Cluster expansions for hard-core systems. I. Overview

Roberto Fernández
CNRS - Université de Rouen

Kac seminar, February 2008

The setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition Countable family \mathcal{P} of objects: polymers, animals characterized by - An incomnatibility constraint:

The setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition
Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

- An incompatibility constraint:

$$
\begin{aligned}
& \gamma \nsim \gamma^{\prime} \\
& \gamma \sim \gamma^{\prime}
\end{aligned} \quad \text { if } \gamma, \gamma^{\prime} \in \mathcal{P} \quad \text { incompatible } \quad \text { compatible }
$$

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

The setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition
Countable family \mathcal{P} of objects: polymers, animals, ..., characterized by

- An incompatibility constraint:

$$
\begin{aligned}
& \gamma \nsim \gamma^{\prime} \\
& \gamma \sim \gamma^{\prime}
\end{aligned} \quad \text { if } \gamma, \gamma^{\prime} \in \mathcal{P} \quad \text { incompatible } \quad \text { compatible }
$$

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

- A family of activities $\boldsymbol{z}=\left\{z_{\gamma}\right\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

The basic ("finite-volume") measures

Defined, for each finite family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$
\mathrm{W}_{\Lambda}\left(\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}\right)=\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_{1}} z_{\gamma_{2}} \cdots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

$$
\text { for } n \geq 1 \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \mathcal{P}_{\Lambda}, \text { and } \mathrm{W}_{\Lambda}(\emptyset)=1 / \Xi_{\Lambda}
$$

The basic ("finite-volume") measures

Defined, for each finite family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$
\mathrm{W}_{\Lambda}\left(\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}\right)=\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_{1}} z_{\gamma_{2}} \cdots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

for $n \geq 1 \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \mathcal{P}_{\Lambda}$, and $\mathrm{W}_{\Lambda}(\emptyset)=1 / \Xi_{\Lambda}$, where

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

The basic ("finite-volume") measures

Defined, for each finite family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$
\mathrm{W}_{\Lambda}\left(\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}\right)=\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} z_{\gamma_{1}} z_{\gamma_{2}} \cdots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

for $n \geq 1 \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in \mathcal{P}_{\Lambda}$, and $\mathrm{W}_{\Lambda}(\emptyset)=1 / \Xi_{\Lambda}$, where

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

- $\Lambda=$ some label, often finite subset of a countable set
- As compatible polymers are necessarily different,

$$
\frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}}[\bullet] \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}=\sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}}[\bullet] \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

(different situation below for cluster expansion)

The questions:

- Existence of the limit $\mathcal{P}_{\Lambda} \rightarrow \mathcal{P}$ ("thermodynamic limit")
- Properties of the resulting measure (mixing properties, dependency on parameters,...)
- Asymptotic behavior of Ξ_{Λ}

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- Statistical mechanical models at high and low temperatures are mapped into such systems

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- Statistical mechanical models at high and low temperatures are mapped into such systems
- More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)

Motivation

Immediate:

- Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- Statistics: Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- Statistical mechanical models at high and low temperatures are mapped into such systems
- More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- Zeros of the partition functions Ξ_{Λ} relate to phase transitions (sphere packing, chromatic polynomials,...)

Graph-theoretical framework

Equivalently, consider the incompatibility graph $\mathcal{G}=(\mathcal{P}, \mathcal{E})$
Unoriented graph with:

Graph-theoretical framework

Equivalently, consider the incompatibility graph $\mathcal{G}=(\mathcal{P}, \mathcal{E})$
Unoriented graph with:

- Vertices = polymers
- Edges $=$ incompatible pairs

$$
\begin{equation*}
\gamma \nsim \gamma^{\prime} \quad \text { iff } \quad\left\{\gamma, \gamma^{\prime}\right\} \in \mathcal{E} \quad \text { or } \quad \gamma \leftrightarrow \gamma^{\prime} \tag{1}
\end{equation*}
$$

(contrast!)
incompatible with infinitely many other polymers)

Graph-theoretical framework

Equivalently, consider the incompatibility graph $\mathcal{G}=(\mathcal{P}, \mathcal{E})$
Unoriented graph with:

- Vertices = polymers
- Edges $=$ incompatible pairs

$$
\begin{equation*}
\gamma \nsim \gamma^{\prime} \quad \text { iff } \quad\left\{\gamma, \gamma^{\prime}\right\} \in \mathcal{E} \quad \text { or } \quad \gamma \leftrightarrow \gamma^{\prime} \tag{1}
\end{equation*}
$$

(contrast!)

- \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

Graph-theoretical framework

Equivalently, consider the incompatibility $\operatorname{graph} \mathcal{G}=(\mathcal{P}, \mathcal{E})$
Unoriented graph with:

- Vertices = polymers
- Edges $=$ incompatible pairs

$$
\begin{equation*}
\gamma \nsim \gamma^{\prime} \quad \text { iff } \quad\left\{\gamma, \gamma^{\prime}\right\} \in \mathcal{E} \quad \text { or } \quad \gamma \leftrightarrow \gamma^{\prime} \tag{1}
\end{equation*}
$$

(contrast!)

- \mathcal{E} is arbitrary; vertices can be of infinite degree (polymers incompatible with infinitely many other polymers)

WARNING! There will be other graphs (up to three levels)

Polymers as lattice gases

In this graph-theoretical framework:

- Incompatible polymers = neighboring vertices
- Polymer system $=$ hard-core gas in a complicated lattice
\square
\rightarrow Independent sets $=$ sets formed by independent vertices

Polymers as lattice gases

In this graph-theoretical framework:

- Incompatible polymers = neighboring vertices
- Polymer system $=$ hard-core gas in a complicated lattice
- Neighborhood of γ_{0} :

$$
\begin{aligned}
\mathcal{N}_{\gamma_{0}}^{*} & =\left\{\gamma \in \mathcal{P}: \gamma \nsim \gamma_{0}\right\} \\
\mathcal{N}_{\gamma_{0}} & =\mathcal{N}_{\gamma_{0}}^{*} \backslash\left\{\gamma_{0}\right\}
\end{aligned}
$$

Polymers as lattice gases

In this graph-theoretical framework:

- Incompatible polymers = neighboring vertices
- Polymer system $=$ hard-core gas in a complicated lattice
- Neighborhood of γ_{0} :

$$
\begin{aligned}
\mathcal{N}_{\gamma_{0}}^{*} & =\left\{\gamma \in \mathcal{P}: \gamma \nsim \gamma_{0}\right\} \\
\mathcal{N}_{\gamma_{0}} & =\mathcal{N}_{\gamma_{0}}^{*} \backslash\left\{\gamma_{0}\right\}
\end{aligned}
$$

- Independent vertices $=$ non-neighboring vertices
- Independent sets $=$ sets formed by independent vertices

Polymers as lattice gases

In this graph-theoretical framework:

- Incompatible polymers = neighboring vertices
- Polymer system $=$ hard-core gas in a complicated lattice
- Neighborhood of γ_{0} :

$$
\begin{aligned}
\mathcal{N}_{\gamma_{0}}^{*} & =\left\{\gamma \in \mathcal{P}: \gamma \nsim \gamma_{0}\right\} \\
\mathcal{N}_{\gamma_{0}} & =\mathcal{N}_{\gamma_{0}}^{*} \backslash\left\{\gamma_{0}\right\}
\end{aligned}
$$

- Independent vertices $=$ non-neighboring vertices
- Independent sets $=$ sets formed by independent vertices

Thus,

$$
\Xi_{\Lambda}(\boldsymbol{z})=\sum_{\substack{\Gamma \subset \mathcal{P}_{\Lambda} \\ \text { independent }}} z^{\Gamma} \quad \text { with } \quad z^{\Gamma}=\prod_{\gamma \in \Gamma} z_{\gamma}
$$

Example: Single-call loss networks

Definition

- $\mathcal{P}=$ finite subsets of \mathbb{Z}^{d}-the calls
- A call γ is attempted with Poissonian rates z_{γ}
- Call succeeds if it does not intercept existing calls
- Once established, calls have an $\exp (1)$ life span

Example: Single-call loss networks

Definition

- $\mathcal{P}=$ finite subsets of \mathbb{Z}^{d}-the calls
- A call γ is attempted with Poissonian rates z_{γ}
- Call succeeds if it does not intercept existing calls
- Once established, calls have an $\exp (1)$ life span

Remarks

- Basic measures are invariant for the finite-region process $\left(\gamma \nsim \gamma^{\prime} \Longleftrightarrow \gamma \cap \gamma^{\prime} \neq \emptyset\right)$
- Thermodynamic limit: infinite-volume process
- Discrete point process with hard-core conditions

Statistical mechanical lattice models

Their ingredients are:

- Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^{d})
- Single-site space $\left(E, \mathcal{F}, \mu_{E}\right)$ with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^{d}$)
- Configuration space $\Omega=E^{\mathbb{L}}$, with product measure

Statistical mechanical lattice models

Their ingredients are:

- Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^{d})
- Single-site space $\left(E, \mathcal{F}, \mu_{E}\right)$ with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^{d}$)
- Configuration space $\Omega=E^{\mathbb{L}}$, with product measure
- Interaction $\Phi=\left\{\phi_{B}: B \subset \subset \mathbb{L}\right\}$ where $\phi_{B}=\phi_{B}\left(\omega_{B}\right)$

Statistical mechanical lattice models

Their ingredients are:

- Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^{d})
- Single-site space $\left(E, \mathcal{F}, \mu_{E}\right)$ with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^{d}$)
- Configuration space $\Omega=E^{\mathbb{L}}$, with product measure
- Interaction $\Phi=\left\{\phi_{B}: B \subset \subset \mathbb{L}\right\}$ where $\phi_{B}=\phi_{B}\left(\omega_{B}\right)$
- Bonds are sets B such that $\phi_{B} \neq 0$

Statistical mechanical lattice models

Their ingredients are:

- Lattice \mathbb{L} countable set of sites (e.g. \mathbb{Z}^{d})
- Single-site space $\left(E, \mathcal{F}, \mu_{E}\right)$ with natural measure structure (e.g. counting measure if E countable, Borel if $E \subset \mathbb{R}^{d}$)
- Configuration space $\Omega=E^{\mathbb{L}}$, with product measure
- Interaction $\Phi=\left\{\phi_{B}: B \subset \subset \mathbb{L}\right\}$ where $\phi_{B}=\phi_{B}\left(\omega_{B}\right)$
- Bonds are sets B such that $\phi_{B} \neq 0$
- Exclusions:
- $\Phi_{B}\left(\omega_{B}\right)=\infty$ (physicist)
- $\Omega_{\text {all }} \subset \Omega$ (math-phys)

Statistical mechanical measures

Their finite-volume versions are defined by

- Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$
H_{\Lambda}(\omega \mid \sigma)=\sum_{B \subset \Lambda} \phi_{B}\left(\omega_{\Lambda} \sigma\right)
$$

- Boltzmann Probability densities (weights)

Statistical mechanical measures

Their finite-volume versions are defined by

- Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$
H_{\Lambda}(\omega \mid \sigma)=\sum_{B \subset \Lambda} \phi_{B}\left(\omega_{\Lambda} \sigma\right)
$$

- Boltzmann Probability densities (weights)

$$
W_{\Lambda}(\omega \mid \sigma)=\frac{\exp \left\{-\beta H_{\Lambda}(\omega \mid \sigma)\right\}}{Z_{\Lambda}^{\sigma}}
$$

$$
\left(\omega, \sigma \in \Omega_{\mathrm{all}}\right)
$$

Statistical mechanical measures

Their finite-volume versions are defined by

- Hamiltonians: For $\Lambda \subset \subset \mathbb{L}$, and boundary condition σ

$$
H_{\Lambda}(\omega \mid \sigma)=\sum_{B \subset \Lambda} \phi_{B}\left(\omega_{\Lambda} \sigma\right)
$$

- Boltzmann Probability densities (weights)

$$
W_{\Lambda}(\omega \mid \sigma)=\frac{\exp \left\{-\beta H_{\Lambda}(\omega \mid \sigma)\right\}}{Z_{\Lambda}^{\sigma}}
$$

($\left.\omega, \sigma \in \Omega_{\text {all }}\right)$ with

$$
Z_{\Lambda}^{\sigma}=\int_{\Omega_{\text {all }}} \exp \left\{-\beta H_{\Lambda}(\omega \mid \sigma)\right\} \bigotimes_{x \in \Lambda} \mu_{E}\left(d \omega_{x}\right)
$$

($\beta=$ inverse temperature)

Example zero: Hard-core lattice gases

$\mathbb{L}=$ vertices of a graph $\left(\mathrm{eg} . \mathbb{Z}^{d}\right), E=\{0,1\}$
($\mathcal{F}=$ discrete, $\mu_{E}=$ counting $)$

Example zero: Hard-core lattice gases

$\mathbb{L}=$ vertices of a graph $\left(\mathrm{eg} . \mathbb{Z}^{d}\right), E=\{0,1\}$
$\left(\mathcal{F}=\right.$ discrete, $\mu_{E}=$ counting $)$

$$
\phi_{B}(\omega)=\left\{\begin{array}{cl}
-u \omega_{x} & \text { if } B=\{x\} \\
\infty & \text { if } B=\{x, y\} \text { n.n. } \\
0 & \text { otherwise }
\end{array}\right.
$$

Example zero: Hard-core lattice gases

$\mathbb{L}=$ vertices of a graph $\left(\mathrm{eg} . \mathbb{Z}^{d}\right), E=\{0,1\}$
$\left(\mathcal{F}=\right.$ discrete, $\mu_{E}=$ counting $)$

$$
\phi_{B}(\omega)=\left\{\begin{array}{cl}
-u \omega_{x} & \text { if } B=\{x\} \\
\infty & \text { if } B=\{x, y\} \text { n.n. } \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
\Gamma(\omega)=\left\{x: \omega_{x}=1\right\}
$$

Then, for $\Lambda \subset \subset \mathbb{L}$,

$$
W_{\Lambda}(\omega \mid 0)=\frac{1}{Z_{\Lambda}^{0}} \prod_{x \in \Gamma\left(\omega_{\Lambda}\right)} \mathrm{e}^{\beta u} \prod_{x, y \in \Gamma\left(\omega_{\Lambda}\right)} \mathbb{1}_{\{x \ngtr y\}}
$$

Lattice gas $=$ polymer model

This is a polymer model with

- $\mathcal{P}=\{$ vertices of $\mathbb{L}\}$
- $x \nsim y$ iff x and y are graph neighbors
- $z_{x}=\mathrm{e}^{\beta u}$

Lattice gas $=$ polymer model

This is a polymer model with

- $\mathcal{P}=\{$ vertices of $\mathbb{L}\}$
- $x \nsim y$ iff x and y are graph neighbors
- $z_{x}=\mathrm{e}^{\beta u}$
(For Sokal-like people all polymer models are of this type)

Ising model at low temperatures

$\mathbb{L}=\mathbb{Z}^{d}, E=\{-1,1\},\left(\mathcal{F}=\right.$ discrete, $\mu_{E}=$ counting $)$

$$
\phi_{B}(\omega)=\left\{\begin{array}{cl}
-J \omega_{x} \omega_{y} & \text { if } B=\{x, y\} \text { n.n. } \\
0 & \text { otherwise }
\end{array}\right.
$$

Ising model at low temperatures

$\mathbb{L}=\mathbb{Z}^{d}, E=\{-1,1\},\left(\mathcal{F}=\right.$ discrete, $\mu_{E}=$ counting $)$

$$
\phi_{B}(\omega)=\left\{\begin{array}{cl}
-J \omega_{x} \omega_{y} & \text { if } B=\{x, y\} \text { n.n. } \\
0 & \text { otherwise }
\end{array}\right.
$$

Call a bond $B=\{x, y\}$ excited or frustrated if $\omega_{x} \omega_{y}=-1$

Ising model at low temperatures

$\mathbb{L}=\mathbb{Z}^{d}, E=\{-1,1\},\left(\mathcal{F}=\right.$ discrete, $\mu_{E}=$ counting $)$

$$
\phi_{B}(\omega)=\left\{\begin{array}{cl}
-J \omega_{x} \omega_{y} & \text { if } B=\{x, y\} \text { n.n. } \\
0 & \text { otherwise }
\end{array}\right.
$$

Call a bond $B=\{x, y\}$ excited or frustrated if $\omega_{x} \omega_{y}=-1$

$$
\begin{aligned}
& H_{\Lambda}(\omega \mid+)=2 J F_{\Lambda}(\omega)-J N_{\Lambda} ; \\
& F_{\Lambda}(\omega)=\#\{B \text { frustrated }: B \cap \Lambda \neq \emptyset\} \\
& N_{\Lambda}=\#\{B: B \cap \Lambda \neq \emptyset\}
\end{aligned}
$$

As N_{Λ} is independent of ω

$$
W_{\Lambda}(\omega \mid+)=\frac{\exp \left\{-2 \beta J F_{\Lambda}(\omega)\right\}}{\sum_{\sigma_{\Lambda}} \exp \left\{-2 \beta J F_{\Lambda}(\sigma)\right\}}
$$

Contour representation

- Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- These plaquettes form a family of disjoint closed connected surfaces (curves)
- Each such closed surface is a contour. Denote

$$
\mathcal{C}_{\Lambda}=\{\text { contours } \gamma: \gamma \subset \Lambda\}
$$

Contour representation

- Place a plaquette (segment) orthogonally at the midpoint of each frustrated bond
- These plaquettes form a family of disjoint closed connected surfaces (curves)
- Each such closed surface is a contour. Denote

$$
\mathcal{C}_{\Lambda}=\{\text { contours } \gamma: \gamma \subset \Lambda\}
$$

- Contours are disjoint: $\gamma \sim \gamma^{\prime} \Longleftrightarrow \gamma \cap \gamma^{\prime}=\emptyset$
- Each ω is in one-to-one correspondence with a compatible family of contours $\Gamma(\omega)$

Contour polymer model

$$
\begin{aligned}
\exp \left\{-2 \beta J F_{\Lambda}(\omega)\right\} & =\exp \left\{-\sum_{\gamma \in \Gamma(\omega)} 2 \beta J|\gamma|\right\} \\
& =\prod_{\gamma \in \Gamma(\omega)} z_{\gamma}
\end{aligned}
$$

with $z_{\gamma}=\exp \{-2 \beta J|\gamma|\}$.

Contour polymer model

$$
\begin{aligned}
\exp \left\{-2 \beta J F_{\Lambda}(\omega)\right\} & =\exp \left\{-\sum_{\gamma \in \Gamma(\omega)} 2 \beta J|\gamma|\right\} \\
& =\prod_{\gamma \in \Gamma(\omega)} z_{\gamma}
\end{aligned}
$$

with $z_{\gamma}=\exp \{-2 \beta J|\gamma|\}$. Hence

$$
W_{\Lambda}(\omega \mid+)=\frac{1}{\Xi_{\Lambda}} \prod_{\gamma \in \Gamma(\omega)} z_{\gamma}
$$

with

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{C}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

Generalization: LTE for Ising ferromagnets

$\mathbb{L}=$ any, $E=\{-1,1\}$, interactions

$$
\phi_{B}(\omega)=-J_{B} \omega^{B} \quad, \text { with } J_{B} \geq 0
$$

Generalization: LTE for Ising ferromagnets

$\mathbb{L}=$ any, $E=\{-1,1\}$, interactions

$$
\phi_{B}(\omega)=-J_{B} \omega^{B} \quad, \text { with } J_{B} \geq 0
$$

Without loss, free boundary conditions:

$$
H_{\Lambda}(\omega)=-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B} \omega^{B}
$$

with

$$
\mathcal{B}_{\Lambda}=\left\{B: J_{B}>0 \text { and } B \subset \Lambda\right\}
$$

[for $H_{\Lambda}(\cdot \mid+)$ use $\mathcal{B}_{\Lambda}^{+}$, etc]

Generalized contours

Write

$$
\begin{aligned}
H_{\Lambda}(\omega) & =-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}\left(\omega^{B}-1+1\right) \\
& =-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}\left(\omega^{B}-1\right)-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}
\end{aligned}
$$

Generalized contours

Write

$$
\begin{aligned}
H_{\Lambda}(\omega) & =-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}\left(\omega^{B}-1+1\right) \\
& =-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}\left(\omega^{B}-1\right)-\sum_{B \in \mathcal{B}_{\Lambda}} J_{B}
\end{aligned}
$$

- A bond B is excited or frustrated if $\omega^{B}=-1$
- $\Gamma\left(\omega_{\Lambda}\right)=$ set of frustrated bonds in Λ
- A contour is a maximal connected component of Γ (connexion $=$ intersection)
- $\mathcal{C}_{\Lambda}=$ set of possible contours in Λ

Contours and probability weights

$$
W_{\Lambda}(\omega)=\frac{\prod_{\gamma \in \Gamma\left(\omega_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}
$$

where $E(\gamma)=\sum_{B \in \gamma} 2 J_{B}$

Contours and probability weights

$$
W_{\Lambda}(\omega)=\frac{\prod_{\gamma \in \Gamma\left(\omega_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}
$$

where $E(\gamma)=\sum_{B \in \gamma} 2 J_{B}$ and

$$
\widetilde{Z}_{\Lambda}=\sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma\left(\sigma_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}
$$

with $N_{\Gamma}=\left\{\omega_{\Lambda}: \Gamma\left(\omega_{\Lambda}\right)=\Gamma\right\}$
We compute N_{Γ} with a little help from group theory

Contours and probability weights

$$
W_{\Lambda}(\omega)=\frac{\prod_{\gamma \in \Gamma\left(\omega_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}
$$

where $E(\gamma)=\sum_{B \in \gamma} 2 J_{B}$ and

$$
\widetilde{Z}_{\Lambda}=\sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma\left(\sigma_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}=\sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} \mathrm{e}^{-\beta E(\gamma)}
$$

with $N_{\Gamma}=\left\{\omega_{\Lambda}: \Gamma\left(\omega_{\Lambda}\right)=\Gamma\right\}$

Contours and probability weights

$$
W_{\Lambda}(\omega)=\frac{\prod_{\gamma \in \Gamma\left(\omega_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}}{\widetilde{Z}_{\Lambda}}
$$

where $E(\gamma)=\sum_{B \in \gamma} 2 J_{B}$ and

$$
\widetilde{Z}_{\Lambda}=\sum_{\sigma_{\Lambda}} \prod_{\gamma \in \Gamma\left(\sigma_{\Lambda}\right)} \mathrm{e}^{-\beta E(\gamma)}=\sum_{\Gamma \in \mathcal{C}_{\Lambda}} N_{\Gamma} \prod_{\gamma \in \Gamma} \mathrm{e}^{-\beta E(\gamma)}
$$

with $N_{\Gamma}=\left\{\omega_{\Lambda}: \Gamma\left(\omega_{\Lambda}\right)=\Gamma\right\}$
We compute N_{Γ} with a little help from group theory

Contours and group theory

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega^{B}=\sigma^{B}$ for all $B \in \mathcal{B}_{\Lambda}$

Contours and group theory

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega^{B}=\sigma^{B}$ for all $B \in \mathcal{B}_{\Lambda}$
- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $(\omega \cdot \sigma)^{B}=1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$
(\omega \cdot \sigma)_{x}=\omega_{x} \sigma_{x}
$$

Site-wise product

Contours and group theory

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega^{B}=\sigma^{B}$ for all $B \in \mathcal{B}_{\Lambda}$
- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $(\omega \cdot \sigma)^{B}=1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$
(\omega \cdot \sigma)_{x}=\omega_{x} \sigma_{x}
$$

Site-wise product

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega=\chi \cdot \sigma$ for some $\chi \in \mathcal{S}_{\Lambda}$ with

$$
\mathcal{S}_{\Lambda}=\left\{\chi: \chi^{B}=1 \text { for all } B \in \mathcal{B}_{\Lambda}\right\}
$$

Symmetry group

Contours and group theory

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega^{B}=\sigma^{B}$ for all $B \in \mathcal{B}_{\Lambda}$
- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $(\omega \cdot \sigma)^{B}=1$ for all $B \in \mathcal{B}_{\Lambda}$, where

$$
(\omega \cdot \sigma)_{x}=\omega_{x} \sigma_{x}
$$

Site-wise product

- $\Gamma\left(\omega_{\Lambda}\right)=\Gamma\left(\sigma_{\Lambda}\right)$ iff $\omega=\chi \cdot \sigma$ for some $\chi \in \mathcal{S}_{\Lambda}$ with

$$
\mathcal{S}_{\Lambda}=\left\{\chi: \chi^{B}=1 \text { for all } B \in \mathcal{B}_{\Lambda}\right\}
$$

Symmetry group

- $N_{\Lambda}=\left|\mathcal{S}_{\Lambda}\right|$

Ferromagnetic LT polymer model

Finally,

$$
Z_{\Lambda}=\left|\mathcal{S}_{\Lambda}\right| \Xi_{\Lambda}^{\mathrm{LT}}
$$

with

$$
\Xi_{\Lambda}^{\mathrm{LT}}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{C}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

Ferromagnetic LT polymer model

Finally,

$$
Z_{\Lambda}=\left|\mathcal{S}_{\Lambda}\right| \Xi_{\Lambda}^{\mathrm{LT}}
$$

with

$$
\Xi_{\Lambda}^{\mathrm{LT}}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{C}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

for

$$
z_{\gamma}=\exp \left\{-2 \beta \sum_{B \in \gamma} J_{B}\right\}
$$

($\left|z_{\gamma}\right|$ small for β large)

Ferromagnetic LT polymer model

Finally,

$$
Z_{\Lambda}=\left|\mathcal{S}_{\Lambda}\right| \Xi_{\Lambda}^{\mathrm{LT}}
$$

with

$$
\Xi_{\Lambda}^{\mathrm{LT}}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{C}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

for

$$
z_{\gamma}=\exp \left\{-2 \beta \sum_{B \in \gamma} J_{B}\right\}
$$

($\left|z_{\gamma}\right|$ small for β large) and

$$
\gamma \sim \gamma^{\prime} \Longleftrightarrow \gamma \cap \gamma^{\prime}=\emptyset
$$

Geometrical polymer models

Polymers of previous examples (loss networks, Peierls contours) are points of a set
These are the original polymer models of Gruber and Kunz

Geometrical polymer models

Polymers of previous examples (loss networks, Peierls contours) are points of a set
These are the original polymer models of Gruber and Kunz
Formally, geometrical polymer models are defined by:

- A set \mathbb{V} (eg. possible calls, surfaces)
- A family \mathcal{P} of finite subsets of \mathbb{V} (eg. connected)
- Activity values $\left(z_{\gamma}\right)_{\gamma \in \mathcal{P}}$
- The relation $\gamma \sim \gamma^{\prime} \Longleftrightarrow \gamma \cap \gamma^{\prime}=\emptyset$

In this case $\mathcal{P}_{\Lambda}=\{\gamma \in \mathcal{P}: \gamma \subset \Lambda\}, \Lambda \subset \subset \mathbb{V}$

General geometrical polymers

Vertex-set polymers
$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)
\square

- Comnatihility determined by graph distances (overlapping being neighbors or sufficiently close)

General geometrical polymers

Vertex-set polymers

$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)

General geometrical polymers

Vertex-set polymers

$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)
WARNING! Second-level graph. On top: incompatibility graph

General geometrical polymers

Vertex-set polymers

$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)
WARNING! Second-level graph. On top: incompatibility graph
Decorated geometrical polymers
$\gamma=\left(\underline{\gamma}, D_{\gamma}\right)$ where

General geometrical polymers

Vertex-set polymers

$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)
WARNING! Second-level graph. On top: incompatibility graph
Decorated geometrical polymers
$\gamma=\left(\underline{\gamma}, D_{\gamma}\right)$ where
- $\underline{\gamma}=$ finite subset of \mathcal{V} ("base")
- D_{γ} some additional attribute (color, "decoration")

General geometrical polymers

Vertex-set polymers

$\mathbb{V}=$ vertex set of a graph (lattice, dual lattice)

- Polymers are defined through connectivity properties (graph-connected)
- Compatibility determined by graph distances (overlapping, being neighbors or sufficiently close)
WARNING! Second-level graph. On top: incompatibility graph
Decorated geometrical polymers
$\gamma=\left(\underline{\gamma}, D_{\gamma}\right)$ where
- $\underline{\gamma}=$ finite subset of \mathcal{V} ("base")
- D_{γ} some additional attribute (color, "decoration")
- In this case: $x \in \gamma$ means $x \in \underline{\gamma}$, etc

Ratios of partition functions

Partition functions play a central role. Three reasons:

- Correlations are ratios of partition functions
- So are characterictic and moment-generatino finctions

Ratios of partition functions

Partition functions play a central role. Three reasons:

- Correlations are ratios of partition functions
- So are characteristic and moment-generating functions - (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Ratios of partition functions

Partition functions play a central role. Three reasons:

- Correlations are ratios of partition functions
- So are characteristic and moment-generating functions
transitions, coloring problems, etc

Ratios of partition functions

Partition functions play a central role. Three reasons:

- Correlations are ratios of partition functions
- So are characteristic and moment-generating functions
- (Complex) zeros of partition functions related to phase transitions, coloring problems, etc

Polymer correlation functions

Let

- Prob $_{\Lambda}$ the basic measure in \mathcal{P}_{Λ}
- $\gamma_{1}, \ldots, \gamma_{k}$ mutually compatible polymers in \mathcal{P}_{Λ}

Polymer correlation functions

Let

- $\operatorname{Prob}_{\Lambda}$ the basic measure in \mathcal{P}_{Λ}
- $\gamma_{1}, \ldots, \gamma_{k}$ mutually compatible polymers in \mathcal{P}_{Λ}

Then

$$
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{1}, \ldots, \gamma_{k} \text { are present }\right\}\right)=z_{\gamma_{1}} \cdots z_{\gamma_{k}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}^{*}}}{\Xi_{\Lambda}}
$$

where

$$
\begin{aligned}
\Xi_{\Lambda \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}^{*}}= & \text { partition function of polymers in } \mathcal{P}_{\Lambda} \\
& \text { compatible with } \gamma_{1}, \ldots, \gamma_{k}
\end{aligned}
$$

Statistical mechanical correlations

Likewise, for the stat-mech models, let

- $\operatorname{Prob}_{\Lambda}(\cdot \mid \sigma)$ be the measure in Λ with b.c. σ
- A_{Δ} be an event depending only on spins in $\Delta \subset \Lambda$

Statistical mechanical correlations

Likewise, for the stat-mech models, let

- $\operatorname{Prob}_{\Lambda}(\cdot \mid \sigma)$ be the measure in Λ with b.c. σ
- A_{Δ} be an event depending only on spins in $\Delta \subset \Lambda$

Then

$$
\operatorname{Prob}_{\Lambda}\left(A_{\Delta}\right)=\int \mathbb{1}_{\left\{A_{\Delta}\right\}}\left(\omega_{\Delta}\right) \frac{Z_{\Lambda \backslash \Delta}^{\omega_{\Delta} \sigma_{\mathbb{L} \backslash \Lambda}}}{Z_{\Lambda}^{\sigma}} \bigotimes_{x \in \Delta} \mu_{E}\left(d \omega_{x}\right)
$$

where

$$
\begin{aligned}
Z_{\Lambda \backslash \Delta}^{\omega_{\Delta} \sigma_{\mathrm{L} \backslash \Lambda}}= & \text { partition function in } \Lambda \backslash \Delta \text { with condition } \\
& \omega \text { in } \Delta \text { and } \sigma \text { outside } \Lambda
\end{aligned}
$$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \rightarrow \mathbb{R}$ and

$$
S_{\Lambda}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{i=1}^{n} \alpha\left(\gamma_{i}\right)
$$

for $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}$.

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \rightarrow \mathbb{R}$ and

$$
S_{\Lambda}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{i=1}^{n} \alpha\left(\gamma_{i}\right)
$$

for $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}\left(\mathrm{e}^{\xi S_{\Lambda}}\right)$ equals

$$
\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_{1}} \cdots z_{\gamma_{n}} \mathrm{e}^{\xi\left[\alpha\left(\gamma_{1}\right)+\cdots+\alpha\left(\gamma_{n}\right)\right]} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \rightarrow \mathbb{R}$ and

$$
S_{\Lambda}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{i=1}^{n} \alpha\left(\gamma_{i}\right)
$$

for $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}\left(\mathrm{e}^{\xi S_{\Lambda}}\right)$ equals

$$
\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_{1}} \cdots z_{\gamma_{n}} \mathrm{e}^{\xi\left[\alpha\left(\gamma_{1}\right)+\cdots+\alpha\left(\gamma_{n}\right)\right]} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

That is,

$$
E_{\Lambda}\left(\mathrm{e}^{\xi S_{\Lambda}}\right)=\frac{\Xi_{\Lambda}\left(\boldsymbol{z}^{\xi}\right)}{\Xi_{\Lambda}(\boldsymbol{z})} \quad \text { with } \quad z_{\gamma}^{\xi}=z_{\gamma} \mathrm{e}^{\xi \alpha(\gamma)}
$$

Characteristic/moment-generating functions

Let $\alpha: \mathcal{P} \rightarrow \mathbb{R}$ and

$$
S_{\Lambda}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{i=1}^{n} \alpha\left(\gamma_{i}\right)
$$

for $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}$. Hence $E_{\Lambda}\left(\mathrm{e}^{\xi S_{\Lambda}}\right)$ equals

$$
\frac{1}{\Xi_{\Lambda}(\boldsymbol{z})} \sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}} z_{\gamma_{1}} \cdots z_{\gamma_{n}} \mathrm{e}^{\xi\left[\alpha\left(\gamma_{1}\right)+\cdots+\alpha\left(\gamma_{n}\right)\right]} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

That is,

$$
E_{\Lambda}\left(\mathrm{e}^{\xi S_{\Lambda}}\right)=\frac{\Xi_{\Lambda}\left(\boldsymbol{z}^{\xi}\right)}{\Xi_{\Lambda}(\boldsymbol{z})} \quad \text { with } \quad z_{\gamma}^{\xi}=z_{\gamma} \mathrm{e}^{\xi \alpha(\gamma)}
$$

Complex ξ are of interest!

Zeros and phase transitions

For (translation-invariant) stat-mech models

$$
f(\beta, \boldsymbol{h})=\lim _{\Lambda \rightarrow \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}
$$

exists and is independent of the boundary condition σ

- Spin systems: $-f / \beta=$ free-energy density
- Gas models: $f / \beta=$ pressure

Zeros and phase transitions

For (translation-invariant) stat-mech models

$$
f(\beta, \boldsymbol{h})=\lim _{\Lambda \rightarrow \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}
$$

exists and is independent of the boundary condition σ

- Spin systems: $-f / \beta=$ free-energy density
- Gas models: $f / \beta=$ pressure

Key information: smoothness as function of β and \boldsymbol{h}
\square

Zeros and phase transitions

For (translation-invariant) stat-mech models

$$
f(\beta, \boldsymbol{h})=\lim _{\Lambda \rightarrow \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}
$$

exists and is independent of the boundary condition σ

- Spin systems: $-f / \beta=$ free-energy density
- Gas models: $f / \beta=$ pressure

Key information: smoothness as function of β and \boldsymbol{h}
Loss of analyticity $=$ phase transition (of some sort)
\square

Zeros and phase transitions

For (translation-invariant) stat-mech models

$$
f(\beta, \boldsymbol{h})=\lim _{\Lambda \rightarrow \mathbb{L}} \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\sigma}
$$

exists and is independent of the boundary condition σ

- Spin systems: $-f / \beta=$ free-energy density
- Gas models: $f / \beta=$ pressure

Key information: smoothness as function of β and \boldsymbol{h}
Loss of analyticity $=$ phase transition (of some sort)
Sufficient conditions for analyticity of f :

- Zeros of $Z_{\Lambda} \Lambda$-uniformly away from (β, \boldsymbol{h})
- Λ-independent radius of analyticity of $\frac{1}{|\Lambda|} \log Z_{\Lambda}$

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations
- Less natural for purely probabilistic studies (analyticity?)

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations
- Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions $=$ invariant measures of point processes

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations
- Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- Weaker results (no analyticity!) but wider applicability

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations
- Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- Weaker results (no analyticity!) but wider applicability
- Can use probabilistic techniques (coupling!)

Alternative lines of attack

Physicist:

Control Ξ through expansion techniques \longrightarrow cluster expansions

- Genesis/reincarnations: Mayer, virial, high-temperature, low-density, ... expansions
- Not everybody's cup of tea
- Involves algebraic and graph theoretical considerations
- Less natural for purely probabilistic studies (analyticity?)

Probabilists:

Models with exclusions = invariant measures of point processes

- Weaker results (no analyticity!) but wider applicability
- Can use probabilistic techniques (coupling!)
- Leads to (perfect) simulation algorithms

Cluster expansions

The idea is to write the polynomials in $\left(z_{\gamma}\right)_{\gamma \in \mathcal{P}}$

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

The series between curly brackets is the cluster expansion
WTATCH OUTI. No consistonay wacuinamont thes

Cluster expansions

The idea is to write the polynomials in $\left(z_{\gamma}\right)_{\gamma \in \mathcal{P}}$

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

as formal exponentials of another formal series

$$
\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp \left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\}
$$

The series between curly brackets is the cluster expansion

Cluster expansions

The idea is to write the polynomials in $\left(z_{\gamma}\right)_{\gamma \in \mathcal{P}}$

$$
\Xi_{\Lambda}(\boldsymbol{z})=1+\sum_{n \geq 1} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} z_{\gamma_{1}} z_{\gamma_{2}} \ldots z_{\gamma_{n}} \prod_{j<k} \mathbb{1}_{\left\{\gamma_{j} \sim \gamma_{k}\right\}}
$$

as formal exponentials of another formal series

$$
\Xi_{\Lambda}(\boldsymbol{z}) \stackrel{\mathrm{F}}{=} \exp \left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\}
$$

The series between curly brackets is the cluster expansion
WATCH OUT!: No consistency requirement, thus

$$
\frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \neq \sum_{\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \subset \mathcal{P}_{\Lambda}}
$$

Clusters and truncated functions

- $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$: Ursell or truncated functions (symmetric)
- Clusters: Families $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ s.t. $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \neq 0$

Clusters and truncated functions

- $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$: Ursell or truncated functions (symmetric)
- Clusters: Families $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ s.t. $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \neq 0$
- The formula of ϕ^{T} will be given later. Highlights:
- Clusters are connected w.r.t. " \not "

Clusters and truncated functions

- $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$: Ursell or truncated functions (symmetric)
- Clusters: Families $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ s.t. $\phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \neq 0$
- The formula of ϕ^{T} will be given later. Highlights:
- Clusters are connected w.r.t. " \nsim "

$$
\phi^{T}(\gamma)=1 \quad, \quad \phi^{T}\left(\gamma, \gamma^{\prime}\right)=\left\{\begin{array}{cl}
-1 & \text { if } \gamma \nsim \gamma^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Ratios and derivatives

Telescoping, ratios of partitions $=$ product of one-contour ratios Substracting cluster expansions:

$$
\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}}} \stackrel{\mathrm{F}}{=} \exp \left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n} \\ \exists i: \gamma_{i}=\gamma_{0}}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\}
$$

Slightly more convenient series:

Ratios and derivatives

Telescoping, ratios of partitions $=$ product of one-contour ratios Substracting cluster expansions:

$$
\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}}} \stackrel{\mathrm{F}}{=} \exp \left\{\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n} \\ \exists i: \gamma_{i}=\gamma_{0}}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\}
$$

Slightly more convenient series:
$\frac{\partial}{\partial z_{\gamma_{0}}} \log \Xi_{\Lambda} \stackrel{\mathrm{F}}{=} 1+\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \phi^{T}\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}$
Two strategies to deal with this series: classical and inductive

Classical cluster-expansion strategy

Find convergence conditions for the series

$$
\Pi_{\gamma_{0}}(\boldsymbol{\rho}):=1+\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}^{n}}\left|\phi^{T}\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right)\right| \rho_{\gamma_{1}} \ldots \rho_{\gamma_{n}}
$$

for $\rho_{\gamma}>0$.
Cluster expansions converge absolutely for $\mid z_{\gamma} \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

Classical cluster-expansion strategy

Find convergence conditions for the series
$\Pi_{\gamma_{0}}(\boldsymbol{\rho}):=1+\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}^{n}}\left|\phi^{T}\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right)\right| \rho_{\gamma_{1}} \ldots \rho_{\gamma_{n}}$
for $\rho_{\gamma}>0$. Then,
Cluster expansions converge absolutely for $\left|z_{\gamma}\right| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ

Classical cluster-expansion strategy

Find convergence conditions for the series
$\Pi_{\gamma_{0}}(\boldsymbol{\rho}):=1+\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}^{n}}\left|\phi^{T}\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right)\right| \rho_{\gamma_{1}} \ldots \rho_{\gamma_{n}}$
for $\rho_{\gamma}>0$. Then,
Cluster expansions converge absolutely for $\left|z_{\gamma}\right| \leq \rho_{\gamma}$ uniformly in Λ (complex valued allowed!)

This determines a region of analyticity \mathcal{R} common for all Λ
Within this region

$$
\frac{\Xi_{\Lambda}}{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}}} \leq\left|z_{\gamma_{0}}\right| \Pi_{\gamma_{0}}(|\boldsymbol{z}|)
$$

Consequences

- Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)

Consequences

- Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- Within \mathcal{R}
- Explicit series expressions for free energy and correlations

Consequences

- Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- Within \mathcal{R}
- Explicit series expressions for free energy and correlations
- Explicit δ-mixing:

$$
\begin{aligned}
& \quad\left|\frac{\operatorname{Prob}\left(\left\{\gamma_{0}, \gamma_{x}\right\}\right)}{\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right) \operatorname{Prob}\left(\left\{\gamma_{x}\right\}\right)}-1\right|=\left|\mathrm{e}^{F\left[d\left(\gamma_{0}, \gamma_{x}\right)\right]}-1\right| \\
& \text { with } F(d) \rightarrow 0 \text { as } d \rightarrow \infty
\end{aligned}
$$

Consequences

- Zeros of all Ξ_{Λ} outside \mathcal{R} (no phase transitions!)
- Within \mathcal{R}
- Explicit series expressions for free energy and correlations
- Explicit δ-mixing:

$$
\left|\frac{\operatorname{Prob}\left(\left\{\gamma_{0}, \gamma_{x}\right\}\right)}{\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right) \operatorname{Prob}\left(\left\{\gamma_{x}\right\}\right)}-1\right|=\left|\mathrm{e}^{F\left[d\left(\gamma_{0}, \gamma_{x}\right)\right]}-1\right|
$$

with $F(d) \rightarrow 0$ as $d \rightarrow \infty$

- Central limit theorem

Free-energy expansion

Within \mathcal{R}

$$
\log \Xi_{\Lambda}=\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \phi_{n}^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}
$$

Free-energy expansion

Within \mathcal{R}

$$
\begin{aligned}
\log \Xi_{\Lambda} & =\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{P}_{\Lambda}^{n}} \phi_{n}^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}} \\
& =\sum_{\gamma \in \mathcal{P}_{\Lambda}} z_{\gamma}-\frac{1}{2} \sum_{\substack{\left(\gamma, \gamma^{\prime}\right) \in \mathcal{P}_{\Lambda}^{2} \\
\gamma \nsim \gamma^{\prime}}} z_{\gamma} z_{\gamma^{\prime}}+O\left(|\boldsymbol{z}|^{3}\right)
\end{aligned}
$$

Each term is $O(|\Lambda|)$

Free-energy-density (pressure) expansion

Within \mathcal{R} : For the translation-invariant geometrical model

$$
f=\lim _{\Lambda} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}
$$

exists and is analytic on parameters (no phase transitions!)

$$
\begin{aligned}
f & =\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right): 0 \in \cup \gamma_{i}}} \phi_{n}^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}} \\
& =\sum_{\gamma \ni 0} z_{\gamma}-\frac{1}{2} \sum_{\substack{\gamma \nsim \gamma^{\prime} \\
0 \in \gamma \cup \gamma^{\prime}}} z_{\gamma} z_{\gamma^{\prime}}+O\left(|\boldsymbol{z}|^{3}\right)
\end{aligned}
$$

Correlations

$$
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)=z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}}}{\Xi_{\Lambda}}
$$

Correlations

$$
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)=z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}}}{\Xi_{\Lambda}}=z_{\gamma_{0}} \frac{\exp \left\{\sum_{\substack{c \in \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp \left\{\sum_{\mathcal{c} \subset \mathcal{P}_{\Lambda}} W^{T}(\mathcal{C})\right\}}
$$

Correlations

$$
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)=z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}}}{\Xi_{\Lambda}}=z_{\gamma_{0}} \frac{\exp \left\{\sum_{\substack{\mathcal{c} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp \left\{\sum_{\mathcal{C} \subset \mathcal{P}_{\Lambda}} W^{T}(\mathcal{C})\right\}}
$$

Hence
$\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right)$

$$
=z_{\gamma_{0}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \\ \exists i: \gamma_{i} \nsim \gamma_{0}}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\}
$$

Correlations

$$
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)=z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}}}{\Xi_{\Lambda}}=z_{\gamma_{0}} \frac{\exp \left\{\sum_{\substack{\mathcal{c} \subset \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}{\exp \left\{\sum_{\mathcal{C} \subset \mathcal{P}_{\Lambda}} W^{T}(\mathcal{C})\right\}}
$$

Hence

$$
\begin{aligned}
& \operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right) \\
& =z_{\gamma_{0}} \exp \left\{-\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{\left.\gamma_{1}, \ldots, \gamma_{n}\right) \\
\exists \exists i: \gamma_{i} \nsim \gamma_{0}}} \phi^{T}\left(\gamma_{1}, \ldots, \gamma_{n}\right) z_{\gamma_{1}} \ldots z_{\gamma_{n}}\right\} \\
& =z_{\gamma_{0}} \exp \left\{\sum_{\gamma \nsim \gamma_{0}} z_{\gamma}+O\left(|\boldsymbol{z}|^{2}\right)\right\} \\
& =z_{\gamma_{0}}\left[1+\sum_{\gamma \nsim \gamma_{0}} z_{\gamma}\right]+O\left(|\boldsymbol{z}|^{3}\right)
\end{aligned}
$$

Mixing properties

$$
\begin{aligned}
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right) & =\frac{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}, \gamma_{x}\right\}\right)}{\operatorname{Prob}}\left(\left\{\gamma_{x}\right\}\right) \\
& =z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}, \gamma_{x}\right\}^{*}}}{\Xi_{\Lambda \backslash\left\{\gamma_{x}\right\}^{*}}}
\end{aligned}
$$

Mixing properties

$$
\begin{aligned}
\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right) & =\frac{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}, \gamma_{x}\right\}\right)}{\operatorname{Prob}}\left(\left\{\gamma_{x}\right\}\right) \\
& =z_{\gamma_{0}} \frac{\Xi_{\Lambda \backslash\left\{\gamma_{0}, \gamma_{x}\right\}^{*}}}{\Xi_{\Lambda \backslash\left\{\gamma_{x}\right\}^{*}}} \\
& =z_{\gamma_{0}} \frac{\exp \left\{\sum_{\substack{\mathcal{C} \sim \mathcal{P}_{\Lambda} \\
\mathcal{C} \sim \gamma_{0}, \gamma_{x}}} W^{T}(\mathcal{C})\right\}}{\exp \left\{\sum_{\substack{\mathcal{c} \subset \mathcal{P}_{\Lambda} \\
\mathcal{C} \sim \gamma_{x}}} W^{T}(\mathcal{C})\right\}} \\
& =z_{\gamma_{0}} \exp \left\{-\sum_{\substack{\mathcal{C} \subset \mathcal{P}_{\Lambda} \\
\mathcal{C} \nsim \gamma_{0}, \mathcal{C} \sim \gamma_{x}}} W^{T}(\mathcal{C})\right\}
\end{aligned}
$$

δ-mixing

Hence

$$
\frac{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right)}{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)}=\frac{\operatorname{cxp}}{\exp \left\{-\sum_{\substack{\mathcal{C} \not \mathcal{P}_{\Lambda} \\ \mathcal{C} \sim \gamma_{0} \\ \mathcal{C} \not \mathcal{P}_{\Lambda}}}^{\substack{\mathcal{C}}} W^{T}(\mathcal{C})\right\}}
$$

δ-mixing

Hence

$$
\frac{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right)}{\operatorname{Prob}_{\Lambda}\left(\left\{\gamma_{0}\right\}\right)}=\frac{\exp \left\{-\underset{\substack{\mathcal{C} \mathcal{P}_{\Lambda} \\ \mathcal{C} \not \mathcal{P}_{0} \\ \mathcal{C} \sim \gamma_{x}}}{\operatorname{cxp}\left\{-\sum_{\substack{\mathcal{c}_{\mathcal{L}} \mathcal{P}_{\Lambda} \\ \mathcal{C} \nsim \gamma_{0}}} W^{T}(\mathcal{C})\right\}}\right.}{\exp }
$$

and

$$
\begin{aligned}
\frac{\operatorname{Prob}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right)}{\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right)} & =\mathrm{e}^{\sum_{\mathcal{C} \not \gamma_{0}, \mathcal{C} \not \gamma_{x}} W^{T}(\mathcal{C})} \\
& =\mathrm{e}^{F\left[d\left(\gamma_{0}, \gamma_{x}\right)\right]}
\end{aligned}
$$

with $F(d) \rightarrow 0$ as $d \rightarrow \infty$.

δ-mixing

Hence
and

$$
\begin{aligned}
\frac{\operatorname{Prob}\left(\left\{\gamma_{0}\right\} \mid\left\{\gamma_{x}\right\}\right)}{\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right)} & =\mathrm{e}^{\sum_{\mathcal{C} \nsim \gamma_{0}, \mathcal{C} \not \gamma_{x}} W^{T}(\mathcal{C})} \\
& =\mathrm{e}^{F\left[d\left(\gamma_{0}, \gamma_{x}\right)\right]}
\end{aligned}
$$

with $F(d) \rightarrow 0$ as $d \rightarrow \infty$. Thus

$$
\left|\frac{\operatorname{Prob}\left(\left\{\gamma_{0}, \gamma_{x}\right\}\right)}{\operatorname{Prob}\left(\left\{\gamma_{0}\right\}\right) \operatorname{Prob}\left(\left\{\gamma_{x}\right\}\right)}-1\right|=\left|\mathrm{e}^{F\left[d\left(\gamma_{0}, \gamma_{x}\right)\right]}-1\right|
$$

Central Limit Theorem

Lemma (Dobrushin)

Let $\left(S_{n}\right)$ be a sequence of random variables such that
(i) $\mathbb{E}\left(S_{n}^{2}\right)<\infty$
(ii) $\operatorname{Var}\left(S_{n}\right) \geq c n$
(iii) $\exists R>0$ such that

$$
|\log | \mathbb{E}\left(\mathrm{e}^{\xi S_{n}}\right)|\mid \leq \widetilde{c} n \quad \text { if }| \xi \mid<R
$$

Then

$$
\frac{S_{n}-\mathbb{E}\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \xrightarrow{\text { Law }} \mathcal{N}(0,1)
$$

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on \mathbf{z} defining a region \mathcal{R} such that

$$
\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}} \neq 0 \text { in } \mathcal{R} \Longrightarrow \Xi_{\Lambda} \neq 0 \text { in } \mathcal{R}
$$

for all $\Lambda, \gamma_{0} \notin \Lambda$

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on \mathbf{z} defining a region \mathcal{R} such that

$$
\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}} \neq 0 \text { in } \mathcal{R} \quad \Longrightarrow \quad \Xi_{\Lambda} \neq 0 \text { in } \mathcal{R}
$$

for all $\Lambda, \gamma_{0} \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on \mathbf{z} defining a region \mathcal{R} such that

$$
\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}} \neq 0 \text { in } \mathcal{R} \quad \Longrightarrow \quad \Xi_{\Lambda} \neq 0 \text { in } \mathcal{R}
$$

for all $\Lambda, \gamma_{0} \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- Why the alternative approach lead to better results?
- Can it be interpreted in terms of the classical approach?

Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on \mathbf{z} defining a region \mathcal{R} such that

$$
\Xi_{\Lambda \backslash\left\{\gamma_{0}\right\}^{*}} \neq 0 \text { in } \mathcal{R} \quad \Longrightarrow \quad \Xi_{\Lambda} \neq 0 \text { in } \mathcal{R}
$$

for all $\Lambda, \gamma_{0} \notin \Lambda$

- Expansion neither needed nor obtained (no-cluster-expansion method)
- A posteriori: expansion converges in $\mathcal{R} \longrightarrow$ above concl.

Questions raised

- Why the alternative approach lead to better results?
- Can it be interpreted in terms of the classical approach?

Answer: Classical theory revisited

Associated polymer models

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$
Z_{\Lambda}^{\text {model }}(\text { param } .)=\operatorname{const}_{\Lambda} \Xi_{\Lambda}^{\text {polymer }}(\boldsymbol{z})
$$

$\left(\right.$ const $\left._{\Lambda} \sim a^{|\Lambda|}\right)$.

Associated polymer models

A model has an associated polymer model if partition ratios are the same

Equivalently,

$$
Z_{\Lambda}^{\text {model }}(\text { param. })=\operatorname{const}_{\Lambda} \Xi_{\Lambda}^{\text {polymer }}(\boldsymbol{z})
$$

$\left(\right.$ const $\left._{\Lambda} \sim a^{|\Lambda|}\right)$.
Useful observation
If S finite set and $\left(\varphi_{a}\right)_{a \in S},\left(\psi_{a}\right)_{a \in S}$ complex-valued:

$$
\prod_{a \in S}\left[\psi_{a}+\varphi_{a}\right]=\sum_{A \subset S} \prod_{a \in A} \varphi_{a} \prod_{a \in S \backslash A} \psi_{a}
$$

$\left[\prod_{\emptyset} \equiv 1\right]$

