
Ornstein-Zernike asymptotics in Statistical

Mechanics

Yvan Velenik
Université de Genève
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Random walks in Physics

Random walks are often used in Physics as simple effective
models for more complicated objects.

Three examples to be discussed:

Interfaces in 2d

Subcritical clusters

Stretched polymers
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Random walks in Physics

Random walks are often used in Physics as simple effective
models for more complicated objects.

Three examples to be discussed:

Interfaces in 2d

Subcritical clusters

Stretched polymers
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Example: 1D Interface

Problem: Analysis of the statistical properties of an interface
separating two equilibrium phases.

Complicated geometry!
Is it possible to analyse instead a simpler model?
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Heuristic arguments

Structure should be simple at microscales large compared
to the correlation length.

Large scale fluctuations should display universal
(Brownian) asymptotics.
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Ornstein-Zernike theory

Proposed in 1914 by L. S. Ornstein and F. Zernike.

Aim: Determine the (large distance) behaviour of
density-density correlations in simple fluid, away from
criticality.
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Ornstein-Zernike theory

OZ equation:

G(x1 − x2) = C(x1 − x2) + ρ

∫
C(x1 − x3)G(x3 − x2) dx3

g(x): pair correlation function

G(x) = g(x)− 1: net correlation function

C(x): direct correlation function

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Ornstein-Zernike theory

Fourier transform:

Ĝ(k) =
Ĉ(k)

1− ρĈ(k)
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Ornstein-Zernike theory

Fourier transform:

Ĝ(k) =
Ĉ(k)

1− ρĈ(k)

Crucial assumption: Separation of masses

C has smaller range than G (faster exp. decay)
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Ornstein-Zernike theory

Fourier transform:

Ĝ(k) =
Ĉ(k)

1− ρĈ(k)

Possible to expand:

Ĉ(k) ≈ Ĉ(0)−R2|k|2
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Ornstein-Zernike theory

Fourier transform:

Ĝ(k) ≈ Ĉ(0)

ρR2(κ2 + |k|2)

Possible to expand:

Ĉ(k) ≈ Ĉ(0)−R2|k|2
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Ornstein-Zernike theory

This yields

OZ asymptotics

G(x) ≈ A

|x|(d−1)/2
e−κ|x|

(valid as |x| → ∞ with κ fixed)
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Structure of 2D Potts interfaces
Structure of (FK-)percolation clusters
Stretched phase of selfinteracting polymers

Goal: Rigorous understanding of both (closely related)
problems from first principles. Already well understood 30
years ago, in perturbative regime:

OZ: [Abraham, Kunz ’77], [Paes-Leme ’78], [Bricmont,

Fröhlich ’85], etc.

Scaling of 2D Ising interface: [Gallavotti ’72], [Higuchi ’79],

[Bricmont, Fröhlich, Pfister ’81], etc.

Nonperturbative results for very simple models: SAW
[Chayes, Chayes ’86, Ioffe ’98], percolation [Campanino, Chayes,

Chayes ’91]. Very model-specific approaches.

Robust nonperturbative approach: percolation [Campanino,

Ioffe ’02], Ising model [Campanino, Ioffe, V ’03], random-cluster
model [Campanino, Ioffe, V ’08], selfinteracting polymers [Ioffe,

V ’08].
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Example #1

Interfaces in 2D systems
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q-states Potts model

Λ b Z2

σi ∈ {1, . . . , q}, ∀i ∈ Λ

β ≥ 0

πβ,qΛ (σ) ∝ exp
(
β
∑
i∼j

δσi,σj

)

In particular, for q = 2: Ising model
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q-states Potts model

There exists βc ∈ (0,∞) such that

For all β < βc: unique equilibrium phase

For all β > βc: q different equilibrium phases

Assumption:
β > βc
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Geometry of the interface

Macro-scale: not very interesting
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(B Steps are not independent!)
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Geometry of the interface

Result

Convergence to
√
χβ,q(~n) B

B: standard Brownian bridge on [0, 1]
χβ,q(~n): curvature of the (Wulff) equilibrium crystal shape

~n: normal to the (macroscopic) interface
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Geometry of the interface

~n

crystal
shape

equilibrium

Equilibrium crystal shape: (deterministic) shape of a macroscopic

droplet of one equilibrium phase immersed inside another.
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Geometry of the interface

Moreover, we can deduce that the equilibrium crystal shape
possesses

an analytic boundary,

a uniformly positive curvature.

In particular: no roughening in 2D Potts models
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Example #2

Large clusters in subcritical
percolative systems
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FK percolation

(a.k.a. random cluster model)

Introduced by Fortuin and Kasteleyn in 1972.

2 parameters: p ∈ [0, 1], q ∈ R+.

Reduces to Bernoulli percolation when q = 1, and to the
q-states Potts model for q = 2, 3, 4, . . .

In the sequel: q ≥ 1.
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FK percolation

Λ b Ed

ω ∈ {0, 1}Λ

p ∈ [0, 1]
q ∈ R, q ≥ 1
N(ω) = number of clusters

Pp,qΛ (ω) ∝
∏
b

pωb(1− p)1−ωb qN(ω)
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FK percolation

Infinite volume probability measure: Pp,q

There exists pc(q, d) > 0 such that

Pp,q(0↔∞) = 0 ∀p < pc(q, d)

Pp,q(0↔∞) > 0 ∀p > pc(q, d)

In the sequel, we shall always assume that p < pc(q, d).
(In particular: unique infinite volume measure.)
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Connectivity function

Basic quantity: connectivity function

Pp,q(0↔ x)

Reduces to Potts model 2-point correlation function when

q = 2, 3, 4, . . .
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Connectivity function

Assumption: p < pc(q) (slightly cheating here)

In particular, there exists ξp,q(~n) > 0 such that

Pp,q(0↔ x) ≤ e−ξp,q(~nx)|x| (~nx = x/|x|)
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OZ behaviour

Result

Pp,q(0↔ x) =
Ψp,q(~nx)

|x|(d−1)/2
e−ξp,q(~nx) |x| (1 + o(1))

uniformly as |x| → ∞. The functions Ψp,q and ξp,q are positive,
analytic functions on Sd−1.

In particular: OZ behaviour for Potts 2-point correlation functions
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Geometry

Typical shape of large clusters under Pp,q( · | 0↔ x) (|x| � 1)?
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Macro-scale: not very interesting
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Micro-scale: effective random walk picture

0

x

(B Again, steps are not independent, except for q = 1)
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Geometry

Meso-scale: fluctuations

Result

After similar scaling as before, convergence to

(
√
χ1
β,q(x) B1, . . . ,

√
χd−1
β,q (x) Bd−1)

Bk: indep. standard Brownian bridges on [0, 1]
χkβ,q(x): principal curvatures of “Wulff shape” associated to ξp,q
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Example #3

Selfinteracting polymers
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Selfinteracting polymers

F
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Selfinteracting polymers

PFn (γ) ∝ e−Φ(γ)+〈F,γ(n)〉

Polymer chain: γ = (γ(0), . . . , γ(n))
(nearest-neighbour path on Zd)

Force applied to free end: F

Local times: `x(γ) =
∑n

k=0 1{γ(k)=x}
(also possible with edges)

Potential: Φ(γ) =
∑

x∈Zd φ(`x(γ))
φ ≥ 0, nondecreasing, φ(0) = 0
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Selfinteracting polymers

Possible assumptions on the interaction:

Repulsive: φ(n+m) ≥ φ(n) + φ(m)

Attractive: φ(n+m) ≤ φ(n) + φ(m)

Small perturbations of the pure cases, e.g.,

Mixed interactions (e.g., strong attr.+weak rep.)
Selfinteracting (e.g., reinforced) RW with drift
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Geometry

Typical shape of long polymers under PFn ?
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Attractive case: Transition between a collapsed phase and a
stretched phase.

∃K ⊂ Rd: convex set with non-empty interior s.t.
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
∃K ⊂ Rd: convex set with non-empty interior s.t.

F ∈ K̊
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
∃K ⊂ Rd: convex set with non-empty interior s.t.

F 6∈ K
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Stretched phase

The following results hold in the stretched phase, i.e. when

F 6= 0 in the repulsive case

F 6∈ K in the attractive case
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Geometry of long polymers

There exists v̄F 6= 0 such that

1
n
γ

Bε(v̄F )

v̄F

with probability ≥ 1− e−κn
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Geometry of long polymers

Inside Bε(v̄F ):

PFn
(γ(n)

n
= x

)
=

G(x)√
nd

e−nJF (x) (1 + o(1))

G: positive and analytic on Bε(v̄F )
JF : positive, analytic on Bε(v̄F ), and strictly convex

with a non-degenerate quadratic minimum at v̄F
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Geometry of long polymers

Moreover, the typical shape satisfies

macroscale: straight line

microscale: effective random walk structure

mesoscale: Brownian limit
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To keep things simple, we only consider Bernoulli bond
percolation on Zd at p < pc.
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Facts: inverse correlation length

For all x ∈ Rd,

ξ(x) = − lim
k→∞

1

k
log Pp(0↔ [kx])

exists and is norm on Rd. Moreover,

Pp(0↔ x) ≤ e−ξ(~nx)|x|

[Menshikov ’86, Aizenman,Barsky ’87]

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Facts: inequalities

Harris-FKG: For all A,B increasing events,

Pp(A ∩B) ≥ Pp(A)Pp(B)

BK: For all A,B increasing events,

Pp(A ◦B) ≤ Pp(A)Pp(B)

where ◦ denotes disjoint occurence.

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Equidecay set and Wulff shape

Two convex bodies are naturally associated to ξ:

Equidecay set
Uξ =

{
x ∈ Rd : ξ(x) ≤ 1

}
Wulff shape

Kξ =
{
t ∈ Rd : (t, ~n)d ≤ ξ(~n), ∀~n ∈ Sd−1

}
Each set encodes all the information about ξ.
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Equidecay set and Wulff shape

Kξ

~n

Kξ =
{
t ∈ Rd : (t, ~n)d ≤ ξ(~n), ∀~n ∈ Sd−1

}
Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations
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ξ(~n)

~n

Kξ =
{
t ∈ Rd : (t, ~n)d ≤ ξ(~n), ∀~n ∈ Sd−1
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Equidecay set and Wulff shape

Uξ and Kξ are polar:

Uξ =

{
x ∈ Rd : max

t∈Kξ

(t, x)d ≤ 1

}

Kξ =

{
t ∈ Rd : max

x∈Uξ

(t, x)d ≤ 1

}
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Equidecay set and Wulff shape

x ∈ Rd and t ∈ ∂Kξ are dual if (t, x)d = ξ(x).
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x
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Equidecay set and Wulff shape

x ∈ Rd and t ∈ ∂Kξ are dual if (t, x)d = ξ(x).

x

Kξ

t

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Equidecay set and Wulff shape

x ∈ Rd and t ∈ ∂Kξ are dual if (t, x)d = ξ(x).

t

Uξ

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Equidecay set and Wulff shape

x ∈ Rd and t ∈ ∂Kξ are dual if (t, x)d = ξ(x).

t

Uξ

x

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Skeleton

0

x

K ·Uξ
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Skeleton

0

x

BT = ( , )t
B = (b1, . . . , bn)
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Rough bounds

Let T = (0 = x1, x2, . . . , xNT ), UK
ξ (xi) = xi +KUξ and

Ai = {xi ↔ ∂UK
ξ (xi)}

BK implies that

Pp(T ) ≤ Pp(A1 ◦ A2 ◦ · · · ◦ ANT )

≤
NT∏
i=1

Pp(Ai) = Pp
(
0↔ ∂UK

ξ (0)
)NT

≤ (cKd−1e−K)NT = e−KNT (1+oK(1))

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Rough bounds

Let T = (0 = x1, x2, . . . , xNT ), UK
ξ (xi) = xi +KUξ and

Ai = {xi ↔ ∂UK
ξ (xi)}

BK implies that

Pp(T ) ≤ Pp(A1 ◦ A2 ◦ · · · ◦ ANT )

≤
NT∏
i=1

Pp(Ai) = Pp
(
0↔ ∂UK

ξ (0)
)NT

≤ (cKd−1e−K)NT = e−KNT (1+oK(1))

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Rough bounds

Nt = # of vertices in t, NB = # of vertices in B.

Typical trees have a small trunk:

∃c1, c2 : Pp
(
Nt > c1

|x|
K

∣∣ 0↔ x
)
≤ e−c2|x|

Total size of branches of typical trees is small:

∀c3 > 0 : Pp
(
NB > c3

|x|
K

∣∣ 0↔ x
)
≤ e−

1
2
c3|x|
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Rough bounds

# of trunks of size N . (Kd−1)N = eN(d−1) logK .

Therefore

Pp(Nt = N) ≤ e−KN(1−oK(1))eN(d−1) logK ≤ e−KN(1−oK(1)).

Thus (with K large enough)

Pp(Nt ≥ c1
|x|
K

) ≤
∑

N≥c1 |x|K

e−KN(1−oK(1)) ≤ e−
1
2
c1|x|.

Conclusion follows (taking c1 large enough) since

Pp(0↔ x) ≥ e−ξ(~nx)|x|(1+o(1)).
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Surcharge function

Let t ∈ ∂Kξ be dual to x.

The surcharge function

st(y) = ξ(y)− (t, y)d

measures the typicality of an increment.

For a trunk t = (t0, . . . , tNt), we set

st(t) =
Nt∑
l=1

st(tl − tl−1)
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Surcharge function

Surcharge inequality

Let ε > 0. There exists K0(ε) such that, for all K > K0,

P
(
st(t) > 2ε|x|

∣∣ 0↔ x
)
≤ e−ε|x|

uniformly in x ∈ Zd, t ∈ ∂Kξ dual to x.
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Surcharge function

Pp(t) ≤ e−NtK (1−oK(1)) ≤ e−
PNt
i=1 ξ(ti−ti−1)+oK(1)|x|.

Now,

Nt∑
i=1

ξ(ti − ti−1) =
Nt∑
i=1

(
st(ti − ti−1) + (t, ti − ti−1)d

)
= st(t) + (t, tNt)d

= st(t) + (t, x)d − (t, x− tNt)d

= st(t) + ξ(x)− (t, x− tNt)d.

=⇒ Pp(t) ≤ e−st(t)−ξ(x)+oK(1)|x|.
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Surcharge function

We can assume that Nt ≤ c1|x|/K.

The number of such
trunks is bounded above by

ec(logK/K)|x| = eoK(1)|x|.

Since, Pp(t) ≤ e−st(t)−ξ(x)+oK(1)|x|,

Pp(st(t) ≥ 2ε|x|) ≤ e−(2ε−oK(1))|x|e−ξ(x),

and the conclusion follows as before...
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Forward cone

t

Uξ

x

Yδ(t) =
{
y ∈ Rd : (y, t)d > (1− δ)ξ(y)

}
=
{
y ∈ Rd : st(y) < δξ(y)

}
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Cone points of trunks

0
x

cone-point of t
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Cone points of trunks

#n.c.p.(t) = #{non-cone-points of t}

Lemma

st(t) ≥ c4 δ K #n.c.p.(t)

Consequently,

P
(
#n.c.p.(t) ≥ εN(t)

∣∣ 0↔ x
)
≤ e−c5ε|x|
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Cone points of trees

0
x

cone-point of T
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0
x

−Y2δ Y2δcone-point of T
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Cone points of trees

A cone-point of t but not of T is called blocked.

The number of cone-points of t that a branch can block
is proportional to its size.

The total size of the branches is small =⇒ only few
cone-points of trunk can be blocked.
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Cone points of trees

A cone-point of t but not of T is called blocked.

The number of cone-points of t that a branch can block
is proportional to its size.

The total size of the branches is small =⇒ only few
cone-points of trunk can be blocked.

Lemma

There exist ν > 0 and c such that

P
(
#{cone-points of T } < ν

|x|
K

∣∣ 0↔ x
)
≤ e−c|x|
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Cone points of clusters

0

x

cone-point of C0,x
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Cone points of clusters

0

x−Y3δ

Y3δ

cone-point of C0,x
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Cone points of clusters

Clusters remain close to their approximating tree
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Cone points of clusters

Outside this finite ball, the cone condition is
automatically satisfied.

Inside this finite ball, there is a strictly positive probability
that the cluster remains inside the cone, uniformly in
what happens elsewhere.

⇓

Up to exponentially small error, a positive density of the
cone-points of T are also cone-points of C0,x

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Cone points of clusters

Outside this finite ball, the cone condition is
automatically satisfied.

Inside this finite ball, there is a strictly positive probability
that the cluster remains inside the cone, uniformly in
what happens elsewhere.

⇓

Up to exponentially small error, a positive density of the
cone-points of T are also cone-points of C0,x

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Cone points of clusters

Outside this finite ball, the cone condition is
automatically satisfied.

Inside this finite ball, there is a strictly positive probability
that the cluster remains inside the cone, uniformly in
what happens elsewhere.

⇓

Up to exponentially small error, a positive density of the
cone-points of T are also cone-points of C0,x

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Cone points of clusters

#cone
t,δ (C0,x): number of cone-points of C0,x

Theorem

There exist δ ∈ (0, 1
2
), ν and c such that

P
(
#cone
t,δ (C0,x) ≤ ν|x|

∣∣ 0↔ x
)
≤ e−c|x|

uniformly in x and dual t.
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Decomposition into irreducible pieces

We can thus decompose the cluster C0,x into irreducible
pieces:

C0,x = γb q γ1 q . . .q γn q γf
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γ1

γb

γf

γ2

γ4

γ3

0

x
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Decomposition into irreducible pieces

To simplify, I shall assume in the sequel that:

C0,x = γ1 q . . .q γn

γ1

γ2

γ4

γ3

0

x
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Decomposition into irreducible pieces

We can thus write

eξ(x) P(0↔ x) ≈
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) eξ(x)

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) e(t,x)d

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn)
n∏
i=1

e(t,D(γi))d

For γ : y → z, D(γ) = z − y.

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Decomposition into irreducible pieces

We can thus write

eξ(x) P(0↔ x) ≈
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) eξ(x)

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) e(t,x)d

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn)
n∏
i=1

e(t,D(γi))d

For γ : y → z, D(γ) = z − y.

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Decomposition into irreducible pieces

We can thus write

eξ(x) P(0↔ x) ≈
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) eξ(x)

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) e(t,x)d

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn)
n∏
i=1

e(t,D(γi))d

For γ : y → z, D(γ) = z − y.

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Decomposition into irreducible pieces

We can thus write

eξ(x) P(0↔ x) ≈
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) eξ(x)

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn) e(t,x)d

=
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn)
n∏
i=1

e(t,D(γi))d

For γ : y → z, D(γ) = z − y.

Yvan Velenik Ornstein-Zernike asymptotics in Statistical Mechanics



Effective random walk representation
Ornstein-Zernike theory

Some mathematical results
Overview of the approach

Coarse-graining
Effective random walk
More general situations

Decomposition into irreducible pieces

Thanks to independence of edge states in Bernoulli
percolation,

P(C0 = γ1 q . . .q γn) =
n∏
i=1

w(γi),

where w is morally given by w(γ) = p|γ|(1− p)|∂γ|.
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Decomposition into irreducible pieces

We set, for x ∈ Zd,

Q(x) = e(t,x)d
∑
γ: 0→x
irred.

w(γ).

We then have

Q is a probability measure on Zd;

Q(|x| > `) ≤ e−c`, for some c > 0.
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Decomposition into irreducible pieces

We can thus write

eξ(x) P(0↔ x) ≈
∑
n≥1

∑
γ1,...,γnP
D(γi)=x
irred.

P(C0 = γ1 q . . .q γn)
n∏
i=1

e(t,D(γi))d

=
∑
n≥1

∑
x1,...,xnP
xi=x

n∏
i=1

Q(xi)

= Prob(∃n ≥ 1 : Xn = x),

where X is a (directed) random walk on Zd with i.i.d.
increments of law Q.
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Decomposition into irreducible pieces

Ornstein-Zernike asymptotics now easily follow from the local
limit theorem for i.i.d. random variables with small exponential
moments:

eξ(x) P(0↔ x) ≈ Prob(∃n ≥ 1 : Xn = x)

=
C(t)

|x|(d−1)/2
(1 + o(1)),

where t being dual to x only depends on x/|x|.
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“Proof by analogy” that Q is a probability measure on Zd:

0 ≤ gn ←→ eξ(x)Pp(0↔ x),

0 ≤ fn ←→ eξ(x)Pp(0 irr.↔ x) = Q(x)

Renewal relation: g0 = 1, gn =
∑n

k=1 fkgn−k.

Generating functions: G(z) =
∑

n≥0 gnz
n, F(z) =

∑
n≥1 fnz

n.

By assumption: G has radius of conv. 1.

Separation of masses: F has radius of conv. > 1.

Renewal =⇒ G(z) = 1 + F(z)G(z), G(z) = (1− F(z))−1.

=⇒ F(1) = 1

which is equivalent to
∑

k≥1 fk = 1.
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More general situations

Some problems with the above argument in more general cases
(say, FK percolation with q > 1):

No BK inequality =⇒ we don’t get upper bounds on
skeletons weights for free anymore.

The increments of the effective random walk are not
independent anymore =⇒ we cannot rely on the local
limit theorem for i.i.d. random variables anymore.

Both can be dealt with using suitable exponential mixing
properties (and extending the local limit theorem from i.i.d. to
random variables with exponential mixing).
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limit theorem for i.i.d. random variables anymore.

Both can be dealt with using suitable exponential mixing
properties (and extending the local limit theorem from i.i.d. to
random variables with exponential mixing).
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Absence of BK: FK-percolation with q > 1

We assume that p is such that there exist ν0, ν1 > 0 s.t., ∀N ,

Pp,q

N

w

≤ ν0e
−ν1N

Conjecture

This is true for all p < pc(q).

Known (∀d) when:
q = 1 [Aizenman-Barsky ’87]
q = 2 [Aizenman et al ’87]
q � 1 [Laanait et al ’91]
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Mixing for connectivities

0

A

K ·Uξ

sup
ω̄

Pp,q(0 A↔ y |ω ≡ ω̄ off Ar,K)≤ e−K (1 + oK(1))
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Limit theorem

For q > 1, eξ(x)P(C0 = γ1 q . . .q γn) does not factorize
anymore. However, we can write

eξ(x)P(C0 = γ1 q · · · q γn)

= Q(γ1)Q(γ2|γ1) · · ·Q(γn|γ1 q γ2 q · · · q γn−1),

for some suitable measure Q on finite strings of irreducible
paths.

Moreover,

Q(γk|γ1 q · · · q γ` q γ`+1 q · · · q γk−1)

Q(γk|γ̃1 q · · · q γ̃` q γ`+1 q · · · q γk−1)
≤ e−c(k−l).

Under these conditions, it is possible to extend the local limit
theorem.
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