CONFORMAL RANDOM GEOMETRY \& QUANTUM GRAVITY

Bertrand Duplantier

Service de Physique Théorique de Saclay
Mark Kac Seminar
on Probability and Physics
Utrecht

2004-2005

Mark Kac on Probability and Physics in:

Marian Smoluchowski and the Evolution of Statistical Thought in Physics:

"... in 1906 when Smoluchowski (influenced by the appearance of Einstein's two papers [on Brownian motion]) finally published his results, random phenomena would not come readily to mind. It required therefore, I think, an intellectual tour de force, to bring games of chance to bear upon understanding of physical phenomena."

RANDOM WALKS \& QUANTUM GRAVITY

Mark Kac Seminars I \& II
Utrecht
March 4, April $1^{\text {st }} 2005$

Random Walks

Brownian Path

Paul Lévy: Conformal Invariance

Brownian Frontier

Mandelbrot conjecture (1982): Hausdorff dimension $D=\frac{4}{3}$, as a SAW.

Self-Avoiding Walk

(courtesy of T. Kennedy)
B. Nienhuis (1982): $D=\frac{4}{3}$

Intersections of Random Walks

$L=3$ non-intersecting random walks crossing an annulus from r to R Probability

$$
P_{L}(t)=P\left\{\cup_{l, l^{\prime}=1}^{L}\left(B^{(l)}[0, t] \cap B^{\left(l^{\prime}\right)}[0, t]\right)=\emptyset\right\}
$$

that the intersection of L paths $B^{(l)}$ is empty up to time t.

Scaling Exponents

At large times, the non-intersection probability decays as

$$
P_{L}(t) \approx t^{-\zeta_{L}}
$$

where ζ_{L} is a universal exponent depending only on L. Similarly, the probability that the Brownian paths altogether traverse the annulus $\mathbb{D}(r, R)$ in \mathbb{C} from the inner boundary circle of radius r to the outer one at distance R scales as

$$
P_{L}(R) \approx(r / R)^{2 \zeta_{L}}
$$

Half-Plane Case

$L=2$ mutually-avoiding random walks crossing a half-annulus from r to R in the half-plane \mathbb{H}
L walks constrained to stay in the half-plane \mathbb{H} with Dirichlet boundary conditions on $\partial \mathbb{H}$, and started at neighboring points near the boundary: non-intersection probability $\tilde{P}_{L}(t)$.

Boundary Exponents

Boundary critical exponent $\tilde{\zeta}_{L}$

$$
\tilde{P}_{L}(t) \approx t^{-\frac{1}{2} \tilde{\zeta}_{L}}
$$

Probability that the Brownian paths altogether traverse the half-annulus $\tilde{\mathbb{D}}(r, R)$ in \mathbb{H}, centered on the boundary line ∂H, from the inner boundary circle of radius r to the outer one at distance R :

$$
\tilde{P}_{L}(R) \approx(r / R)^{\tilde{\zeta}_{L}}
$$

Conformal Invariance and Weights

It was conjectured from conformal invariance arguments and numerical simulations that (B. D.- Kwon (1988))

$$
\zeta_{L}=h_{0, L}^{(c=0)}=\frac{1}{24}\left(4 L^{2}-1\right),
$$

and for the half-plane

$$
\tilde{\zeta}_{L}=h_{1,2 L+2}^{(c=0)}=\frac{1}{3} L(1+2 L),
$$

where $h_{p, q}^{(c)}$ denotes the Kač conformal weight

$$
h_{p, q}^{(c)}=\frac{[(m+1) p-m q]^{2}-1}{4 m(m+1)},
$$

of a minimal conformal field theory of central charge $c=1-6 /[m(m+1)], m \in \mathbb{N}^{*}$. Brownian paths: $c=0, m=2$.

Non-Intersections of Packets of Walks

$L=3$ packets of $n_{1}=3, n_{2}=3$, and $n_{3}=2$ independent planar random walks, in a mutually-avoiding star configuration, and crossing the annulus from r to R

Bulk Case

L mutually-avoiding packets $l=1, \cdots, L$, made of n_{l} independent RW's, started at neighboring points.
Non-intersection probability of the L packets up to time t :

$$
P_{n_{1}, \cdots, n_{L}}(t) \approx t^{-\zeta\left(n_{1}, \cdots, n_{L}\right)}
$$

Original case of L mutually-avoiding simple RW's:
$n_{1}=\ldots=n_{L}=1$.
In the annulus $\mathbb{D}(r, R)$ in \mathbb{C} :

$$
P_{n_{1}, \cdots, n_{L}}(r) \approx(r / R)^{2 \zeta\left(n_{1}, \cdots, n_{L}\right)}
$$

Boundary Case

Two mutually-avoiding packets of $n_{1}=3$, and $n_{2}=2$ independent random walks, in the half-plane \mathbb{H}.

Probability near a Dirichlet boundary

$$
\tilde{P}_{n_{1}, \cdots, n_{L}}(t) \approx t^{-\frac{1}{2} \tilde{\zeta}\left(n_{1}, \cdots, n_{L}\right)}
$$

and for crossing the half-annulus $\tilde{\mathbb{D}}(r, R)$ in \mathbb{H}

$$
\tilde{P}_{n_{1}, \cdots, n_{L}}(r) \approx(r / R)^{\tilde{\zeta}\left(n_{1}, \cdots, n_{L}\right)} .
$$

Cascade Relations

$$
\begin{gathered}
\left\{\begin{array}{l}
\tilde{\zeta}\left(n_{1}, \cdots, n_{L}\right)=U\left(\sum_{l=1}^{L} U^{-1}\left(n_{l}\right)\right) \\
\zeta\left(n_{1}, \cdots, n_{L}\right)=V\left(\sum_{l=1}^{L} U^{-1}\left(n_{l}\right)\right)
\end{array}\right. \\
\left\{\begin{array}{l}
U(L)=\tilde{\zeta}_{L} \quad\left\{=\frac{1}{3} L(1+2 L)\right\} \\
V(L)=\zeta_{L} \quad\left\{=\frac{1}{24}\left(4 L^{2}-1\right)=U\left[\frac{1}{2}\left(L-\frac{1}{2}\right)\right]\right\} \\
U^{-1}(n)=\frac{1}{4}(\sqrt{24 n+1}-1)
\end{array}\right.
\end{gathered}
$$

- Lawler \& Werner (98): Conformal invariance of Brownian motions
- B.D. (98): Interpretation and calculation in terms of "Quantum Gravity"

2D Quantum Gravity

Randomly Triangulated Lattice

A random planar triangular lattice.

Statistical Mechanics on a Regular Lattice

Random lines on the (dual of) a regular triangular lattice

Statistical Mechanics on a Random Lattice

Random lines on a random planar triangular lattice

Dual Lattice

Random loops on the dual random lattice

Boundary Effects

Dirichlet boundary conditions on a random disk

Partition Function

Random planar triangular lattice G with fixed spherical topology.

$$
Z(\beta)=\sum_{\text {planar } G} \frac{1}{S(G)} e^{-\beta|G|}
$$

β : 'chemical potential' for the area, i.e., number of vertices $|G|$ of $G ; S(G)$ its symmetry factor. Any fixed Euler characteristic χ possible; here $\chi=2$.

Critical Behavior

The partition sum converges for β larger than some critical β_{c}. For $\beta \rightarrow \beta_{c}^{+}$a singularity appears due to infinite graphs

$$
Z(\beta, \chi) \sim\left(\beta-\beta_{c}\right)^{2-\gamma_{\mathrm{str}}(\chi)}
$$

where $\gamma_{\mathrm{str}}(\chi)$ is the string susceptibility exponent, depending on the genus of G through its Euler characteristic χ. For pure gravity and for the spherical topology

$$
\gamma_{\mathrm{str}}(\chi=2)=-\frac{1}{2}
$$

Doubly Punctured Sphere

A particular partition function plays an important role, that of the doubly punctured sphere:

$$
Z[\bullet]:=\frac{\partial^{2}}{\partial \beta^{2}} Z(\beta, \chi=2)=\sum_{G(\chi=2)} \frac{1}{S(G)}|G|^{2} e^{-\beta|G|}
$$

scaling as

$$
Z[\hookleftarrow] \sim\left(\beta-\beta_{c}\right)^{-\gamma_{\mathrm{str}}(\chi=2)}
$$

KPZ Knizhnik, Polyakov, Zamolodchikov, 88

A "conformal operator" O (e.g. creating the line extremity) has conformal weight Δ (or $\tilde{\Delta}$) in (boundary) quantum gravity.

The same operator has conformal weight $\zeta=U(\Delta)$ in \mathbb{C} $(\tilde{\zeta}=U(\tilde{\Delta})$ in \mathbb{H}.)

KPZ

A fundamental quadratic relation exists between conformal weights Δ on a random planar surface (resp. $\tilde{\Delta}$ on a random disk) and those ζ in $\mathbb{C}($ resp. $\tilde{\zeta}$ in $\mathbb{H})$

$$
\zeta=U(\Delta)=\Delta \frac{\Delta-\gamma}{1-\gamma}
$$

with γ the string susceptibility exponent. For Brownian paths, self-avoiding walks, and percolation, $\gamma=-1 / 2$, and the KPZ relation becomes

$$
\zeta=U(\Delta)=\frac{1}{3} \Delta(1+2 \Delta) .
$$

Random Walks on a Random Lattice

Set of $L=3$ mutually-avoiding random walks
Walk set $\mathcal{B}=\left\{B_{i j}^{(l)}, l=1, \ldots, L\right\}$ on the random planar graph G, started at vertex $i \in G$, ended at vertex $j \in G$.

Random Walk Partition Function

$$
Z_{L}(\beta, z)=\sum_{\text {planar } G} \frac{1}{S(G)} e^{-\beta|G|} \sum_{i, j \in G} \sum_{\substack{B_{i j}^{(l)} \\ l=1, \ldots, L}} z^{|\mathcal{B}|}
$$

where a "fugacity" z is associated with the total number $|\mathcal{B}|=\left|\cup_{l=1}^{L} B^{(l)}\right|$ of vertices visited by the walks.

Boundary Partition Function

$L=3$ mutually-avoiding $R W$'s traversing a random disk.
Boundary case: G has the disk topology and the random walks connect sites i and j on the boundary ∂G, with fugacity $e^{-\tilde{\beta}}$ for the boundary's length $|\partial G|$

$$
\tilde{Z}_{L}(\beta, \tilde{\beta}, z)=\sum_{\operatorname{disk} G} e^{-\beta|G|} e^{-\tilde{\beta}|\partial G|} \sum_{i, j \in \partial G} \sum_{\substack{B_{i j}^{(l)} \\ l=1, \ldots, L}} z^{|\mathcal{B}|}
$$

Punctured Disk Partition Function

Partition function of the disk with two boundary punctures: it corresponds to the $L=0$ case of the \tilde{Z}_{L} 's

$$
Z(\bullet)=\tilde{Z}_{L=0}(\beta, \tilde{\beta})=\sum_{\text {disk } G} e^{-\beta|G|} e^{-\tilde{\beta}|\partial G|}|\partial G|^{2}
$$

Equivalent Random Trees (Aldous-Broder)

L-tree partition function on the random lattice:

$$
Z_{L}(\beta, z)=\sum_{\text {planar } G} \frac{1}{S(G)} e^{-\beta|G|} \sum_{i, j \in G} \sum_{\substack{T_{i j}^{(l)} \\ l=1, \ldots, L}} z^{|T|}
$$

$\left\{T_{i j}^{(l)}, l=1, \cdots, L\right\}$ are L mutually-avoiding trees, joining sites i and j; a fugacity z governs the total number of tree vertices $|T|=\left|\cup_{l=1}^{L} T^{(l)}\right|$.

Boundary Trees

$L=3$ mutually-avoiding random trees traversing a random disk
Boundary case where G is a disk and the trees connect sites i and j on the boundary ∂G, with a fugacity $\tilde{z}=\exp (-\tilde{\beta})$ associated with the boundary's length

$$
\tilde{Z}_{L}(\beta, z, \tilde{z})=\sum_{\operatorname{disk} G} e^{-\beta|G|} e^{-\tilde{\beta}|\partial G|} \sum_{i, j \in \partial G} \sum_{\substack{T_{i j}^{(l)} \\ l=1, \ldots, L}} z^{|T|}
$$

Quantum Surgery

The shaded areas are portions of random lattice G with a disk topology; $L=2$ trees connect the end-points. Each corresponds to a generating function, as follows. (For a global disk topology, the dashed lines represent the boundary, whereas for the sphere the top and bottom dashed lines are identified)

Tree Generating Function

Each random tree has a generating function

$$
T(x)=\sum_{n \geqslant 1} x^{n} T_{n}
$$

where $T_{1} \equiv 1$ and T_{n} is the number of rooted planar trees with n external vertices (excluding the root):

$$
T(x)=\frac{1}{2}(1-\sqrt{1-4 x}) .
$$

The patches of random lattice are representated as follows.

Disk Generating Function

A planar random disk with n external legs
Partition function of a random disk with n external vertices:

$$
G_{n}(\beta)=\sum_{n-\operatorname{leg} \text { planar } G} e^{-\beta|G|} .
$$

Large $-N$ limit of a random $N \times N$ matrix integral:

$$
G_{n}(\beta)=\int_{a}^{b} d \lambda \rho(\beta, \lambda) \lambda^{n}
$$

$\rho(\beta, \lambda)$: spectral eigenvalue density, with compact support $[a(\beta), b(\beta)]$.

Integral Representation

$$
Z_{L}(\beta, z)=\int_{a}^{b} \prod_{l=1}^{L} d \lambda_{l} \rho\left(\beta, \lambda_{l}\right) \prod_{l=1}^{L} \mathcal{T}\left(z \lambda_{l}, z \lambda_{l+1}\right),
$$

with a cyclic structure $\lambda_{L+1} \equiv \lambda_{1}$. The disk G_{l} of random surface between trees $T^{(l-1)}, T^{(l)}$ contributes a spectral density $\rho\left(\lambda_{l}\right)$. The backbone of tree $T^{(l)}$ between disks G_{l} and G_{l+1} yields a "propagator" $\mathcal{T}\left(z \lambda_{l}, z \lambda_{l+1}\right)$

$$
\mathcal{T}(x, y):=[1-T(x)-T(y)]^{-1} .
$$

Boundary Integral Representation

Boundary partition function:

$$
\begin{gathered}
\tilde{Z}_{L}(\beta, z, \tilde{z})=\int_{a}^{b} \prod_{l=1}^{L+1} d \lambda_{l} \rho\left(\beta, \lambda_{l}\right) \prod_{l=1}^{L} \mathcal{T}\left(z \lambda_{l}, z \lambda_{l+1}\right) \\
\times \mathcal{L}\left(\tilde{z} \lambda_{1}\right) \mathcal{L}\left(\tilde{z} \lambda_{L+1}\right)
\end{gathered}
$$

with two extra propagators \mathcal{L} describing the two boundary lines:

$$
\mathcal{L}(\tilde{z} \lambda):=(1-\tilde{z} \lambda)^{-1} .
$$

This gives for the two-puncture disk partition function

$$
Z(\odot)=\tilde{Z}_{L=0}(\beta, \tilde{z})=\int_{a}^{b} d \lambda \rho(\beta, \lambda) \mathcal{L}^{2}(\tilde{z} \lambda)
$$

Critical Behavior

Critical behavior of $Z_{L}(\beta, z)$ or $\tilde{Z}_{L}(\beta, z, \tilde{z}=\exp (-\tilde{\beta}))$: Triple scaling limit: $\beta \rightarrow \beta_{c}^{+}$(infinite random lattice), $\tilde{\beta} \rightarrow \tilde{\beta}_{c}^{+}$(infinite boundary length), and $z \rightarrow z_{c}^{-}$(infinite $R W$'s); the average lattice area, boundary length, and RW's sizes respectively scale as

$$
\left.\langle | G\left\rangle \sim\left(\beta-\beta_{c}\right)^{-1},\langle | \partial G\right|\right\rangle \sim\left(\tilde{\beta}-\tilde{\beta}_{c}\right)^{-1},\langle | \mathcal{B}| \rangle \sim\left(z_{c}-z\right)^{-1} .
$$

The later analysis of the singular behavior in terms of
"conformal weights" requires a natural finite-size scaling (hereafter dropping $\langle\cdots\rangle$)

$$
|\partial G| \sim|G|^{1 / 2} \sim|\mathcal{B}| .
$$

Power Counting

Each component of the integrals scales with a power law of the mean area $\langle | G\rangle:$

$$
\begin{aligned}
Z_{L} & \sim\left(\int \rho d \lambda \star \mathcal{T}\right)^{L} \\
\tilde{Z}_{L} & \sim\left(\int \rho d \lambda \star \mathcal{T}\right)^{L} \star \int \rho d \lambda \star \mathcal{L}^{2} \\
Z(\odot) & =\tilde{Z}_{0} \sim \int \rho d \lambda \star \mathcal{L}^{2}
\end{aligned}
$$

where the \star symbolic notation represents the factorisation of scaling behaviors. This implies the fundamental scaling relations:

$$
\begin{aligned}
Z_{L} & \sim\left(Z_{1}\right)^{L} \\
& \sim \frac{\tilde{Z}_{L}}{Z(セ)} \sim\left[\frac{\tilde{z}_{1}}{Z(\bullet)}\right]^{L} .
\end{aligned}
$$

Conformal Weights

The partition function Z_{L} represents a doubly punctured sphere with two conformal operators, of conformal weights Δ_{L} (here two vertices sources of L mutually-avoiding RW's):

$$
Z_{L} \sim Z[\odot] \star|G|^{-2 \Delta_{L}}
$$

The boundary partition function \tilde{Z}_{L} corresponds to a doubly punctured disk with two boundary operators of conformal weights $\tilde{\Delta}_{L}$:

$$
\tilde{Z}_{L} \sim Z(\odot) \star|\partial G|^{-2 \tilde{\Delta}_{L}}
$$

Structural Relations

- Doubly punctured sphere partition function $\left[\gamma:=\gamma_{\mathrm{str}}(\chi=2)\right]$:

$$
Z[\bullet] \sim\left(\beta-\beta_{c}\right)^{-\gamma} \sim|G|^{\gamma} .
$$

- Scaling equivalences for bulk and boundary partition functions:

$$
Z_{L} \sim\left(Z_{1}\right)^{L} \sim \tilde{Z}_{L} / Z(\bullet) \sim\left[\tilde{Z}_{1} / Z(\circledast)\right]^{L}
$$

- Defi nitions of conformal weights

$$
\begin{gathered}
Z_{L} \sim Z[\odot] \star|G|^{-2 \Delta_{L}}, \tilde{Z}_{L} / Z(\bullet) \sim|\partial G|^{-2 \tilde{\Delta}_{L}} \\
\Rightarrow Z_{L} \sim|G|^{\gamma-2 \Delta_{L}} \sim|\partial G|^{-2 \tilde{\Delta}_{L}} \sim\left(Z_{1}\right)^{L}
\end{gathered}
$$

- Perimeter-area scaling $|\partial G| \sim|G|^{1 / 2}$

$$
\Rightarrow 2 \Delta_{L}-\gamma=\tilde{\Delta}_{L}=L \tilde{\Delta}_{1} .
$$

\bullet BULK \Longleftrightarrow BOUNDARY • LINEARITY OF BOUNDARY WEIGHTS

Brownian Exponents in Q G

The analysis of the singularities of the integrals gives

$$
\begin{aligned}
2 \Delta_{L}-\gamma & =\tilde{\Delta}_{L}=L \tilde{\Delta}_{1} \\
\tilde{\Delta}_{1} & =1 .
\end{aligned}
$$

From $\gamma=-\frac{1}{2}$ of pure gravity, one fi nally gets

$$
\begin{aligned}
\Delta_{L} & =\frac{1}{2}\left(L-\frac{1}{2}\right) \\
\tilde{\Delta}_{L} & =L
\end{aligned}
$$

Exponents in \mathbb{C} or $\mathbb{H} \& \mathrm{KPZ}$

$$
\begin{gathered}
U(\Delta)=\frac{1}{3} \Delta(1+2 \Delta) \\
\left\{\begin{array}{l}
\Delta_{L}=\frac{1}{2}\left(L-\frac{1}{2}\right), \quad \zeta_{L}=U\left(\Delta_{L}\right)=\frac{1}{24}\left(4 L^{2}-1\right) \\
\tilde{\Delta}_{L}=L, \quad \tilde{\zeta}_{L}=U\left(\tilde{\Delta}_{L}\right)=\frac{1}{3} L(1+2 L) \quad Q E \mathcal{D}
\end{array}\right.
\end{gathered}
$$

Life in QG is easy

Bulk-Boundary Relation

$2 \Delta-\gamma=\tilde{\Delta}$

Quantum Boundary Additivity \& Mutual Avoidance

Quantum Gravity \& Packets of Walks

$$
\begin{aligned}
2 \Delta\left\{n_{1}, \cdots, n_{L}\right\}+\frac{1}{2} & =\tilde{\Delta}\left\{n_{1}, \cdots, n_{L}\right\} \\
& =\sum_{l=1}^{L} \tilde{\left(n_{1}\right)} .
\end{aligned}
$$

Brownian Packet in Q G

Boundary conformal weight in \mathbb{H} of a packet of n independent Brownian paths:

$$
\tilde{\zeta}=n
$$

Inverting KPZ:

$$
\tilde{\Delta}(n)=U^{-1}(n)=\frac{1}{4}(\sqrt{24 n+1}-1) .
$$

The Brownian paths, independent in a fixed metric, are strongly coupled by the metric fluctuations in quantum gravity.

Back to the (Half-) Plane with KPZ

$$
\begin{aligned}
& \int \tilde{\zeta}\left(n_{1}, \cdots, n_{L}\right)=U\left(\tilde{\Delta}\left\{n_{1}, \cdots, n_{L}\right\}\right) \\
& \zeta\left(n_{1}, \cdots, n_{L}\right)=V\left(\tilde{\Delta}\left\{n_{1}, \cdots, n_{L}\right\}\right) \\
& \tilde{\Delta}\left\{n_{1}, \cdots, n_{L}\right\}=\sum_{l=1}^{L} U^{-1}\left(n_{l}\right)=\sum_{l=1}^{L} \frac{1}{4}\left(\sqrt{24 n_{l}+1}-1\right) \\
& \left\{\begin{array}{l}
U(\Delta)=\frac{1}{3} \Delta(1+2 \Delta) \\
V(\Delta)=U\left[\frac{1}{2}\left(\Delta-\frac{1}{2}\right)\right]=\frac{1}{24}\left(4 \Delta^{2}-1\right),
\end{array}\right.
\end{aligned}
$$

Quantum gravity \& cascade relations, $Q \mathcal{E D}$.

Mandelbrot Conjecture

$$
\begin{aligned}
\zeta(n=2) & =V\left(U^{-1}(2)\right)=V\left(\frac{3}{2}\right) \\
& =\zeta_{L=\frac{3}{2}}=\frac{1}{3} .
\end{aligned}
$$

whence

$$
D_{\text {Brown.Fr. }}=2-2 \zeta=\frac{4}{3}, \quad Q \mathcal{E D}
$$

(LSW, 2000)

