CONFORMAL RANDOM GEOMETRY & QUANTUM GRAVITY

Bertrand Duplantier

Service de Physique Théorique de Saclay MARK KAC SEMINAR ON PROBABILITY AND PHYSICS Utrecht

2004-2005

Mark Kac on *Probability and Physics* in:

Marian Smoluchowski and the Evolution of Statistical Thought in Physics:

"... in 1906 when Smoluchowski (influenced by the appearance of Einstein's two papers [on Brownian motion]) finally published his results, random phenomena would not come readily to mind. It required therefore, I think, an intellectual tour de force, to bring games of chance to bear upon understanding of physical phenomena."

RANDOM WALKS & QUANTUM GRAVITY

Mark Kac Seminars I & II Utrecht

March 4, April 1st 2005

Random Walks

Brownian Path

Paul Lévy: Conformal Invariance

Brownian Frontier

Mandelbrot conjecture (1982): Hausdorff dimension $D = \frac{4}{3}$, as a SAW.

Self-Avoiding Walk

SAW in plane - 1,000,000 steps

(courtesy of T. Kennedy)

B. Nienhuis (1982): $D = \frac{4}{3}$

Intersections of Random Walks

L = 3 non-intersecting random walks crossing an annulus from r to R Probability

$$\mathbf{P}_{L}(t) = \mathbf{P}\left\{\bigcup_{l,l'=1}^{L} \left(B^{(l)}[0,t] \cap B^{(l')}[0,t]\right) = \mathbf{0}\right\},\$$

that the intersection of L paths $B^{(l)}$ is empty up to time t.

Scaling Exponents

At large times, the non-intersection probability decays as

$$P_L(t) \approx t^{-\zeta_L},$$

where ζ_L is a *universal* exponent depending only on *L*. Similarly, the probability that the Brownian paths altogether traverse the annulus $\mathbb{D}(r, R)$ in \mathbb{C} from the inner boundary circle of radius *r* to the outer one at distance *R* scales as

$$P_L(R) \approx (r/R)^{2\zeta_L}$$

Half-Plane Case

L = 2 mutually-avoiding random walks crossing a half-annulus from r to R in the half-plane \mathbb{H}

L walks constrained to stay in the half-plane \mathbb{H} with Dirichlet boundary conditions on $\partial \mathbb{H}$, and started at neighboring points near the boundary: non-intersection probability $\tilde{P}_L(t)$.

Boundary Exponents

Boundary critical exponent $\tilde{\zeta}_L$

$$\tilde{P}_L(t) \approx t^{-\frac{1}{2}\tilde{\zeta}_L}.$$

Probability that the Brownian paths altogether traverse the half-annulus $\tilde{\mathbb{D}}(r, R)$ in \mathbb{H} , centered on the boundary line ∂H , from the inner boundary circle of radius *r* to the outer one at distance *R*:

$$\tilde{P}_L(R) \approx (r/R)^{\zeta_L}$$

Conformal Invariance and Weights It was conjectured from conformal invariance arguments and numerical simulations that (*B. D.- Kwon (1988)*)

$$\zeta_L = h_{0,L}^{(c=0)} = \frac{1}{24} \left(4L^2 - 1 \right),$$

and for the half-plane

$$\tilde{\zeta}_L = h_{1,2L+2}^{(c=0)} = \frac{1}{3}L(1+2L),$$

where $h_{p,q}^{(c)}$ denotes the Kač conformal weight

$$h_{p,q}^{(c)} = \frac{\left[(m+1)p - mq\right]^2 - 1}{4m(m+1)},$$

of a minimal conformal field theory of central charge $c = 1 - 6/[m(m+1)], m \in \mathbb{N}^*$. Brownian paths: c = 0, m = 2.

Non-Intersections of Packets of Walks

L = 3 packets of $n_1 = 3, n_2 = 3$, and $n_3 = 2$ independent planar random walks, in a mutually-avoiding star configuration, and crossing the annulus from r to R

Bulk Case

L mutually-avoiding packets $l = 1, \dots, L$, made of n_l independent RW's, started at neighboring points. Non-intersection probability of the *L* packets up to time *t*:

$$\boldsymbol{P}_{n_1,\cdots,n_L}(t) \approx t^{-\boldsymbol{\zeta}(n_1,\cdots,n_L)}$$

Original case of *L* mutually-avoiding simple RW's: $n_1 = ... = n_L = 1.$ In the annulus $\mathbb{D}(r, R)$ in \mathbb{C} :

$$P_{n_1,\cdots,n_L}(r) \approx (r/R)^{2\zeta(n_1,\cdots,n_L)}$$

Boundary Case

Two mutually-avoiding packets of $n_1 = 3$, and $n_2 = 2$ *independent random walks, in the half-plane* \mathbb{H} .

Probability near a Dirichlet boundary

$$\tilde{P}_{n_1,\cdots,n_L}(t)\approx t^{-\frac{1}{2}\tilde{\zeta}(n_1,\cdots,n_L)},$$

and for crossing the half-annulus $\tilde{\mathbb{D}}(r,R)$ in \mathbb{H} $\tilde{P}_{n_1,\dots,n_L}(r) \approx (r/R)^{\tilde{\zeta}(n_1,\dots,n_L)}$. **Cascade Relations**

$$\begin{cases} \tilde{\boldsymbol{\zeta}}(n_1, \cdots, n_L) = \boldsymbol{U}\left(\sum_{l=1}^L \boldsymbol{U}^{-1}(n_l)\right) \\ \boldsymbol{\zeta}(n_1, \cdots, n_L) = \boldsymbol{V}\left(\sum_{l=1}^L \boldsymbol{U}^{-1}(n_l)\right) \end{cases}$$

$$U(L) = \tilde{\zeta}_L \quad \left\{ = \frac{1}{3}L(1+2L) \right\}$$
$$V(L) = \zeta_L \quad \left\{ = \frac{1}{24}(4L^2-1) = U\left[\frac{1}{2}\left(L-\frac{1}{2}\right)\right] \right\}$$
$$U^{-1}(n) = \frac{1}{4}(\sqrt{24n+1}-1)$$

• Lawler & Werner (98): Conformal invariance of Brownian motions

• B.D. (98): Interpretation and calculation in terms of "Quantum Gravity" 2D Quantum Gravity

Randomly Triangulated Lattice

A random planar triangular lattice.

Statistical Mechanics on a Regular Lattice

Random lines on the (dual of) a regular triangular lattice

Statistical Mechanics on a Random Lattice

Random lines on a random planar triangular lattice

Dual Lattice

Random loops on the dual random lattice

Boundary Effects

Dirichlet boundary conditions on a random disk

Partition Function

Random planar triangular lattice G with fixed spherical topology.

$$Z(\boldsymbol{\beta}) = \sum_{\text{planar } G} \frac{1}{S(G)} e^{-\boldsymbol{\beta}|G|},$$

β: 'chemical potential' for the area, i.e., number of vertices |G| of *G*; *S*(*G*) its symmetry factor. Any fixed Euler characteristic χ possible; here $\chi = 2$.

Critical Behavior

The partition sum converges for β larger than some critical β_c . For $\beta \to \beta_c^+$ a singularity appears due to infinite graphs $Z(\beta, \chi) \sim (\beta - \beta_c)^{2 - \gamma_{str}(\chi)}$,

where $\gamma_{\text{str}}(\chi)$ is the string susceptibility exponent, depending on the genus of *G* through its Euler characteristic χ . For pure gravity and for the spherical topology

$$\gamma_{\rm str}(\chi=2)=-\frac{1}{2}.$$

Doubly Punctured Sphere

A particular partition function plays an important role, that of the doubly punctured sphere:

$$Z[\bullet\bullet] := \frac{\partial^2}{\partial\beta^2} Z(\beta,\chi=2) = \sum_{G(\chi=2)} \frac{1}{S(G)} |G|^2 e^{-\beta|G|},$$

scaling as

$$Z[\bullet\bullet] \sim (\beta - \beta_c)^{-\gamma_{\rm str}(\chi=2)}$$

KPZ Knizhnik, Polyakov, Zamolodchikov, 88

A "conformal operator" O (e.g. creating the line extremity) has conformal weight Δ (or $\tilde{\Delta}$) in (boundary) quantum gravity.

The same operator has conformal weight $\zeta = U(\Delta)$ in \mathbb{C} $(\tilde{\zeta} = U(\tilde{\Delta})$ in \mathbb{H} .)

KPZ

A fundamental quadratic relation exists between conformal weights Δ on a random planar surface (resp. $\tilde{\Delta}$ on a random disk) and those ζ in \mathbb{C} (resp. $\tilde{\zeta}$ in \mathbb{H})

$$\zeta = U(\Delta) = \Delta \frac{\Delta - \gamma}{1 - \gamma},$$

with γ the string susceptibility exponent. For Brownian paths, self-avoiding walks, and percolation, $\gamma = -1/2$, and the KPZ relation becomes

$$\boldsymbol{\zeta} = \boldsymbol{U}(\Delta) = \frac{1}{3}\Delta \left(1 + 2\Delta\right).$$

Random Walks on a Random Lattice

Set of L = 3 mutually-avoiding random walks

Walk set $\mathcal{B} = \{B_{ij}^{(l)}, l = 1, ..., L\}$ on the random planar graph *G*, started at vertex $i \in G$, ended at vertex $j \in G$.

Random Walk Partition Function

$$Z_L(\beta, z) = \sum_{\text{planar } G} \frac{1}{S(G)} e^{-\beta |G|} \sum_{\substack{i,j \in G \\ B_{ij}^{(l)} \\ l=1,\dots,L}} \sum_{\substack{z \in B \\ B_{ij}^{(l)}}} z^{|\mathcal{B}|},$$

where a "fugacity" *z* is associated with the total number $|\mathcal{B}| = \left| \bigcup_{l=1}^{L} \mathcal{B}^{(l)} \right|$ of vertices visited by the walks.

Boundary Partition Function

L = 3 mutually-avoiding RW's traversing a random disk.

Boundary case: *G* has the disk topology and the random walks connect sites *i* and *j* on the boundary ∂G , with fugacity $e^{-\tilde{\beta}}$ for the boundary's length $|\partial G|$

$$\tilde{Z}_{L}(\boldsymbol{\beta}, \tilde{\boldsymbol{\beta}}, z) = \sum_{\text{disk } G} e^{-\boldsymbol{\beta}|G|} e^{-\boldsymbol{\beta}|\partial G|} \sum_{\substack{i,j \in \partial G \\ \boldsymbol{B}_{ij}}} \sum_{\substack{\boldsymbol{\beta} \in \mathcal{B} \\ l=1,\dots,L}} z^{|\mathcal{B}|},$$

Punctured Disk Partition Function

Partition function of the disk with two boundary punctures: it corresponds to the L = 0 case of the \tilde{Z}_L 's

$$Z(\bullet,\bullet) = \tilde{Z}_{L=0}(\beta,\tilde{\beta}) = \sum_{\text{disk } G} e^{-\beta|G|} e^{-\tilde{\beta}|\partial G|} |\partial G|^2.$$

Equivalent Random Trees (Aldous-Broder)

L-tree partition function on the random lattice:

$$Z_{L}(\beta, z) = \sum_{\text{planar } G} \frac{1}{S(G)} e^{-\beta |G|} \sum_{\substack{i,j \in G \\ T_{ij} \\ l=1,...,L}} \sum_{\substack{T|I| \\ l=1,...,L}} z^{|T|},$$

 $\left\{ T_{ij}^{(l)}, l = 1, \dots, L \right\} \text{ are } L \text{ mutually-avoiding trees, joining sites } i \text{ and } j; \text{ a fugacity } z \text{ governs the total number of tree vertices } |T| = \left| \bigcup_{l=1}^{L} T^{(l)} \right|.$

Boundary Trees

L = 3 mutually-avoiding random trees traversing a random disk

Boundary case where *G* is a disk and the trees connect sites *i* and *j* on the boundary ∂G , with a fugacity $\tilde{z} = \exp(-\tilde{\beta})$ associated with the boundary's length

$$\tilde{Z}_L(\beta, z, \tilde{z}) = \sum_{\text{disk } G} e^{-\beta |G|} e^{-\beta |\partial G|} \sum_{\substack{i,j \in \partial G \\ I = 1, \dots, L}} \sum_{\substack{T = 1, \dots, L}} z^{|T|}$$

Quantum Surgery

The shaded areas are portions of random lattice *G* with a disk topology; L = 2 trees connect the end-points. Each corresponds to a generating function, as follows. (*For a global disk topology, the dashed lines represent the boundary, whereas for the sphere the top and bottom dashed lines are identified*)

Tree Generating Function

Each random tree has a generating function

$$T(x) = \sum_{n \ge 1} x^n T_n,$$

where $T_1 \equiv 1$ and T_n is the number of *rooted* planar trees with *n* external vertices (excluding the root):

$$T(x) = \frac{1}{2}(1 - \sqrt{1 - 4x}).$$

The patches of random lattice are representated as follows.

Disk Generating Function

A planar random disk with n external legs

Partition function of a random disk with *n* external vertices:

$$G_n(\beta) = \sum_{n-\text{leg planar } G} e^{-\beta |G|}.$$

Large–*N* limit of a random $N \times N$ matrix integral:

$$G_n(\boldsymbol{\beta}) = \int_a^b d\lambda \rho(\boldsymbol{\beta}, \lambda) \lambda^n,$$

 $\rho(\beta, \lambda)$: spectral eigenvalue density, with compact support $[a(\beta), b(\beta)]$.

Integral Representation

$$Z_L(\boldsymbol{\beta}, \boldsymbol{z}) = \int_a^b \prod_{l=1}^L d\lambda_l \,\rho(\boldsymbol{\beta}, \lambda_l) \prod_{l=1}^L \boldsymbol{\mathcal{T}}(\boldsymbol{z}\lambda_l, \boldsymbol{z}\lambda_{l+1}),$$

with a *cyclic* structure $\lambda_{L+1} \equiv \lambda_1$. The disk G_l of random surface between trees $T^{(l-1)}$, $T^{(l)}$ contributes a spectral density $\rho(\lambda_l)$. The backbone of tree $T^{(l)}$ between disks G_l and G_{l+1} yields a "propagator" $T(z\lambda_l, z\lambda_{l+1})$

$$T(x,y) := [1 - T(x) - T(y)]^{-1}.$$

Boundary Integral Representation

Boundary partition function:

$$\tilde{Z}_{L}(\boldsymbol{\beta}, \boldsymbol{z}, \boldsymbol{\tilde{z}}) = \int_{a}^{b} \prod_{l=1}^{L+1} d\lambda_{l} \rho(\boldsymbol{\beta}, \lambda_{l}) \prod_{l=1}^{L} \mathcal{T}(\boldsymbol{z}\lambda_{l}, \boldsymbol{z}\lambda_{l+1}) \\ \times \mathcal{L}(\boldsymbol{\tilde{z}}\lambda_{1}) \mathcal{L}(\boldsymbol{\tilde{z}}\lambda_{L+1})$$

with two extra propagators \mathcal{L} describing the two boundary lines:

$$\mathcal{L}(\tilde{z}\lambda) := (1 - \tilde{z}\lambda)^{-1}.$$

This gives for the two-puncture disk partition function

$$Z(\bigcirc) = \tilde{Z}_{L=0}(\beta, \tilde{z}) = \int_{a}^{b} d\lambda \rho(\beta, \lambda) \mathcal{L}^{2}(\tilde{z}\lambda).$$

Critical Behavior

Critical behavior of $Z_L(\beta, z)$ or $\tilde{Z}_L(\beta, z, \tilde{z} = \exp(-\tilde{\beta}))$: Triple scaling limit: $\beta \to \beta_c^+$ (infinite random lattice), $\tilde{\beta} \to \tilde{\beta}_c^+$ (infinite boundary length), and $z \to z_c^-$ (infinite *RW's*); the average lattice area, boundary length, and RW's sizes respectively scale as

 $\langle |G| \rangle \sim (\beta - \beta_c)^{-1}, \langle |\partial G| \rangle \sim (\tilde{\beta} - \tilde{\beta}_c)^{-1}, \langle |\mathcal{B}| \rangle \sim (z_c - z)^{-1}.$

The later analysis of the singular behavior in terms of "conformal weights" requires a natural *finite-size scaling* (hereafter dropping $\langle \cdots \rangle$)

 $|\partial G| \sim |G|^{1/2} \sim |\mathcal{B}|.$

Power Counting

Each component of the integrals scales with a power law of the mean area $\langle |G| \rangle$:

$$Z_{L} \sim \left(\int \rho d\lambda \star T\right)^{L}$$

$$\tilde{Z}_{L} \sim \left(\int \rho d\lambda \star T\right)^{L} \star \int \rho d\lambda \star L^{2}$$

$$Z(\checkmark) = \tilde{Z}_{0} \sim \int \rho d\lambda \star L^{2}$$

where the \star symbolic notation represents the factorisation of scaling behaviors. This implies the fundamental scaling relations:

$$Z_L \sim (Z_1)^L \\ \sim \frac{\tilde{Z}_L}{Z(\checkmark)} \sim \left[\frac{\tilde{Z}_1}{Z(\checkmark)}\right]^L.$$

Conformal Weights

The partition function Z_L represents a doubly punctured sphere with two *conformal operators*, of conformal weights Δ_L (here two vertices sources of *L* mutually-avoiding RW's):

$$Z_L \sim Z[\bullet \bullet] \star |G|^{-2\Delta_L}.$$

The boundary partition function \tilde{Z}_L corresponds to a doubly punctured disk with two *boundary operators* of conformal weights $\tilde{\Delta}_L$:

$$\tilde{Z}_L \sim Z(\bullet) \star |\partial G|^{-2\tilde{\Delta}_L}.$$

Structural Relations

• Doubly punctured sphere partition function $[\gamma := \gamma_{str}(\chi = 2)]$:

$$Z[\bullet\bullet] \sim (\beta - \beta_c)^{-\gamma} \sim |G|^{\gamma}.$$

• Scaling equivalences for *bulk* and *boundary* partition functions:

$$Z_L \sim (Z_1)^L \sim \tilde{Z}_L/Z(\bigcirc) \sim [\tilde{Z}_1/Z(\bigcirc)]^L.$$

• Definitions of conformal weights

$$Z_L \sim Z[\bullet \bullet] \star |G|^{-2\Delta_L}, \quad \tilde{Z}_L/Z(\bullet \bullet) \sim |\partial G|^{-2\tilde{\Delta}_L}$$

$$\Rightarrow Z_L \sim |G|^{\gamma - 2\Delta_L} \sim |\partial G|^{-2\tilde{\Delta}_L} \sim (Z_1)^L.$$

• Perimeter-area scaling $|\partial G| \sim |G|^{1/2}$

$$\Rightarrow 2\Delta_L - \gamma = \tilde{\Delta}_L = L \tilde{\Delta}_1.$$

• BULK \iff BOUNDARY • LINEARITY OF BOUNDARY WEIGHTS

Brownian Exponents in Q G The analysis of the singularities of the integrals gives

$$2\Delta_L - \gamma = \tilde{\Delta}_L = L\tilde{\Delta}_1$$
$$\tilde{\Delta}_1 = 1.$$

From $\gamma = -\frac{1}{2}$ of pure gravity, one finally gets $\Delta_L = \frac{1}{2} \left(L - \frac{1}{2} \right)$ $\tilde{\Delta}_L = L.$

Exponents in \mathbb{C} or \mathbb{H} & KPZ $U(\Delta) = \frac{1}{3}\Delta(1+2\Delta)$

$$\begin{cases} \Delta_L = \frac{1}{2} \left(L - \frac{1}{2} \right), & \zeta_L = \boldsymbol{U}(\Delta_L) = \frac{1}{24} \left(4L^2 - 1 \right) \\ \\ \tilde{\Delta}_L = L, & \tilde{\zeta}_L = \boldsymbol{U}(\tilde{\Delta}_L) = \frac{1}{3}L \left(1 + 2L \right) & Q \mathcal{E} \mathcal{D} \end{cases}$$

Life in QG is easy

Bulk-Boundary Relation

Quantum Boundary Additivity & Mutual Avoidance

 $2\Delta_{A \wedge B} - \gamma = \tilde{\Delta}_{A \wedge B} = \tilde{\Delta}_A + \tilde{\Delta}_B$

Quantum Gravity & Packets of Walks

$$2\Delta\{n_1,\cdots,n_L\} + \frac{1}{2} = \tilde{\Delta}\{n_1,\cdots,n_L\}$$
$$= \sum_{l=1}^L \tilde{\Delta}(n_l).$$

Brownian Packet in Q G Boundary conformal weight in \mathbb{H} of a packet of *n* independent Brownian paths:

$$\tilde{\zeta} = n$$

Inverting KPZ:

$$\tilde{\Delta}(n) = U^{-1}(n) = \frac{1}{4}(\sqrt{24n+1}-1).$$

The Brownian paths, independent in a fixed metric, are strongly coupled by the metric fluctuations in quantum gravity. Back to the (Half-) Plane with KPZ

$$\begin{cases} \tilde{\zeta}(n_1, \dots, n_L) = U\left(\tilde{\Delta}\{n_1, \dots, n_L\}\right) \\\\ \zeta(n_1, \dots, n_L) = V\left(\tilde{\Delta}\{n_1, \dots, n_L\}\right) \\\\ \tilde{\Delta}\{n_1, \dots, n_L\} = \sum_{l=1}^L U^{-1}(n_l) = \sum_{l=1}^L \frac{1}{4}(\sqrt{24n_l + 1} - 1) \\\\\\ U(\Delta) = \frac{1}{3}\Delta(1 + 2\Delta) \\\\ V(\Delta) = U\left[\frac{1}{2}\left(\Delta - \frac{1}{2}\right)\right] = \frac{1}{24}(4\Delta^2 - 1), \end{cases}$$

Quantum gravity & cascade relations, QED.

Mandelbrot Conjecture

$$\zeta(n=2) = V(U^{-1}(2)) = V\left(\frac{3}{2}\right)$$
$$= \zeta_{L=\frac{3}{2}} = \frac{1}{3}.$$

whence

$$D_{\text{Brown.Fr.}} = 2 - 2\zeta = \frac{4}{3}, \quad Q \mathcal{E} \mathcal{D}$$

(*LSW*, 2000)