

Cluster expansions for hard-core systems. I. Overview

Roberto Fernández CNRS - Université de Rouen

Kac seminar, February 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

• An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' & \text{incompatible} \\ \gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \text{compatible} \end{array}$$

うつん 川川 スポットボット 大型マントロッ

For simplicity: each polymer incompatible with itself $(\gamma \sim \gamma, \forall \gamma \in \mathcal{P})$

• A family of *activities* $\boldsymbol{z} = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

► An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' \\ \gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \begin{array}{l} \text{incompatible} \\ \text{compatible} \end{array} \end{array}$$

ション ふゆ マ キャット しょう くしゃ

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

• A family of *activities* $\boldsymbol{z} = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

• An *incompatibility* constraint:

$$\begin{array}{ll} \gamma \nsim \gamma' \\ \gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \begin{array}{l} \text{incompatible} \\ \text{compatible} \end{array} \end{array}$$

ション ふゆ マ キャット しょう くしゃ

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

• A family of *activities* $\boldsymbol{z} = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

Genesis Loss LT Geom Partitions CE Ind

The basic ("finite-volume") measures Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \geq 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_{\Lambda}$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

∧ = some label, often finite subset of a countable set
∧ As compatible polymers are necessarily different,

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} = \sum_{\{\gamma_1, \dots, \gamma_n\} \in \mathcal{P}_{\Lambda}} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

different situation below for cluster expansion)

Genesis Loss LT Geom Partitions CE Ind

The basic ("finite-volume") measures Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \ge 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_{\Lambda}$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

∧ = some label, often finite subset of a countable set
∧ As compatible polymers are necessarily different,

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} = \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

different situation below for cluster expansion)

Genesis Loss LT Geom Partitions CE Ind

The basic ("finite-volume") measures Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$W_{\Lambda}(\{\gamma_1, \gamma_2, \dots, \gamma_n\}) = \frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for $n \ge 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_{\Lambda}$, and $W_{\Lambda}(\emptyset) = 1/\Xi_{\Lambda}$, where

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

∧ = some label, often finite subset of a countable set
∧ As compatible polymers are necessarily different,

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} = \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} [\bullet] \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

(different situation below for cluster expansion)

- Existence of the limit $\mathcal{P}_{\Lambda} \to \mathcal{P}$ ("thermodynamic limit")
- Properties of the resulting measure (mixing properties, dependency on parameters,...)

ション ふゆ マ キャット しょう くしゃ

• Asymptotic behavior of Ξ_{Λ}

		N	Iotivati	on		
Imn	ediate:					
	Physics: Gi	and-cano	nical ensem	ble of polymer	gas with	

Geom

Partitions

CE

Ind

Physics: Grand-canonical ensemble of polymer gas wit activities z_γ and hard-core interaction

 Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

Loss

LT

Genesis

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Genesis	2035	111	Geom	i di titititi	CL	1110
		N	Aotivati	on		
Imme	ediate:					

Partitions

CF

(日) (四) (日) (日) (日)

Ind

- Physics: Grand-canonical ensemble of polymer gas with activities z_γ and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

LOSS

TT

Conosis

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Genesis	1033	111	Geom	1 di tititititi	<u>CL</u>	11104
		N	Aotivati	on		
Imme	ediate:					

Partitions

CF

ション ふゆ マ キャット しょう くしゃ

Ind

- Physics: Grand-canonical ensemble of polymer gas with activities z_γ and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

LOSS

TT

Conosis

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Genesis	1055	DI	Geom	i di titititi	0L	Ind
		Ν	Aotivati	on		
Imm	ediate:					

Partitions

CF

ション ふゆ マ キャット きょうくしゃ

Ind

- Physics: Grand-canonical ensemble of polymer gas with activities z_γ and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

LOSS

TT

Genesis

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Genesis	1055	DI	Geom	i di titititi	0L	Ind
		Ν	Aotivati	on		
Imm	ediate:					

Partitions

CF

Ind

- Physics: Grand-canonical ensemble of polymer gas with activities z_γ and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_γ

Less immediate:

LOSS

TT

Genesis

- Statistical mechanical models at high and low temperatures are mapped into such systems
- ▶ More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- ► Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Equivalently, consider the *incompatibility graph* $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ Unoriented graph with:

- ▶ Vertices = polymers
- \blacktriangleright Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

(contrast!)

 $\blacktriangleright \mathcal{E}$ is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Equivalently, consider the *incompatibility graph* $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ Unoriented graph with:

- Vertices = polymers
- Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

うつん 川川 スポットボット 大型マントロッ

(contrast!)

 $\blacktriangleright \mathcal{E}$ is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Equivalently, consider the *incompatibility graph* $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ Unoriented graph with:

- Vertices = polymers
- Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

うつん 川川 スポットボット 大型マントロッ

(contrast!)

► E is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Equivalently, consider the *incompatibility graph* $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ Unoriented graph with:

- Vertices = polymers
- ► Edges = incompatible pairs

$$\gamma \nsim \gamma' \quad \text{iff} \quad \{\gamma, \gamma'\} \in \mathcal{E} \quad \text{or} \quad \gamma \leftrightarrow \gamma'$$
 (1)

うつん 川川 スポットボット 大型マントロッ

(contrast!)

► E is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

In this graph-theoretical framework:

- ▶ Incompatible polymers = neighboring vertices
- ▶ Polymer system = hard-core gas in a complicated lattice

Neighborhood of γ₀:

$$\begin{aligned} \mathcal{N}_{\gamma_0}^* &= & \{\gamma \in \mathcal{P} : \gamma \nsim \gamma_0\} \\ \mathcal{N}_{\gamma_0} &= & \mathcal{N}_{\gamma_0}^* \setminus \{\gamma_0\} \end{aligned}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Independent vertices = non-neighboring vertices

• Independent sets = sets formed by independent vertices Thus,

Genesis	Loss	LT	Geom	Partitions	CE	Ind

In this graph-theoretical framework:

- ▶ Incompatible polymers = neighboring vertices
- ▶ Polymer system = hard-core gas in a complicated lattice
- Neighborhood of γ_0 :

$$\begin{array}{lll} \mathcal{N}_{\gamma_0}^* &=& \{\gamma \in \mathcal{P} : \gamma \nsim \gamma_0\} \\ \mathcal{N}_{\gamma_0} &=& \mathcal{N}_{\gamma_0}^* \setminus \{\gamma_0\} \end{array}$$

▶ *Independent vertices* = non-neighboring vertices

► *Independent sets* = sets formed by independent vertices Thus,

$$\Xi_{\Lambda}(oldsymbol{z}) \ = \ \sum_{\Gamma \subset \mathcal{P}_{\Lambda} top ext{independent}} oldsymbol{z}^{\Gamma}$$

with
$$\boldsymbol{z}^{\Gamma} = \prod_{\gamma \in \Gamma} z_{\gamma}$$

うつん 川川 スポットボット 大型マントロッ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

In this graph-theoretical framework:

- ▶ Incompatible polymers = neighboring vertices
- ▶ Polymer system = hard-core gas in a complicated lattice
- Neighborhood of γ_0 :

$$\begin{array}{rcl} \mathcal{N}_{\gamma_0}^* &=& \{\gamma \in \mathcal{P} : \gamma \nsim \gamma_0\} \\ \mathcal{N}_{\gamma_0} &=& \mathcal{N}_{\gamma_0}^* \setminus \{\gamma_0\} \end{array}$$

(日) (日) (日) (日) (日) (日) (日) (日)

► Independent vertices = non-neighboring vertices

► Independent sets = sets formed by independent vertices Thus,

In this graph-theoretical framework:

- ▶ Incompatible polymers = neighboring vertices
- ▶ Polymer system = hard-core gas in a complicated lattice
- Neighborhood of γ_0 :

$$\begin{array}{rcl} \mathcal{N}_{\gamma_0}^* & = & \{\gamma \in \mathcal{P} : \gamma \nsim \gamma_0\} \\ \mathcal{N}_{\gamma_0} & = & \mathcal{N}_{\gamma_0}^* \setminus \{\gamma_0\} \end{array}$$

► Independent vertices = non-neighboring vertices

► Independent sets = sets formed by independent vertices Thus,

$$\Xi_{\Lambda}(oldsymbol{z}) \;=\; \sum_{\Gamma \subset \mathcal{P}_{\Lambda} top ext{independent}} oldsymbol{z}^{\Gamma} \;=\; \prod_{\gamma \in \Gamma} z_{\gamma}$$

ション ふゆ マ キャット きょうくしゃ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Example: Single-call loss networks

Definition

- $\mathcal{P} = \text{finite subsets of } \mathbb{Z}^d$ —the *calls*
- A call γ is attempted with Poissonian rates z_{γ}
- ▶ Call succeeds if it does not intercept existing calls
- Once established, calls have an exp(1) life span

Remarks

▶ Basic measures are invariant for the finite-region process $(\gamma \nsim \gamma' \iff \gamma \cap \gamma' \neq \emptyset)$

(日) (日) (日) (日) (日) (日) (日) (日)

- ► Thermodynamic limit: infinite-volume process
- ▶ Discrete point process with hard-core conditions

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Example: Single-call loss networks

Definition

- $\mathcal{P} = \text{finite subsets of } \mathbb{Z}^d$ —the *calls*
- A call γ is attempted with Poissonian rates z_{γ}
- ▶ Call succeeds if it does not intercept existing calls
- Once established, calls have an $\exp(1)$ life span

Remarks

► Basic measures are invariant for the finite-region process $(\gamma \nsim \gamma' \iff \gamma \cap \gamma' \neq \emptyset)$

(日) (日) (日) (日) (日) (日) (日) (日)

- ▶ Thermodynamic limit: infinite-volume process
- ▶ Discrete point process with hard-core conditions

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)

うつん 川川 スポットボット 大型マントロッ

- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- Interaction $\Phi = \{\phi_B : B \subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$
 - Bonds are sets B such that $\phi_B \neq 0$
 - Exclusions:
 - $\Phi_B(\omega_B) = \infty$ (physicist)
 - $\Omega_{\text{all}} \subset \Omega \text{ (math-phys)}$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)

(日) (同) (三) (三) (三) (○) (○)

- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- Interaction $\Phi = \{\phi_B : B \subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$
 - Bonds are sets B such that $\phi_B \neq 0$
 - Exclusions:
 - $\Phi_B(\omega_B) = \infty$ (physicist)
 - $\Omega_{\text{all}} \subset \Omega \text{ (math-phys)}$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)

(日) (同) (三) (三) (三) (○) (○)

- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- Interaction $\Phi = \{\phi_B : B \subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$
 - Bonds are sets B such that $\phi_B \neq 0$

Exclusions:

- $\Phi_B(\omega_B) = \infty$ (physicist)
- $\Omega_{\text{all}} \subset \Omega \text{ (math-phys)}$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Their ingredients are:

- ▶ Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^d)
- ► Single-site space (E, \mathcal{F}, μ_E) with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^d$)

(日) (同) (三) (三) (三) (○) (○)

- Configuration space $\Omega = E^{\mathbb{L}}$, with product measure
- Interaction $\Phi = \{\phi_B : B \subset \mathbb{L}\}$ where $\phi_B = \phi_B(\omega_B)$
 - Bonds are sets B such that $\phi_B \neq 0$
 - Exclusions:
 - $\Phi_B(\omega_B) = \infty$ (physicist)
 - $\Omega_{all} \subset \Omega$ (math-phys)

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Statistical mechanical measures

Their finite-volume versions are defined by

▶ Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda} \sigma)$$

Boltzmann Probability densities (weights)

$$W_{\Lambda}(\omega \mid \sigma) = \frac{\exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\}}{Z_{\Lambda}^{\sigma}}$$

 $(\omega, \sigma \in \Omega_{\mathrm{all}})$ with

$$Z^{\sigma}_{\Lambda} = \int_{\Omega_{\rm all}} \exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\} \bigotimes_{x \in \Lambda} \mu_E(d\omega_x)$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

 $(\beta = \text{inverse temperature})$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Statistical mechanical measures

Their finite-volume versions are defined by

▶ Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda}\sigma)$$

Boltzmann Probability densities (weights)

$$W_{\Lambda}(\omega \mid \sigma) = \frac{\exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\}}{Z_{\Lambda}^{\sigma}}$$

 $(\omega, \sigma \in \Omega_{\text{all}})$ with

$$Z_{\Lambda}^{\sigma} = \int_{\Omega_{\text{all}}} \exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\} \bigotimes_{x \in \Lambda} \mu_{E}(d\omega_{x})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $(\beta = \text{inverse temperature})$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Statistical mechanical measures

Their finite-volume versions are defined by

▶ Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$H_{\Lambda}(\omega \mid \sigma) = \sum_{B \subset \Lambda} \phi_B(\omega_{\Lambda} \sigma)$$

Boltzmann Probability densities (weights)

$$W_{\Lambda}(\omega \mid \sigma) = rac{\exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\}}{Z_{\Lambda}^{\sigma}}$$

 $(\omega, \sigma \in \Omega_{\text{all}})$ with $Z^{\sigma}_{\Lambda} = \int_{\Omega_{\text{all}}} \exp\{-\beta H_{\Lambda}(\omega \mid \sigma)\} \bigotimes_{x \in \Lambda} \mu_E(d\omega_x)$

 $(\beta = \text{inverse temperature})$

Example zero: Hard-core lattice gases

 \mathbb{L} =vertices of a graph (eg. \mathbb{Z}^d), $E = \{0, 1\}$ (\mathcal{F} =discrete, μ_E =counting)

$$\phi_B(\omega) = \begin{cases} -u\,\omega_x & \text{if } B = \{x\}\\ \infty & \text{if } B = \{x,y\} \text{ n.n.}\\ 0 & \text{otherwise} \end{cases}$$

Let

$$\Gamma(\omega) = \{x : \omega_x = 1\}$$

Then, for $\Lambda \subset \subset \mathbb{L}$,

$$W_{\Lambda}(\omega \mid 0) = \frac{1}{Z_{\Lambda}^{0}} \prod_{x \in \Gamma(\omega_{\Lambda})} e^{\beta u} \prod_{x,y \in \Gamma(\omega_{\Lambda})} \mathbb{1}_{\{x \neq y\}}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Example zero: Hard-core lattice gases

 \mathbb{L} =vertices of a graph (eg. \mathbb{Z}^d), $E = \{0, 1\}$ (\mathcal{F} =discrete, μ_E =counting)

$$\phi_B(\omega) = \begin{cases} -u\,\omega_x & \text{if } B = \{x\} \\ \infty & \text{if } B = \{x,y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Let

$$\Gamma(\omega) = \{x : \omega_x = 1\}$$

Then, for $\Lambda \subset \subset \mathbb{L}$,

$$W_{\Lambda}(\omega \mid 0) = \frac{1}{Z_{\Lambda}^{0}} \prod_{x \in \Gamma(\omega_{\Lambda})} e^{\beta u} \prod_{x,y \in \Gamma(\omega_{\Lambda})} \mathbb{1}_{\{x \neq y\}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example zero: Hard-core lattice gases

 \mathbb{L} =vertices of a graph (eg. \mathbb{Z}^d), $E = \{0, 1\}$ (\mathcal{F} =discrete, μ_E =counting)

$$\phi_B(\omega) = \begin{cases} -u\,\omega_x & \text{if } B = \{x\} \\ \infty & \text{if } B = \{x,y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Let

$$\Gamma(\omega) = \{x : \omega_x = 1\}$$

Then, for $\Lambda \subset \subset \mathbb{L}$,

$$W_{\Lambda}(\omega \mid 0) = \frac{1}{Z_{\Lambda}^{0}} \prod_{x \in \Gamma(\omega_{\Lambda})} e^{\beta u} \prod_{x,y \in \Gamma(\omega_{\Lambda})} \mathbb{1}_{\{x \neq y\}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

This is a polymer model with

$$\blacktriangleright \mathcal{P} = \{ \text{vertices of } \mathbb{L} \}$$

•
$$x \not\sim y$$
 iff x and y are graph neighbors

$$\triangleright z_x = \mathrm{e}^{\beta u}$$

(For Sokal-like people *all* polymer models are of this type)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

This is a polymer model with

$$\blacktriangleright \mathcal{P} = \{ \text{vertices of } \mathbb{L} \}$$

•
$$x \not\sim y$$
 iff x and y are graph neighbors

$$\triangleright \ z_x = \mathrm{e}^{\beta u}$$

(For Sokal-like people *all* polymer models are of this type)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

LT

うつん 川川 スポットボット 大型マントロッ

Ising model at low temperatures $\mathbb{L} = \mathbb{Z}^d, E = \{-1, 1\}, (\mathcal{F} = \text{discrete}, \mu_E = \text{counting})$

$$\phi_B(\omega) = \begin{cases} -J \,\omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n} \\ 0 & \text{otherwise} \end{cases}$$

Call a bond $B = \{x, y\}$ excited or frustrated if $\omega_x \omega_y = -1$

 $H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - J N_{\Lambda} ;$

 $F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$ $N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$

As N_{Λ} is independent of ω

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\sigma_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\sigma)\}}$$

LT

うつん 川川 スポットボット 大型マントロッ

Ising model at low temperatures

 $\mathbb{L} = \mathbb{Z}^d, E = \{-1, 1\}, (\mathcal{F} = \text{discrete}, \mu_E = \text{counting})$

$$\phi_B(\omega) = \begin{cases} -J \,\omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Call a bond $B = \{x, y\}$ excited or frustrated if $\omega_x \omega_y = -1$

 $H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - JN_{\Lambda};$

 $F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$ $N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$

As N_{Λ} is independent of ω

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\sigma_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\sigma)\}}$$

LT

ション ふゆ マ キャット きょうくしゃ

Ising model at low temperatures

 $\mathbb{L} = \mathbb{Z}^d, E = \{-1, 1\}, (\mathcal{F} = \text{discrete}, \mu_E = \text{counting})$

$$\phi_B(\omega) = \begin{cases} -J \,\omega_x \omega_y & \text{if } B = \{x, y\} \text{ n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Call a bond $B = \{x, y\}$ excited or frustrated if $\omega_x \omega_y = -1$

$$H_{\Lambda}(\omega \mid +) = 2J F_{\Lambda}(\omega) - JN_{\Lambda};$$

$$F_{\Lambda}(\omega) = \#\{B \text{ frustrated} : B \cap \Lambda \neq \emptyset\}$$
$$N_{\Lambda} = \#\{B : B \cap \Lambda \neq \emptyset\}$$

As N_{Λ} is independent of ω

$$W_{\Lambda}(\omega \mid +) = \frac{\exp\{-2\beta J F_{\Lambda}(\omega)\}}{\sum_{\sigma_{\Lambda}} \exp\{-2\beta J F_{\Lambda}(\sigma)\}}$$

- Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- ► These plaquettes form a family of disjoint closed connected surfaces (curves)
- ▶ Each such closed surface is a *contour*. Denote

$$\mathcal{C}_{\Lambda} = \{ \text{contours } \gamma : \gamma \subset \Lambda \}$$

- Contours are disjoint: $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$
- ► Each ω is in one-to-one correspondence with a *compatible* family of contours $\Gamma(\omega)$

うつん 川川 スポットボット 大型マントロッ

- Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- ► These plaquettes form a family of disjoint closed connected surfaces (curves)
- ▶ Each such closed surface is a *contour*. Denote

$$\mathcal{C}_{\Lambda} = \{ \text{contours } \gamma : \gamma \subset \Lambda \}$$

うつん 川川 スポットボット 大型マントロッ

- Contours are disjoint: $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$
- ► Each ω is in one-to-one correspondence with a *compatible* family of contours $\Gamma(\omega)$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Contour polymer model

$$\exp\{-2\beta J F_{\Lambda}(\omega)\} = \exp\{-\sum_{\gamma \in \Gamma(\omega)} 2\beta J |\gamma|\}$$
$$= \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with $z_{\gamma} = \exp\{-2\beta J |\gamma|\}$. Hence $W_{\Lambda}(\omega | +) = \frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)}$

with

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Contour polymer model

$$\exp\{-2\beta J F_{\Lambda}(\omega)\} = \exp\{-\sum_{\gamma \in \Gamma(\omega)} 2\beta J |\gamma|\}$$
$$= \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$$

with $z_{\gamma} = \exp\{-2\beta J |\gamma|\}$. Hence $W_{\Lambda}(\omega | +) = \frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}$

with

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Generalization: LTE for Ising ferromagnets

 \mathbb{L} =any, $E=\{-1,1\},$ interactions $\phi_B(\omega)\ =\ -J_B\,\omega^B \quad , \text{with } J_B \geq 0$

Without loss, free boundary conditions:

$$H_{\Lambda}(\omega) = -\sum_{B \in \mathcal{B}_{\Lambda}} J_B \, \omega^B$$

with

$$\mathcal{B}_{\Lambda} = \left\{ B : J_B > 0 ext{ and } B \subset \Lambda
ight\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

[for $H_{\Lambda}(\cdot \mid +)$ use \mathcal{B}^+_{Λ} , etc]

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Generalization: LTE for Ising ferromagnets

 \mathbb{L} =any, $E = \{-1, 1\}$, interactions

$$\phi_B(\omega) = -J_B \, \omega^B \quad \text{, with } J_B \ge 0$$

Without loss, free boundary conditions:

$$H_{\Lambda}(\omega) \;=\; -\sum_{B\in \mathcal{B}_{\Lambda}} J_B \, \omega^B$$

with

$$\mathcal{B}_{\Lambda} = \left\{ B : J_B > 0 \text{ and } B \subset \Lambda \right\}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

[for $H_{\Lambda}(\cdot | +)$ use \mathcal{B}^+_{Λ} , etc]

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Generalized contours

Write

$$H_{\Lambda}(\omega) = -\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1 + 1)$$

= $-\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1) - \sum_{B \in \mathcal{B}_{\Lambda}} J_B$

- A bond B is *excited* or *frustrated* if $\omega^B = -1$
- $\Gamma(\omega_{\Lambda}) = \text{set of frustrated bonds in } \Lambda$
- A *contour* is a maximal connected component of Γ (connexion = intersection)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• C_{Λ} = set of possible contours in Λ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Generalized contours

Write

$$H_{\Lambda}(\omega) = -\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1 + 1)$$

= $-\sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1) - \sum_{B \in \mathcal{B}_{\Lambda}} J_B(\omega^B - 1)$

- A bond B is excited or frustrated if $\omega^B = -1$
- $\Gamma(\omega_{\Lambda})$ = set of frustrated bonds in Λ
- A contour is a maximal connected component of Γ (connexion = intersection)

(日) (日) (日) (日) (日) (日) (日) (日)

• C_{Λ} = set of possible contours in Λ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

$$W_{\Lambda}(\omega) \;=\; rac{\prod_{\gamma \in \Gamma(\omega_{\Lambda})} \mathrm{e}^{-eta E(\gamma)}}{\widetilde{Z}_{\Lambda}}$$

where $E(\gamma) = \sum_{B \in \gamma} 2J_B$ and

 $\widetilde{Z}_{\Lambda} = \sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma(\sigma_{\Lambda})} e^{-\beta E(\gamma)} = \sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} e^{-\beta E(\gamma)}$

with $N_{\Gamma} = \{\omega_{\Lambda} : \Gamma(\omega_{\Lambda}) = \Gamma\}$

We compute N_{Γ} with a little help from group theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Genesis	Loss	LT	Geom	Partitions	CE	Ind

$$W_{\Lambda}(\omega) = \frac{\prod_{\gamma \in \Gamma(\omega_{\Lambda})} e^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}$$

where $E(\gamma) = \sum_{B \in \gamma} 2J_B$ and
 $\widetilde{Z}_{\Lambda} = \sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma(\sigma_{\Lambda})} e^{-\beta E(\gamma)} = \sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} e^{-\beta E(\gamma)}$

with $N_{\Gamma} = \{\omega_{\Lambda} : \Gamma(\omega_{\Lambda}) = \Gamma\}$

We compute N_{Γ} with a little help from group theory

ション ふゆ マ キャット きょうくしゃ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

$$W_{\Lambda}(\omega) = \frac{\prod_{\gamma \in \Gamma(\omega_{\Lambda})} e^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}$$

where $E(\gamma) = \sum_{B \in \gamma} 2J_B$ and
 $\widetilde{Z}_{\Lambda} = \sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma(\sigma_{\Lambda})} e^{-\beta E(\gamma)} = \sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} e^{-\beta E(\gamma)}$

with $N_{\Gamma} = \{\omega_{\Lambda} : \Gamma(\omega_{\Lambda}) = \Gamma\}$

We compute N_{Γ} with a little help from group theory

ション ふゆ く は く は く む く む く

Genesis	Loss	\mathbf{LT}	Geom	Partitions	CE	Ind

$$W_{\Lambda}(\omega) = \frac{\prod_{\gamma \in \Gamma(\omega_{\Lambda})} e^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}$$

where $E(\gamma) = \sum_{B \in \gamma} 2J_B$ and
 $\widetilde{Z}_{\Lambda} = \sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma(\sigma_{\Lambda})} e^{-\beta E(\gamma)} = \sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} e^{-\beta E(\gamma)}$

with $N_{\Gamma} = \{\omega_{\Lambda} : \Gamma(\omega_{\Lambda}) = \Gamma\}$

We compute N_{Γ} with a little help from group theory

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$$
 iff $\omega^B = \sigma^B$ for all $B \in \mathcal{B}_{\Lambda}$
• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $(\omega \cdot \sigma)^B = 1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$(\omega \cdot \sigma)_x = \omega_x \sigma_x$$

Site-wise product

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $\omega = \chi \cdot \sigma$ for some $\chi \in S_{\Lambda}$ with

$$S_{\Lambda} = \left\{ \chi : \chi^B = 1 \text{ for all } B \in \mathcal{B}_{\Lambda} \right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Symmetry group

$$\blacktriangleright N_{\Lambda} = |\mathcal{S}_{\Lambda}|$$

•
$$\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$$
 iff $\omega^B = \sigma^B$ for all $B \in \mathcal{B}_{\Lambda}$
• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $(\omega \cdot \sigma)^B = 1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$(\omega \cdot \sigma)_x = \omega_x \sigma_x$$

Site-wise product

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $\omega = \chi \cdot \sigma$ for some $\chi \in S_{\Lambda}$ with

$$\mathcal{S}_{\Lambda} = \left\{ \chi : \chi^B = 1 \text{ for all } B \in \mathcal{B}_{\Lambda} \right\}$$

ション ふゆ マ キャット しょう くしゃ

Symmetry group

$$\blacktriangleright N_{\Lambda} = |\mathcal{S}_{\Lambda}|$$

•
$$\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$$
 iff $\omega^B = \sigma^B$ for all $B \in \mathcal{B}_{\Lambda}$

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $(\omega \cdot \sigma)^B = 1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$(\omega \cdot \sigma)_x = \omega_x \sigma_x$$

Site-wise product

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $\omega = \chi \cdot \sigma$ for some $\chi \in S_{\Lambda}$ with

$$\mathcal{S}_{\Lambda} = \left\{ \chi : \chi^B = 1 \text{ for all } B \in \mathcal{B}_{\Lambda} \right\}$$

ション ふゆ マ キャット しょう くしゃ

Symmetry group

 $\blacktriangleright N_{\Lambda} = |\mathcal{S}_{\Lambda}|$

•
$$\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$$
 iff $\omega^B = \sigma^B$ for all $B \in \mathcal{B}_{\Lambda}$

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $(\omega \cdot \sigma)^B = 1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$(\omega \cdot \sigma)_x = \omega_x \sigma_x$$

Site-wise product

• $\Gamma(\omega_{\Lambda}) = \Gamma(\sigma_{\Lambda})$ iff $\omega = \chi \cdot \sigma$ for some $\chi \in S_{\Lambda}$ with

$$\mathcal{S}_{\Lambda} = \left\{ \chi : \chi^B = 1 \text{ for all } B \in \mathcal{B}_{\Lambda} \right\}$$

ション ふゆ マ キャット しょう くしゃ

Symmetry group

$$\blacktriangleright N_{\Lambda} = |\mathcal{S}_{\Lambda}|$$

Ferromagnetic LT polymer model

Finally,

$$Z_{\Lambda} = |\mathcal{S}_{\Lambda}| \, \Xi_{\Lambda}^{\rm LT}$$

with

$$\Xi_{\Lambda}^{\text{LT}}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for

$$z_{\gamma} = \exp\left\{-2\beta \sum_{B \in \gamma} J_B\right\}$$

 $(|z_{\gamma}| \text{ small for } \beta \text{ large}) \text{ and }$

$$\gamma \sim \gamma' \quad \Longleftrightarrow \quad \gamma \cap \gamma' = \emptyset$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Ferromagnetic LT polymer model

Finally,

$$Z_{\Lambda} = |\mathcal{S}_{\Lambda}| \, \Xi_{\Lambda}^{\rm LT}$$

with

$$\Xi_{\Lambda}^{\rm LT}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for

$$z_{\gamma} = \exp\left\{-2\beta \sum_{B \in \gamma} J_B\right\}$$

 $(|z_{\gamma}| \text{ small for } \beta \text{ large})$ and

$$\gamma \sim \gamma' \quad \Longleftrightarrow \quad \gamma \cap \gamma' = \emptyset$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Ferromagnetic LT polymer model

Finally,

$$Z_{\Lambda} = |\mathcal{S}_{\Lambda}| \, \Xi_{\Lambda}^{\rm LT}$$

with

$$\Xi_{\Lambda}^{\rm LT}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{C}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

for

$$z_{\gamma} = \exp\left\{-2\beta \sum_{B \in \gamma} J_B\right\}$$

 $(|z_{\gamma}| \text{ small for } \beta \text{ large}) \text{ and }$

$$\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Geometrical polymer models

Polymers of previous examples (loss networks, Peierls contours) are points of a set

うつん 川川 スポットボット 大型マントロマ

These are the original polymer models of Gruber and Kunz

Formally, geometrical polymer models are defined by:

- A set \mathbb{V} (eg. possible calls, surfaces)
- A family \mathcal{P} of finite subsets of \mathbb{V} (eg. connected)
- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

In this case $\mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \gamma \subset \Lambda \}, \Lambda \subset \mathbb{V}$

Geometrical polymer models

Polymers of previous examples (loss networks, Peierls contours) are points of a set

(日) (日) (日) (日) (日) (日) (日) (日)

These are the original polymer models of Gruber and Kunz Formally, geometrical polymer models are defined by:

- ▶ A set \mathbb{V} (eg. possible calls, surfaces)
- A family \mathcal{P} of finite subsets of \mathbb{V} (eg. connected)
- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

In this case $\mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \gamma \subset \Lambda \}, \Lambda \subset \subset \mathbb{V}$

Vertex-set polymers

$\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

WARNING! Second-level graph. On top: incompatibility graph

(日) (同) (三) (三) (三) (○) (○)

Decorated geometrical polymers

- $\gamma = \text{finite subset of } \mathcal{V} (\text{``base''})$
- D_{γ} some additional attribute (color, "decoration")
- In this case: $x \in \gamma$ means $x \in \gamma$, etc

Vertex-set polymers

- $\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

WARNING! Second-level graph. On top: incompatibility graph

(日) (日) (日) (日) (日) (日) (日) (日)

Decorated geometrical polymers

- $\gamma = \text{finite subset of } \mathcal{V} (\text{``base''})$
- D_{γ} some additional attribute (color, "decoration")
- In this case: $x \in \gamma$ means $x \in \gamma$, etc

Vertex-set polymers

- $\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

(日) (日) (日) (日) (日) (日) (日) (日)

WARNING! Second-level graph. On top: incompatibility graph

Decorated geometrical polymers

- $\gamma = \text{finite subset of } \mathcal{V} (\text{"base"})$
- ▶ D_{γ} some additional attribute (color, "decoration")
- In this case: $x \in \gamma$ means $x \in \gamma$, etc

Vertex-set polymers

- $\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

(日) (日) (日) (日) (日) (日) (日) (日)

WARNING! Second-level graph. On top: incompatibility graph

Decorated geometrical polymers

- $\gamma = \text{finite subset of } \mathcal{V} (\text{"base"})$
- D_{γ} some additional attribute (color, "decoration")
- In this case: $x \in \gamma$ means $x \in \gamma$, etc

Vertex-set polymers

- $\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

(日) (日) (日) (日) (日) (日) (日) (日)

WARNING! Second-level graph. On top: incompatibility graph

Decorated geometrical polymers

 $\gamma = (\underline{\gamma}, D_{\gamma})$ where

- ▶ γ = finite subset of \mathcal{V} ("base")
- D_{γ} some additional attribute (color, "decoration")

• In this case: $x \in \gamma$ means $x \in \gamma$, etc

Vertex-set polymers

- $\mathbb{V} =$ vertex set of a graph (lattice, dual lattice)
 - Polymers are defined through connectivity properties (graph-connected)
 - Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

WARNING! Second-level graph. On top: incompatibility graph

(日) (日) (日) (日) (日) (日) (日) (日)

Decorated geometrical polymers

- $\underline{\gamma}$ = finite subset of \mathcal{V} ("base")
- ► D_{γ} some additional attribute (color, "decoration")
- ▶ In this case: $x \in \gamma$ means $x \in \gamma$, etc

Partition functions play a central role. Three reasons:

- Correlations are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Partition functions play a central role. Three reasons:

- ▶ Correlations are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Partition functions play a central role. Three reasons:

- ▶ Correlations are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Partition functions play a central role. Three reasons:

- ▶ Correlations are ratios of partition functions
- ▶ So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Genesis	Loss	LT	Geom	Partitions	CE	Ind
				e		

Polymer correlation functions

Let

• $\operatorname{Prob}_{\Lambda}$ the basic measure in \mathcal{P}_{Λ}

• $\gamma_1, \ldots, \gamma_k$ mutually compatible polymers in \mathcal{P}_{Λ} Then

$$\operatorname{Prob}_{\Lambda}(\{\gamma_1,\ldots,\gamma_k \text{ are present}\}) = z_{\gamma_1}\cdots z_{\gamma_k} \frac{\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}}{\Xi_{\Lambda}}$$

where

$$\Xi_{\Lambda \setminus \{\gamma_1, \dots, \gamma_k\}^*} = \text{partition function of polymers in } \mathcal{P}_{\Lambda}$$

compatible with $\gamma_1, \dots, \gamma_k$

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Polymer correlation functions

Let

▶ Prob_{Λ} the basic measure in \mathcal{P}_{Λ}

 $\triangleright \gamma_1, \ldots, \gamma_k$ mutually compatible polymers in \mathcal{P}_{Λ} Then

$$\operatorname{Prob}_{\Lambda}(\{\gamma_1,\ldots,\gamma_k \text{ are present}\}) = z_{\gamma_1}\cdots z_{\gamma_k} \frac{\Xi_{\Lambda\setminus\{\gamma_1,\ldots,\gamma_k\}^*}}{\Xi_{\Lambda}}$$

where

ŝ,

$$\Xi_{\Lambda \setminus \{\gamma_1, \dots, \gamma_k\}^*} = \text{partition function of polymers in } \mathcal{P}_{\Lambda}$$

compatible with $\gamma_1, \dots, \gamma_k$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Statistical mechanical correlations

Likewise, for the stat-mech models, let

- $\operatorname{Prob}_{\Lambda}(\cdot \mid \sigma)$ be the measure in Λ with b.c. σ
- ▶ A_{Δ} be an event depending only on spins in $\Delta \subset \Lambda$ Then

$$\operatorname{Prob}_{\Lambda}(A_{\Delta}) = \int \mathbb{1}_{\{A_{\Delta}\}}(\omega_{\Delta}) \frac{Z_{\Lambda\setminus\Delta}^{\omega_{\Delta}\sigma_{\mathbb{L}\setminus\Lambda}}}{Z_{\Lambda}^{\sigma}} \bigotimes_{x\in\Delta} \mu_{E}(d\omega_{x})$$

where

 $Z_{\Lambda \setminus \Delta}^{\omega_{\Delta} \sigma_{L \setminus \Lambda}} = partition function in \Lambda \setminus \Delta with condition$ $\omega in \Delta and \sigma outside \Lambda$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Statistical mechanical correlations

Likewise, for the stat-mech models, let

• $\operatorname{Prob}_{\Lambda}(\cdot \mid \sigma)$ be the measure in Λ with b.c. σ

• A_{Δ} be an event depending only on spins in $\Delta \subset \Lambda$ Then

$$\operatorname{Prob}_{\Lambda}(A_{\Delta}) = \int \mathbb{1}_{\{A_{\Delta}\}}(\omega_{\Delta}) \frac{Z_{\Lambda \setminus \Delta}^{\omega_{\Delta} \sigma_{\mathbb{L} \setminus \Lambda}}}{Z_{\Lambda}^{\sigma}} \bigotimes_{x \in \Delta} \mu_{E}(d\omega_{x})$$

where

$$Z_{\Lambda \setminus \Delta}^{\omega_{\Delta} \sigma_{\mathbb{L} \setminus \Lambda}} = partition function in \Lambda \setminus \Delta with condition \omega in \Delta and \sigma outside \Lambda$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Genesis Loss LT Geom Partitions CE Ind

Characteristic/moment-generating functions Let $\alpha : \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1,\ldots,\gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(z)} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi [\alpha(\gamma_1) + \dots + \alpha(\gamma_n)]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is,

$$E_{\Lambda}(\mathrm{e}^{\xi\,S_{\Lambda}}) \;=\; rac{\Xi_{\Lambda}(z^{\xi})}{\Xi_{\Lambda}(z)} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma}\,\mathrm{e}^{\xilpha(\gamma)}$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

Complex ξ are of interest!

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Characteristic/moment-generating functions Let $\alpha : \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi \left[\alpha(\gamma_1) + \dots + \alpha(\gamma_n)\right]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is,

$$E_{\Lambda}(\mathrm{e}^{\xi\,S_{\Lambda}}) \;=\; rac{\Xi_{\Lambda}(\boldsymbol{z}^{\xi})}{\Xi_{\Lambda}(\boldsymbol{z})} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma}\,\mathrm{e}^{\xilpha(\gamma)}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Complex ξ are of interest!

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Characteristic/moment-generating functions Let $\alpha : \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi [\alpha(\gamma_1) + \dots + \alpha(\gamma_n)]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is,

$$E_{\Lambda}(\mathrm{e}^{\xi \, S_{\Lambda}}) \;=\; rac{\Xi_{\Lambda}(oldsymbol{z}^{\xi})}{\Xi_{\Lambda}(oldsymbol{z})} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma} \, \mathrm{e}^{\xi lpha(\gamma)}$$

Complex ξ are of interest!

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Characteristic/moment-generating functions Let $\alpha : \mathcal{P} \to \mathbb{R}$ and

$$S_{\Lambda}(\gamma_1, \dots, \gamma_n) = \sum_{i=1}^n \alpha(\gamma_i)$$

for $\{\gamma_1, \ldots, \gamma_n\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}(e^{\xi S_{\Lambda}})$ equals

$$\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_1} \cdots z_{\gamma_n} e^{\xi [\alpha(\gamma_1) + \dots + \alpha(\gamma_n)]} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

That is,

$$E_{\Lambda}(\mathrm{e}^{\xi S_{\Lambda}}) \;=\; rac{\Xi_{\Lambda}(oldsymbol{z}^{\xi})}{\Xi_{\Lambda}(oldsymbol{z})} \quad \mathrm{with} \quad z_{\gamma}^{\xi} = z_{\gamma} \,\mathrm{e}^{\xi lpha(\gamma)}$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Complex ξ are of interest!

For (translation-invariant) stat-mech models

$$f(\beta, h) = \lim_{\Lambda \to \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ

- ▶ Spin systems: $-f/\beta$ =free-energy density
- Gas models: f/β = pressure

Key information: smoothness as function of β and hLoss of analyticity = phase transition (of some sort) Sufficient conditions for analyticity of f:

- ▶ Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

For (translation-invariant) stat-mech models

$$f(eta, h) = \lim_{\Lambda \to \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ

- ▶ Spin systems: $-f/\beta$ =free-energy density
- Gas models: f/β = pressure

Key information: smoothness as function of β and \boldsymbol{h}

Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f:

- ► Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

For (translation-invariant) stat-mech models

$$f(eta, h) = \lim_{\Lambda \to \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ

- ▶ Spin systems: $-f/\beta$ =free-energy density
- Gas models: f/β = pressure

Key information: smoothness as function of β and **h** Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f:

- ▶ Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

For (translation-invariant) stat-mech models

$$f(\beta, h) = \lim_{\Lambda \to \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}$$

exists and is independent of the boundary condition σ

- ▶ Spin systems: $-f/\beta$ =free-energy density
- Gas models: f/β = pressure

Key information: smoothness as function of β and hLoss of analyticity = phase transition (of some sort) Sufficient conditions for analyticity of f:

- ► Zeros of Z_{Λ} Λ -uniformly away from (β, h)
- Λ -independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- 「 」 (四) (回) (回) (回)

- ▶ Weaker results (no analyticity!) but wider applicability
- ▶ Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ▶ Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ▶ Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ▶ Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ▶ Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- ▶ Not everybody's cup of tea
- ▶ Involves algebraic and graph theoretical considerations
- ▶ Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- ▶ Weaker results (no analyticity!) but wider applicability
- ► Can use probabilistic techniques (coupling!)
- ▶ Leads to (perfect) simulation algorithms

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as formal exponentials of another formal series

$$\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_{1},\dots,\gamma_{n})\in\mathcal{P}_{\Lambda}^{n}} \phi^{T}(\gamma_{1},\dots,\gamma_{n}) z_{\gamma_{1}}\dots z_{\gamma_{n}}\right\}$$

The series between curly brackets is the *cluster expansion* WATCH OUT!: No consistency requirement, thus

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \neq \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}}$$

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as *formal* exponentials of another *formal* series

$$\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_{1},\dots,\gamma_{n})\in\mathcal{P}_{\Lambda}^{n}} \phi^{T}(\gamma_{1},\dots,\gamma_{n}) z_{\gamma_{1}}\dots z_{\gamma_{n}}\right\}$$

The series between curly brackets is the *cluster expansion*

WATCH OUT!: No consistency requirement, thus

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} \neq \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}}$$

Cluster expansions

The idea is to write the polynomials in $(z_{\gamma})_{\gamma \in \mathcal{P}}$

$$\Xi_{\Lambda}(\boldsymbol{z}) = 1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_{\Lambda}} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}$$

as *formal* exponentials of another *formal* series

1

$$\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_{1},\dots,\gamma_{n})\in\mathcal{P}_{\Lambda}^{n}} \phi^{T}(\gamma_{1},\dots,\gamma_{n}) z_{\gamma_{1}}\dots z_{\gamma_{n}}\right\}$$

The series between curly brackets is the *cluster expansion* WATCH OUT!: No consistency requirement, thus

$$\frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \neq \sum_{\{\gamma_1, \dots, \gamma_n\} \subset \mathcal{P}_{\Lambda}}$$

Clusters and truncated functions

φ^T(γ₁,...,γ_n): Ursell or truncated functions (symmetric)
Clusters: Families {γ₁,...,γ_n} s.t. φ^T(γ₁,...,γ_n) ≠ 0
The formula of φ^T will be given later. Highlights:

▶ Clusters are *connected* w.r.t. "~"

$$\phi^T(\gamma) = 1$$
 , $\phi^T(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$

Genesis	Loss	LT	Geom	Partitions	\mathbf{CE}	Ind

Clusters and truncated functions

- $\phi^T(\gamma_1, \ldots, \gamma_n)$: Ursell or truncated functions (symmetric)
- Clusters: Families $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $\phi^T(\gamma_1, \ldots, \gamma_n) \neq 0$
- ▶ The formula of ϕ^T will be given later. Highlights:

► Clusters are *connected* w.r.t. "~"

$$\phi^T(\gamma) = 1$$
 , $\phi^T(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$

Genesis	Loss	LT	Geom	Partitions	\mathbf{CE}	Ind

Clusters and truncated functions

φ^T(γ₁,...,γ_n): Ursell or truncated functions (symmetric)
Clusters: Families {γ₁,...,γ_n} s.t. φ^T(γ₁,...,γ_n) ≠ 0
The formula of φ^T will be given later. Highlights:

► Clusters are *connected* w.r.t. "~"

$$\phi^T(\gamma) = 1$$
 , $\phi^T(\gamma, \gamma') = \begin{cases} -1 & \text{if } \gamma \nsim \gamma' \\ 0 & \text{otherwise} \end{cases}$

Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios Substracting cluster expansions:

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}\\ \exists i:\,\gamma_i=\gamma_0}} \phi^T(\gamma_1,\ldots,\gamma_n) \, z_{\gamma_1}\ldots z_{\gamma_n}\right\}$$

Slightly more convenient series:

$$\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

Two strategies to deal with this series: classical and inductive

Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios Substracting cluster expansions:

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}} \stackrel{\mathrm{F}}{=} \exp\left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ \exists i: \gamma_i = \gamma_0}} \phi^T(\gamma_1, \dots, \gamma_n) \, z_{\gamma_1} \dots z_{\gamma_n}\right\}$$

Slightly more convenient series:

$$\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$

Two strategies to deal with this series: classical and inductive

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge *absolutely* for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}} \leq |z_{\gamma_0}| \Pi_{\gamma_0}(|\boldsymbol{z}|)$$

Genesis	Loss	LT	Geom	Partitions	CE	Ind

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge *absolutely* for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$\frac{\Xi_{\Lambda}}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \leq |z_{\gamma_0}| \Pi_{\gamma_0}(|z|)$$

Classical cluster-expansion strategy

Find convergence conditions for the series

$$\Pi_{\gamma_0}(\boldsymbol{\rho}) := 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \right| \rho_{\gamma_1} \dots \rho_{\gamma_n}$$

for $\rho_{\gamma} > 0$. Then,

Cluster expansions converge *absolutely* for $|z_{\gamma}| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ Within this region

$$rac{\Xi_\Lambda}{\Xi_{\Lambda\setminus\{\gamma_0\}}} \ \le \ |z_{\gamma_0}| \ \Pi_{\gamma_0}(|oldsymbol{z}|)$$

- ► Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- $\blacktriangleright \text{ Within } \mathcal{R}$
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

$$\left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|\operatorname{e}^{F[d(\gamma_0, \gamma_x)]} - 1\right|$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

with $F(d) \to 0$ as $d \to \infty$

► Central limit theorem

- ► Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ▶ Within \mathcal{R}
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

 $\left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|\operatorname{e}^{F[d(\gamma_0, \gamma_x)]} - 1\right|$

ション ふゆ マ キャット きょうくしゃ

with $F(d) \to 0$ as $d \to \infty$

• Central limit theorem

- ► Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ▶ Within \mathcal{R}
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

$$\left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|\operatorname{e}^{F[d(\gamma_0, \gamma_x)]} - 1\right|$$

ション ふゆ マ キャット きょうくしゃ

with $F(d) \to 0$ as $d \to \infty$ Central limit theorem

- ► Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- ▶ Within \mathcal{R}
 - Explicit series expressions for free energy and correlations
 - Explicit δ -mixing:

$$\left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})\operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|\operatorname{e}^{F[d(\gamma_0, \gamma_x)]} - 1\right|$$

ション ふゆ マ キャット きょうくしゃ

with $F(d) \to 0$ as $d \to \infty$

Central limit theorem

Free-energy expansion

Within ${\cal R}$

ション ふゆ マ キャット きょうくしゃ

Each term is $O(|\Lambda|)$

Genesis	Loss	LT	Geom	Partitions	\mathbf{CE}	Ind

Free-energy expansion

Within ${\cal R}$

$$\log \Xi_{\Lambda} = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ \gamma \in \mathcal{P}_{\Lambda}}} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$
$$= \sum_{\substack{\gamma \in \mathcal{P}_{\Lambda}}} z_{\gamma} - \frac{1}{2} \sum_{\substack{(\gamma, \gamma') \in \mathcal{P}_{\Lambda}^2 \\ \gamma \not \sim \gamma'}} z_{\gamma} z_{\gamma'} + O(|\boldsymbol{z}|^3)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへぐ

Each term is $O(|\Lambda|)$

Free-energy-density (pressure) expansion

Within \mathcal{R} : For the translation-invariant geometrical model

$$f = \lim_{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}$$

exists and is analytic on parameters (no phase transitions!)

$$f = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n): 0 \in \cup \gamma_i \\ (\gamma_1, \dots, \gamma_n) \in Q \neq q \\ \gamma \neq 0}} \phi_n^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}$$
$$= \sum_{\gamma \neq 0} z_{\gamma} - \frac{1}{2} \sum_{\substack{\gamma \neq \gamma' \\ 0 \in \gamma \cup \gamma'}} z_{\gamma} z_{\gamma'} + O(|\boldsymbol{z}|^3)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへぐ

Genesis Los LT Geom Partitions CE Ind

$$\frac{\text{Correlations}}{\text{Correlations}}$$

$$\Prob_{\Lambda}(\{\gamma_{0}\}) = z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}\}^{*}}}{\Xi_{\Lambda}} = z_{\gamma_{0}} \frac{\exp\left\{\sum_{c \in \mathcal{P}_{\Lambda}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{c \in \mathcal{P}_{\Lambda}} W^{T}(\mathcal{C})\right\}}$$
Hence

$$\Prob(\{\gamma_{0}\})$$

$$= z_{\gamma_{0}} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_{1}, \dots, \gamma_{n}) \\ \exists z : \gamma_{n} \in \gamma_{0}}} \phi^{T}(\gamma_{1}, \dots, \gamma_{n}) z_{\gamma_{1}} \dots z_{\gamma_{n}}\right\}$$

$$= z_{\gamma_{0}} \exp\left\{\sum_{\gamma \in \gamma_{0}} z_{\gamma} + O(|z|^{2})\right\}$$

$$= z_{\gamma_{0}} \left[1 + \sum_{\gamma \neq \gamma_{0}} z_{\gamma}\right] + O(|z|^{2})$$

Genesis Loss LT Geom Partitions CE Ind

$$\frac{\text{Correlations}}{\text{Correlations}}$$
Prob_A({ γ_0 }) = $z_{\gamma_0} \frac{\Xi_{A \setminus \{\gamma_0\}^*}}{\Xi_A} = z_{\gamma_0} \frac{\exp\{\sum_{c \in \mathcal{P}_A} W^T(\mathcal{C})\}}{\exp\{\sum_{c \in \mathcal{P}_A} W^T(\mathcal{C})\}}$
Hence
Prob({ γ_0 })
= $z_{\gamma_0} \exp\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ \exists i, \gamma_n = \gamma_0}} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\}$
= $z_{\gamma_0} \exp\{\sum_{\gamma \neq \gamma_0} z_{\gamma} + O(|z|^2)\}$
= $z_{\gamma_0} \left[1 + \sum_{\gamma \neq \gamma_0} z_{\gamma}\right] + O(|z|^3)$

Genesis Loss LT Geom Partitions
$$CE$$
 Ind

$$Correlations$$

$$Prob_{\Lambda}(\{\gamma_0\}) = z_{\gamma_0} \frac{\Xi_{\Lambda \setminus \{\gamma_0\}^*}}{\Xi_{\Lambda}} = z_{\gamma_0} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})\right\}}{\exp\left\{\sum_{\mathcal{C} \subset \mathcal{P}_{\Lambda}} W^T(\mathcal{C})\right\}}$$
Hence

$$Prob(\{\gamma_0\}) = z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ \exists i: \gamma_i \approx \gamma_0}} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\}$$
$$= z_{\gamma_0} \exp\left\{\sum_{\gamma \approx \gamma_0} z_{\gamma} + O(|z|^2)\right\}$$
$$= z_{\gamma_0} \left[1 + \sum_{\gamma \approx \gamma_0} z_{\gamma}\right] + O(|z|^3)$$

Hence

$$\begin{aligned} \operatorname{Prob}(\{\gamma_0\}) \\ &= z_{\gamma_0} \exp\left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \\ \exists i: \gamma_i \approx \gamma_0}} \phi^T(\gamma_1, \dots, \gamma_n) z_{\gamma_1} \dots z_{\gamma_n}\right\} \\ &= z_{\gamma_0} \exp\left\{\sum_{\substack{\gamma \ll \gamma_0 \\ \gamma \ll \gamma_0}} z_{\gamma} + O(|\boldsymbol{z}|^2)\right\} \\ &= z_{\gamma_0} \left[1 + \sum_{\substack{\gamma \ll \gamma_0 \\ \gamma \ll \gamma_0}} z_{\gamma}\right] + O(|\boldsymbol{z}|^3) \end{aligned}$$

Mixing properties

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\} \mid \{\gamma_{x}\}) = \frac{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}, \gamma_{x}\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_{x}\})}$$
$$= z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}, \gamma_{x}\}^{*}}}{\Xi_{\Lambda \setminus \{\gamma_{x}\}^{*}}}$$
$$= z_{\gamma_{0}} \frac{\exp\left\{\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ c \sim \gamma_{0}, \gamma_{x}}}W^{T}\right\}}{\exp\left\{\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ c \sim \gamma_{0}, \gamma_{x}}}W^{T}\right\}}$$

$$= z_{\gamma_0} \exp\left\{-\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \nsim \gamma_0, \ \mathcal{C} \sim \gamma_x}} W^T(\mathcal{C})\right\}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 国 のQ@

Mixing properties

$$\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\} \mid \{\gamma_{x}\}) = \frac{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}, \gamma_{x}\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_{x}\})}$$
$$= z_{\gamma_{0}} \frac{\Xi_{\Lambda \setminus \{\gamma_{0}, \gamma_{x}\}^{*}}}{\Xi_{\Lambda \setminus \{\gamma_{x}\}^{*}}}$$
$$= z_{\gamma_{0}} \frac{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}, \gamma_{x}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{x}}} W^{T}(\mathcal{C})\right\}}$$
$$= z_{\gamma_{0}} \exp\left\{-\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}, \mathcal{C} \sim \gamma_{x}}} W^{T}(\mathcal{C})\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\begin{aligned} & \int \operatorname{Prob}_{\Lambda}(\{\gamma_{0}\} \mid \{\gamma_{x}\}) \\ & \text{ Prob}_{\Lambda}(\{\gamma_{0}\}) \mid \{\gamma_{x}\}) \\ & \frac{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\}) \mid \{\gamma_{x}\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_{0}\})} = \frac{\exp\left\{-\sum_{\substack{c \in \gamma_{\Lambda} \\ c \sim \gamma_{\Omega}}} W^{T}(\mathcal{C})\right\}}{\exp\left\{-\sum_{\substack{c \in \gamma_{\Lambda} \\ c \sim \gamma_{\Omega}}} W^{T}(\mathcal{C})\right\}} \\ & \text{ and } \\ & \frac{\operatorname{Prob}(\{\gamma_{0}\} \mid \{\gamma_{x}\})}{\operatorname{Prob}(\{\gamma_{\Omega}\})} = e^{\sum_{\substack{c \in \gamma_{\Lambda} \\ c \sim \gamma_{\Omega}}} W^{T}(\mathcal{C})} \\ & = e^{F[d(\gamma_{0}, \gamma_{x}])} \\ & \text{ with } F(d) \to 0 \text{ as } d \to \infty. \text{ Thus} \\ & \left|\frac{\operatorname{Prob}(\{\gamma_{\Omega}, \gamma_{x}\})}{\operatorname{Prob}(\{\gamma_{\Omega}\})} - 1\right| = \left|e^{F[d(\gamma_{\Omega}, \gamma_{x})]} - 1\right| \end{aligned}$$

Geom

Partitions

 \mathbf{CE}

Ind

Genesis

Loss

LT

$$\begin{split} & \mathcal{S}\text{-mixing} \\ \text{Hence} \\ & \frac{\operatorname{Prob}_{\Lambda}(\{\gamma_0\} \mid \{\gamma_x\})}{\operatorname{Prob}_{\Lambda}(\{\gamma_0\})} = \frac{\exp\left\{-\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})\right\}}{\exp\left\{-\sum_{\substack{c \sim \gamma_0 \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})\right\}} \\ \text{and} \\ & \frac{\operatorname{Prob}(\{\gamma_0\} \mid \{\gamma_x\})}{\operatorname{Prob}(\{\gamma_0\})} = e^{\sum_{\substack{c \sim \gamma_0 \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})} \\ & = e^{F[d(\gamma_0, \gamma_x)]} \\ \text{with } F(d) \to 0 \text{ as } d \to \infty. \text{ Thus}} \\ & \left|\frac{\operatorname{Prob}(\{\gamma_0, \gamma_x\})}{\operatorname{Prob}(\{\gamma_0\}) \operatorname{Prob}(\{\gamma_x\})} - 1\right| = \left|e^{F[d(\gamma_0, \gamma_x)]} - 1\right| \end{split}$$

Geom

Partitions

 \mathbf{CE}

Ind

Genesis

Loss

LT

Genesis Loss LT Geom Partitions CE Ind

$$\frac{\delta - \text{mixing}}{\theta - \text{mixing}}$$
Hence

$$\frac{\Prob_{\Lambda}(\{\gamma_0\} \mid \{\gamma_x\})}{\Prob_{\Lambda}(\{\gamma_0\})} = \frac{\exp\left\{-\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})\right\}}{\exp\left\{-\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_0}} W^T(\mathcal{C})\right\}}$$
and

$$\frac{\Prob(\{\gamma_0\} \mid \{\gamma_x\})}{\Prob(\{\gamma_0\})} = e^{\sum_{c \approx \gamma_0, c \approx \gamma_x} W^T(\mathcal{C})}$$

$$= e^{F[d(\gamma_0, \gamma_x)]}$$
with $F(d) \to 0$ as $d \to \infty$. Thus

$$\left|\frac{\Prob(\{\gamma_0, \gamma_x\})}{\Prob(\{\gamma_0\}) \Prob(\{\gamma_x\})} - 1\right| = \left|e^{F[d(\gamma_0, \gamma_x)]} - 1\right|$$

・ロト・(型)・(目)・(目)・ (ロ)・

Central Limit Theorem

Lemma (Dobrushin)

Let (S_n) be a sequence of random variables such that (i) $\mathbb{E}(S_n^2) < \infty$ (ii) $\operatorname{Var}(S_n) \ge c n$ (iii) $\exists R > 0$ such that

$$\left| \log \left| \mathbb{E}(\mathrm{e}^{\xi S_n}) \right| \right| \leq \widetilde{c} n \quad \text{if } |\xi| < R$$

ション ふゆ マ キャット しょう くりく

Then

$$\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \xrightarrow{\operatorname{Law}} \mathcal{N}(0, 1)$$

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda \setminus \{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_\Lambda \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \not\in \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- ▶ A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

うつん 川川 スポットボット 大型マントロマ

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda \setminus \{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda} \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \not\in \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

ション ふゆ マ キャット しょう くりく

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda \setminus \{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda} \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \not\in \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on ${\bf z}$ defining a region ${\cal R}$ such that

$$\Xi_{\Lambda \setminus \{\gamma_0\}^*} \neq 0 \text{ in } \mathcal{R} \implies \Xi_{\Lambda} \neq 0 \text{ in } \mathcal{R}$$

for all Λ , $\gamma_0 \not\in \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- ▶ Why the alternative approach lead to better results?
- ▶ Can it be interpreted in terms of the classical approach?

Associated polymer models

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$Z_{\Lambda}^{\text{model}}(\text{param.}) = \text{const}_{\Lambda} \Xi_{\Lambda}^{\text{polymer}}(\boldsymbol{z})$$

 $(\operatorname{const}_{\Lambda} \sim a^{|\Lambda|}).$

Useful observation If S finite set and $(\varphi_a)_{a \in S}$, $(\psi_a)_{a \in S}$ complex-valued:

$$\prod_{a \in S} [\psi_a + \varphi_a] = \sum_{A \subset S} \prod_{a \in A} \varphi_a \prod_{a \in S \setminus A} \psi_a$$

ション ふゆ マ キャット しょう くりく

 $[\prod_{\emptyset} \equiv 1]$

Associated polymer models

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$Z_{\Lambda}^{\text{model}}(\text{param.}) = \text{const}_{\Lambda} \Xi_{\Lambda}^{\text{polymer}}(\boldsymbol{z})$$

 $(\operatorname{const}_{\Lambda} \sim a^{|\Lambda|}).$

Useful observation

If S finite set and $(\varphi_a)_{a\in S}$, $(\psi_a)_{a\in S}$ complex-valued:

$$\prod_{a \in S} \left[\psi_a + \varphi_a \right] = \sum_{A \subset S} \prod_{a \in A} \varphi_a \prod_{a \in S \setminus A} \psi_a$$

ション ふゆ マ キャット しょう くしゃ

 $[\prod_{\emptyset} \equiv 1]$