf{for all} \(P[i] \in P_2\)
6. \hspace{2em} \textbf{do if} \(P[i] \notin D\)
7. \hspace{3em} \textbf{then} \(D_i := \text{smallest circle for } P \text{ with } P[i] \text{ on its boundary}\)
8. \hspace{1em} \textbf{return} best of all computed circles

With: S. Cabello, X. Goaoc, M. Schroders
A cache-oblivious algorithm for smallest enclosing circle

CacheObliviousSmallestCircle\((P)\)
1. if \((\# \text{ points in } P) \leq 3\)
2. then return smallest circle for \(P\)
3. else \((P_1, P_2) := \text{RandomSplit}(P)\)
4. \(D := \text{CacheObliviousSmallestCircle}(P_1)\)
5. for all \(P[i] \in P_2\)
6. do if \(P[i] \notin D\)
7. then \(D_i := \text{smallest circle for } P \text{ with } P[i] \text{ on its boundary}\)
8. return best of all computed circles

RandomSplit\((P)\)
1. for \(i := 1 \text{ to } N\)
2. do \(r := \text{random number in range} [0, 1]\)
3. if \(r < 1/2\)
4. then Put \(P[i]\) into \(P_1\)
5. else Put \(P[i]\) into \(P_2\)
6. return \((P_1, P_2)\)

With: S. Cabello, X. Goaoc, M. Schroders
old algorithm:

\[
\text{RandomPermute}(P)
\]

1. for \(i := 1 \) to \(N - 1 \)
2. do \(r := \) random integer in range \(i \ldots N \)
3. swap \(P[i] \) and \(P[r] \)

\[
\mathbb{E}[\#\text{cache misses}] = (N - 1) \cdot \left(1 - \frac{M}{N}\right)
\]
old algorithm:

\[\text{RandomPermute}(P) \]
1. \textbf{for} \(i := 1 \) \textbf{to} \(N - 1 \)
2. \textbf{do} \(r := \text{random integer in range } i \ldots N \)
3. \textbf{swap} \(P[i] \) \textbf{and} \(P[r] \)

\[\mathbb{E}[\#\text{cache misses}] = (N - 1) \cdot \left(1 - \frac{M}{N}\right) \]

new algorithm:

\[\text{RandomSplit}(P) \]
1. \textbf{for} \(i := 1 \) \textbf{to} \(N \)
2. \textbf{do} \(r := \text{random number in range } [0, 1] \)
3. \textbf{if} \(r < 1/2 \) \textbf{then} Put \(P[i] \) into \(P_1 \) \textbf{else} Put \(P[i] \) into \(P_2 \)
4. \textbf{return} \((P_1, P_2) \)

layout on disk:

\[\mathbb{E}[\#\text{cache misses}] = \text{Scan}(N) \leq 1 + N/B \]
Smallest enclosing disk: experiments

User (time) and system (stime) time for points on a line.

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program
Example II: Search trees
binary search tree: search structure for internal memory

- nodes contain one key, have degree 2
- depth is $O(\log_2 N)$
binary search tree: search structure for internal memory

- nodes contain one key, have degree 2
- depth is $O(\log_2 N)$

B-tree: I/O-efficient variant

- nodes contain many keys, have high degree
- put each node into one block on disk: degree is $\Theta(B)$
- depth is $O(\log_B N)$
binary search tree: search structure for internal memory

- nodes contain one key, have degree 2
- depth is $O(\log_2 N)$

B-tree: I/O-efficient variant

- nodes contain many keys, have high degree
- put each node into one block on disk: degree is $\Theta(B)$
- depth is $O(\log_B N)$

in practice, degree is 250 – 2000 and depth is at most 4
regular (cache-aware) B-tree:
• blocks: subtrees of size B

search visits $O(\log_B N)$ blocks
regular (cache-aware) B-tree:
• blocks: subtrees of size B

search visits $O(\log_B N)$ blocks

cache-oblivious B-tree: (VEB-layout)
• cut tree into subtree at middle level; gives 1 top tree, \sqrt{N} lower trees
• first, write top to disk recursively
• next, write lower trees to disk recursively
cache-oblivious B-tree: (VEB-layout)

- cut tree into subtree at middle level; gives 1 top tree, \sqrt{N} lower trees
- first, write top to disk recursively
- next, write lower trees to disk recursively

Theorem: Number of cache misses for a search is $O(\log_B N)$.
cache-oblivious B-tree: (VEB-layout)

- cut tree into subtree at middle level; gives 1 top tree, \sqrt{N} lower trees
- first, write top to disk recursively
- next, write lower trees to disk recursively

Theorem: Number of cache misses for a search is $O(\log_B N)$.

Proof.
cache-oblivious B-tree: (VEB-layout)

• cut tree into subtree at middle level; gives 1 top tree, \sqrt{N} lower trees
• first, write top to disk recursively
• next, write lower trees to disk recursively

Theorem: Number of cache misses for a search is $O(\log_B N)$.

Proof.
Example III: Matrix multiplication
Given $N \times N$ matrices A and B, compute $C = A \cdot B$
Given $N \times N$ matrices A and B, compute $C = A \cdot B$

IterativeMatrixMult(A, B)

1. for $i := 1$ to N
2. do for $j := 1$ to N
3. do for $k := 1$ to N
Matrix multiplication: an iterative algorithm

Analysis of number of cache misses: (assume $N > B$)
Analysis of number of cache misses: (assume $N > B$)

IterativeMatrixMult(A, B)

1. for $i := 1$ to N
2. do for $j := 1$ to N
3. do for $k := 1$ to N
Analysis of number of cache misses: (assume $N > B$)

IterativeMatrixMult(A, B)
1. for $i := 1$ to N
2. do for $j := 1$ to N
3. do for $k := 1$ to N
Matrix multiplication: an iterative algorithm

Analysis of number of cache misses: (assume $N > B$)

IterativeMatrixMult(A, B)

1. for $i := 1$ to N
2. do for $j := 1$ to N
3. do for $k := 1$ to N

$O(N/B)$
Matrix multiplication: an iterative algorithm

Analysis of number of cache misses: (assume $N > B$)

IterativeMatrixMult(A, B)
1. for $i := 1$ to N
2. do for $j := 1$ to N
3. do for $k := 1$ to N
4. do $C[i, j] := C[i, j] + A[i, k] \cdot B[k, j]$ \hspace{1em} $O(N/B)$

When A is stored in row-major order and B is stored in column-major order, then IterativeMatrixMult has $O(N^3/B)$ cache misses.
Matrix multiplication: a recursive algorithm

\[
\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}
\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}
=
\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}
\]

\[A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\]
Matrix multiplication: a recursive algorithm

RecursiveMM\((A, B)\)
1. if \(N = 1\)
2. then return \(A[1, 1] \cdot B[1, 1]\)
3. else \(C_{11} = \text{RecursiveMM}(A_{11}, B_{11}) + \text{RecursiveMM}(A_{12}, B_{21})\)
4. \(C_{12} = \text{RecursiveMM}(A_{11}, B_{12}) + \text{RecursiveMM}(A_{12}, B_{22})\)
5. \(C_{21} = \text{RecursiveMM}(A_{21}, B_{11}) + \text{RecursiveMM}(A_{22}, B_{21})\)
6. \(C_{22} = \text{RecursiveMM}(A_{21}, B_{12}) + \text{RecursiveMM}(A_{22}, B_{22})\)
Analysis of number of cache misses:
Matrix multiplication: a recursive algorithm

Analysis of number of cache misses:

RecursiveMM(A, B)
1. if \(N = 1 \)
2. then return \(A[1, 1] \cdot B[1, 1] \)
3. else \(C_{11} = \text{RecursiveMM}(A_{11}, B_{11}) + \text{RecursiveMM}(A_{12}, B_{21}) \)
4. \(C_{12} = \text{RecursiveMM}(A_{11}, B_{12}) + \text{RecursiveMM}(A_{12}, B_{22}) \)
5. \(C_{21} = \text{RecursiveMM}(A_{21}, B_{11}) + \text{RecursiveMM}(A_{22}, B_{21}) \)
6. \(C_{22} = \text{RecursiveMM}(A_{21}, B_{12}) + \text{RecursiveMM}(A_{22}, B_{22}) \)
Matrix multiplication: a recursive algorithm

Analysis of number of cache misses:

\[\text{RecursiveMM}(A, B) \]

1. \textbf{if } \(N = 1 \)
2. \textbf{then return } \(A[1, 1] \cdot B[1, 1] \)
3. \textbf{else } \(C_{11} = \text{RecursiveMM}(A_{11}, B_{11}) + \text{RecursiveMM}(A_{12}, B_{21}) \)
4. \(C_{12} = \text{RecursiveMM}(A_{11}, B_{12}) + \text{RecursiveMM}(A_{12}, B_{22}) \)
5. \(C_{21} = \text{RecursiveMM}(A_{21}, B_{11}) + \text{RecursiveMM}(A_{22}, B_{21}) \)
6. \(C_{22} = \text{RecursiveMM}(A_{21}, B_{12}) + \text{RecursiveMM}(A_{22}, B_{22}) \)

\[T(N) = 8T(N/2) + O(N^2/B) \]
\[T(\sqrt{M}) = O(M/B) \]
Matrix multiplication: a recursive algorithm

Analysis of number of cache misses:

RecursiveMM(A, B)
1. if $N = 1$
2. then return $A[1, 1] \cdot B[1, 1]$
3. else $C_{11} = \text{RecursiveMM}(A_{11}, B_{11}) + \text{RecursiveMM}(A_{12}, B_{21})$
4. $C_{12} = \text{RecursiveMM}(A_{11}, B_{12}) + \text{RecursiveMM}(A_{12}, B_{22})$
5. $C_{21} = \text{RecursiveMM}(A_{21}, B_{11}) + \text{RecursiveMM}(A_{22}, B_{21})$
6. $C_{22} = \text{RecursiveMM}(A_{21}, B_{12}) + \text{RecursiveMM}(A_{22}, B_{22})$

$T(N) = 8T(N/2) + O(N^2/B)$
$T(\sqrt{M}) = O(M/B)$

If both A and B are stored row-major, then RecursiveMM has $O(N^3/(B\sqrt{M}))$ cache misses.
• fast Fourier transform

• sorting: $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ cache misses

• priority queues: $O\left(\frac{1}{B} \log_{M/B} \frac{N}{B}\right)$ cache misses (amortized)

• more (geometric) data structures

• …
bounding-volume hierarchy

data structure for storing objects in \mathbb{R}^d
such that objects inside query region can be found quickly
bounding-volume hierarchy

data structure for storing objects in \mathbb{R}^d
such that objects inside query region can be found quickly

nodes store bounding box of objects in subtree
bounding-volume hierarchy

data structure for storing objects in \mathbb{R}^d
such that objects inside query region can be found quickly

nodes store bounding box of objects in subtree
bounding-volume hierarchy

data structure for storing objects in \mathbb{R}^d
such that objects inside query region can be found quickly

nodes store bounding box of objects in subtree
Answering queries
find object intersecting rectangle
R-tree: bounding-volume hierarchy where underlying tree is B-tree

degree = B
R-tree: bounding-volume hierarchy where underlying tree is B-tree

There is an R-tree such that any rectangle query can be answered in $O(\sqrt{N/B} + K/B)$ disk accesses, and this is optimal in the worst case.

...and there is a cache-oblivious version [Arge, dB, Haverkort, Yi]
Conclusions

- I/O- and caching behavior crucial for massive data sets
- Algorithms community is now addressing these issues
- I/O-efficient algorithms
 - Many theoretical results, but still a lot of open problems (e.g., graph traversal)
 - Have proven their value for some practical problems
 - Need tuning for hardware, do not optimize caching behavior
- Cache-oblivious algorithms:
 - Ideal in theory: no tuning, good on all cache-levels
 - Some theoretical results, much still open
 - Practical relevance needs further investigation