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Mark Kac on Probability and Physics in:

Marian Smoluchowski and the Evolution
of Statistical Thought in Physics:

“ � � � in 1906 when Smoluchowski (influenced by the
appearance of Einstein’s two papers [on Brownian motion])
finally published his results, random phenomena would not
come readily to mind. It required therefore, I think, an
intellectual tour de force, to bring games of chance to bear
upon understanding of physical phenomena.”
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Random Walks



Brownian Path

Paul Lévy: Conformal Invariance



Brownian Frontier

Mandelbrot conjecture (1982): Hausdorff dimension D � 4
3 ,

as a SAW.



Self-Avoiding Walk

SAW in plane - 1,000,000 steps

(courtesy of T. Kennedy)

B. Nienhuis (1982): D � 4
3



Intersections of Random Walks
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L � 3 non-intersecting random walks crossing an annulus from r to R
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is empty up to time t.



Scaling Exponents

At large times, the non-intersection probability decays as
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where ζL is a universal exponent depending only on L.
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Half-Plane Case

r

R

L � 2 mutually-avoiding random walks crossing a half-annulus from r to

R in the half-plane

�

L walks constrained to stay in the half-plane

�

with Dirichlet
boundary conditions on ∂

�

, and started at neighboring
points near the boundary: non-intersection probability P̃L

�

t

�

.



Boundary Exponents

Boundary critical exponent ζ̃L
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, centered on the boundary line ∂H,
from the inner boundary circle of radius r to the outer one at
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Conformal Invariance and Weights
It was conjectured from conformal invariance arguments and
numerical simulations that (B. D.- Kwon (1988))
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p �q denotes the Kač conformal weight
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Non-Intersections of Packets of Walks

r

R

L � 3 packets of n1

� 3 � n2

� 3, and n3

� 2 independent planar random

walks, in a mutually-avoiding star configuration, and crossing the

annulus from r to R



Bulk Case

L mutually-avoiding packets l � 1  � � �  L, made of nl

independent RW’s, started at neighboring points.
Non-intersection probability of the L packets up to time t:
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Original case of L mutually-avoiding simple RW’s:
n1

�� � � � nL

� 1.
In the annulus
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Boundary Case

r

R

Two mutually-avoiding packets of n1

� 3, and n2

� 2 independent

random walks, in the half-plane

�

.

Probability near a Dirichlet boundary
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and for crossing the half-annulus ˜ � �
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Cascade Relations
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	 Lawler & Werner (98): Conformal invariance of Brownian
motions

	 B.D. (98): Interpretation and calculation in terms of
“Quantum Gravity”



2D Quantum Gravity



Randomly Triangulated Lattice

A random planar triangular lattice.



Statistical Mechanics on a Regular
Lattice

Random lines on the (dual of) a regular triangular lattice



Statistical Mechanics on a Random
Lattice

Random lines on a random planar triangular lattice



Dual Lattice

Random loops on the dual random lattice



Boundary Effects

Dirichlet boundary conditions on a random disk



Partition Function

Random planar triangular lattice G with fixed spherical topology.
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β: ‘chemical potential’ for the area, i.e., number of vertices
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of G; S
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its symmetry factor. Any fixed Euler
characteristic χ possible; here χ � 2.



Critical Behavior

The partition sum converges for β larger than some critical
βc. For β � β �

c a singularity appears due to infinite graphs
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where γstr
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is the string susceptibility exponent, depending
on the genus of G through its Euler characteristic χ. For pure
gravity and for the spherical topology
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Doubly Punctured Sphere

A particular partition function plays an important role, that of
the doubly punctured sphere:
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scaling as
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KPZ Knizhnik, Polyakov, Zamolodchikov, 88

A “conformal operator” O (e.g. creating the line extremity)
has conformal weight ∆ (or ∆̃) in (boundary) quantum gravity.

The same operator has conformal weight ζ � U
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KPZ
A fundamental quadratic relation exists between conformal
weights ∆ on a random planar surface (resp. ∆̃ on a random
disk ) and those ζ in

�

(resp. ζ̃ in

�

)
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with γ the string susceptibility exponent. For Brownian paths,
self-avoiding walks, and percolation, γ � � 1

�

2, and the KPZ
relation becomes

ζ � U
�

∆

� � 1
3

∆

�

1

�

2∆

�
�



Random Walks on a Random Lattice

i j

Set of L � 3 mutually-avoiding random walks

Walk set B � �

B
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i j  l � 1 � � �  L

�

on the random planar graph
G, started at vertex i � G  ended at vertex j � G.



Random Walk Partition Function
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where a “fugacity” z is associated with the total number
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� of vertices visited by the walks.



Boundary Partition Function

ji

� �

L � 3 mutually-avoiding RW’s traversing a random disk.

Boundary case: G has the disk topology and the random
walks connect sites i and j on the boundary ∂G, with fugacity

e
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Punctured Disk Partition Function

Partition function of the disk with two boundary punctures: it
corresponds to the L � 0 case of the Z̃L’s
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Equivalent Random Trees (Aldous-Broder)

i j

L � tree partition function on the random lattice:
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i j  l � 1  � � �  L are L mutually-avoiding trees, joining

sites i and j; a fugacity z governs the total number of tree

vertices
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Boundary Trees

i j

� �
L � 3 mutually-avoiding random trees traversing a random disk

Boundary case where G is a disk and the trees connect sites i
and j on the boundary ∂G, with a fugacity z̃ � exp

�
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associated with the boundary’s length
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Quantum Surgery

The shaded areas are portions of random lattice G with a disk
topology; L � 2 trees connect the end-points. Each
corresponds to a generating function, as follows. (For a global

disk topology, the dashed lines represent the boundary, whereas for the

sphere the top and bottom dashed lines are identified)



Tree Generating Function

Each random tree has a generating function
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where T 1

� 1 and T n is the number of rooted planar trees
with n external vertices (excluding the root):
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The patches of random lattice are representated as follows.



Disk Generating Function

Gn

A planar random disk with n external legs

Partition function of a random disk with n external vertices:
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Integral Representation
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between disks Gl
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Boundary Integral Representation
Boundary partition function:
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Critical Behavior

Critical behavior of ZL
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Triple scaling limit: β � β �
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RW’s); the average lattice area, boundary length, and RW’s
sizes respectively scale as
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Power Counting
Each component of the integrals scales with a power law of the mean area
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where the � symbolic notation represents the factorisation of scaling
behaviors. This implies the fundamental scaling relations:
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Conformal Weights

The partition function ZL represents a doubly punctured
sphere with two conformal operators, of conformal weights
∆L (here two vertices sources of L mutually-avoiding RW’s):
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The boundary partition function Z̃L corresponds to a doubly
punctured disk with two boundary operators of conformal
weights ∆̃L:
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Structural Relations

� Doubly punctured sphere partition function [γ : � γstr
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� Definitions of conformal weights
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Brownian Exponents in Q G
The analysis of the singularities of the integrals

gives
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Exponents in or & KPZ
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Life in QG is easy



Bulk-Boundary Relation
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Quantum Boundary Additivity & Mutual
Avoidance
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Quantum Gravity & Packets of Walks

r

R

r

R

2∆

�

n1 � � � � � nL
� 1

2

� ∆̃

�

n1 � � � � � nL

�

�

L

∑
l �1

∆̃

�

nl

�
�



Brownian Packet in Q G
Boundary conformal weight in of a packet of n

independent Brownian paths:

ζ̃ � n

Inverting KPZ:
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The Brownian paths, independent in a fixed metric, are
strongly coupled by the metric fluctuations in quantum
gravity.



Back to the (Half-) Plane with KPZ
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Quantum gravity & cascade relations, Q ED .



Mandelbrot Conjecture
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(LSW, 2000)


