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Polymer models

Polymer configuration:

γ = (γ(0), . . . , γ(n)): n.-n. path on Zd with γ(0) = 0

Internal energy:

Φ(γ) =
∑
x∈Zd

φ(`x(γ))

φ : N→ R: nonnegative, nondecreasing, φ(0) = 0
`x(γ) =

∑n
k=0 1{γ(k)=x} (local times)

Probability:

Pn(γ) ∝ e−Φ(γ)
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Classes of interactions

Two main classes of interactions:

Repulsive interactions

φ(n+m) ≥ φ(n) + φ(m)

Attractive interactions

φ(n+m) ≤ φ(n) + φ(m)

(and, w.l.o.g., limn→∞ φ(n)/n = 0)
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Examples: repulsive interactions

Self-Avoiding walk (SAW)

φ(`) =

{
∞ if ` > 1
0 otherwise

Yvan Velenik Statistical Physics of Stretched Polymers



Model and terminology
Stretched phase of selfinteracting polymers

Diffusivity in weak quenched random environment
Some open problems

Polymer models
Examples
Notations and terminology
Model of stretched polymer

Examples: repulsive interactions

Domb-Joyce model

Defined by

Φ(γ) = β
∑

0≤i<j≤n
1{γ(i)=γ(j)} (β ≥ 0)

This corresponds to the choice

φ(`) = 1
2β`(`− 1)
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Examples: attractive interactions

Discrete sausage

Pn(γ) ∝ e−β·# of sites visited by γ (β ≥ 0)

corresponds to the choice

φ(`) =

{
β if ` ≥ 1
0 if ` = 0

φ(`) = − log Ee−`V
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Examples: attractive interactions

Reinforced Polymer

(βk)k≥1: non-negative, non-increasing sequence.

βk = energetic cost associated to kth visit at a site.

φ(`) =
∑̀
k=1

βk

φ(`) = − log Ee−`V
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Examples: attractive interactions

Polymer in Annealed Random Environment

Environment: (Vx)x∈Zd , i.i.d. non-negative random variables

Quenched weight: wω(γ) = e−
Pn
i=0 Vγ(i)(ω)

Annealed weight: wan(γ) = Ew·(γ) ≡ e−Φ(γ)

φ(`) = − log Ee−`V
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2-point function

Let |γ| denote the length of γ.
For all x ∈ Zd, the 2-point function

Gλ(x) =
∑
γ:0→x

e−Φ(γ)−λ|γ|

is well-defined for all λ > λ0, where

λ0 = lim
n→∞

1
n

log
∑

γ(0)=0, |γ|=n

e−Φ(γ)

is well-defined and finite (attractive case: λ0 = log(2d)).
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Inverse correlation length

Exponential decay of 2-point function

For all λ > λ0 and all x ∈ Rd:

ξλ(x) = lim
k→∞

−1
k

log Gλ([kx])

is a well-defined, equivalent norm on Rd.
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Inverse correlation length

Exponential decay of 2-point function

For all λ > λ0 and all x ∈ Rd:

ξλ(x) = lim
k→∞

−1
k

log Gλ([kx])

is a well-defined, equivalent norm on Rd.

This means that, for any x ∈ Zd,

Gλ(x) = e−ξλ(nx)‖x‖ (1+o(1)),

where nx = x/‖x‖.

ξλ(nx) is the inverse correlation length in direction nx.

Yvan Velenik Statistical Physics of Stretched Polymers



Model and terminology
Stretched phase of selfinteracting polymers

Diffusivity in weak quenched random environment
Some open problems

Polymer models
Examples
Notations and terminology
Model of stretched polymer

Inverse correlation length

Exponential decay of 2-point function

For all λ > λ0 and all x ∈ Rd:

ξλ(x) = lim
k→∞

−1
k

log Gλ([kx])

is a well-defined, equivalent norm on Rd.

Behaviour as λ ↓ λ0

ξλ0 ≡ lim
λ↓λ0

ξλ

Repulsive: ξλ0 ≡ 0 Attractive: ξλ0 > 0
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Stretched polymer

We are interested in the following probability measure on paths
γ = (γ(0), . . . , γ(n)), γ(0) = 0:

PFn (γ) ∝ e−Φ(γ)+〈F,γ(n)〉

where
−〈F, γ(n)〉

is the contribution to the polymer energy due to the force F ∈ Rd

acting on its free end.
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Main problems

Determine whether the polymer is collapsed or stretched.

When stretched, determine the distribution of its free end.

When stretched, describe the fluctuations of the polymer.

When stretched, describe the micro structure of the polymer.
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Wulff shape

For all λ ≥ λ0:

Kλ =
{
F ∈ Rd : 〈F, x〉 ≤ ξλ(x), ∀x ∈ Rd

}
(Alternatively, Kλ is the unit-ball in polar norm.)

Increasing family of convex bodies

Behaviour as λ ↓ λ0

Repulsive: Kλ0 = {0} Attractive: K̊λ0 6= ∅
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.

F ∈ K̊λ0
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.

Attractive case – Collapsed phase

For all F ∈ K̊λ0 , ∃c > 0 such that

PFn
(

1
nγ(n) 6∈ Bε(0)

)
≤ e−cεn

for all ε > 0 and n > n0(ε).
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Stretched phase

We turn to the description of the stretched phase, F 6∈ Kλ0 .

The results hold for both attractive and repulsive interactions.

(Remember that Kλ0 = {0} in the repulsive case, so an arbitrary
force F 6= 0 results in a stretched polymer.)
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Stretched phase – position of endpoint

There exists v̄F ∈ Rd, v̄F 6= 0, such that

1
n
γ

Bε(v̄F )

v̄F

with probability ≥ 1− e−κn
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Stretched phase – position of endpoint

For all x ∈ Bε(v̄F ) ∩ 1
nZd,

PFn
(
γ(n)
n

= x

)
=

G(x)√
nd

e−nJF (x) (1 + o(1)).

G: positive and analytic on Bε(v̄F )
JF : positive, analytic on Bε(v̄F ), and strictly convex

with a non-degenerate quadratic minimum at v̄F
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Stretched phase – Path fluctuations

This can be complemented by an invariance principle under
diffusive scaling.

· 1
nv̄F

· 1√
nv̄F

0

nv̄F

The covariance of the limiting (d− 1)-dim. Brownian motion on
[0, 1] is related to the geometry of Kλ, where λ is uniquely
determined by F ∈ ∂Kλ.
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Stretched phase – Microscopic structure

0
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Stretched phase – Local observables

One can also obtain local limit theorems for local observables.
As an example, let us consider a pattern η, e.g.,

How many times does this pattern appear along the polymer?
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Stretched phase – Local observables

Let Nη(γ) be the number of apparitions of η along γ.

∃xη ∈ (0, 1), ε > 0, ν > 0 and a rate function JηF on
(xη − ε, xη + ε) with quadratic minimum at xη, such that

PFn
(∣∣∣∣Nη(γ)

n
− xη

∣∣∣∣ ≥ ε) ≤ e−νn,

and, for x ∈ (xη − ε, xη + ε),

PFn (Nη(γ) = bnxc) =
Gη(x)√

n
e−nJ

η
F (x) (1 + o(1)) ,

where Gη is a positive real analytic function on [xη − ε, xη + ε].
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Stretched phase – Perturbations

The previous results are stable under small, smooth, local
perturbations of the internal energy Φ. For example, if one
considers the internal energy

Φ̃(γ) = Φ(γ) +R(γ, F ),

with

f 7→ R(γ, f) analytic in a neighbourhood of F , for each γ.

|R(γ, f)| ≤ ε|γ| for f in a neighbourhood of F , for all γ.

Some locality assumption, e.g.,
R(γ1 ∪ · · · ∪ γm, f) =

∑m
i=1R(γi, f), whenever the subpaths

are edge-disjoint, for all f in a neighbourhood of F .
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Stretched phase – Perturbations

Two main applications of this stability are

Models with mixed attractive/repulsive interactions (e.g.,
strong repulsion, weak attraction).

Dynamical processes (e.g., random walk with drift, with small
edge reinforcement).
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Ideas of proof

Clearly,

PFn (γ(n) = x) =
e〈F,x〉G(x;n)∑

y∈Zd
e〈F,y〉G(y;n)

,

where
G(x;n) =

∑
γ: 0→x
|γ|=n

e−Φ(γ)

We need to control this quantity!
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Irreducible decomposition of Gλ(x)

For any λ > λ0,

eξλ(x)Gλ(x) = O(e−ν‖x‖) +∑
m≥c‖x‖

Qm
λ

(
D(γL) +

m∑
i=1

D(γi) +D(γR) = x
)

x

0
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λ
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Irreducible decomposition of Gλ(x)

For any λ > λ0,

eξλ(x)Gλ(x) = O(e−ν‖x‖) +∑
m≥c‖x‖

Qm
λ

(
D(γL) +

m∑
i=1

D(γi) +D(γR) = x
)

Qm
λ = QL ⊗QR ⊗

⊗m
i=1 Q.

Q is a probability measure on irreducible pieces.

D has exp. moments under Q, QL and QR.
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Irreducible decomposition of Gλ(x)

For any λ > λ0,

eξλ(x)Gλ(x) = O(e−ν‖x‖) +∑
m≥c‖x‖

Qm
λ

(
D(γL) +

m∑
i=1

D(γi) +D(γR) = x
)

D(γL) and D(γR) are typically small.

D(γi), i = 1, . . . ,m, are i.i.d. with exp. tails.

m > c‖x‖.
=⇒ Asymptotics of Gλ using local limit theorem!
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Asymptotics of Gλ(x)

Let nx = x/‖x‖.

Asymptotics of Gλ(x)

For all λ > λ0,

Gλ(x) =
Ψ(nx)
‖x‖(d−1)/2

e−ξλ(x) (1 + o(1))

uniformly as ‖x‖ → ∞.
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Irreducible decomposition for general observables

The same remains true for any observable defined on paths: if S is
such an observable, then, for any λ > λ0,

eξλ(x)
∑
γ: 0→x
S(γ)=s

e−Φ(γ)−λ|γ| = O(e−ν‖x‖) +

∑
m≥c‖x‖

Qm
λ

(
D(γ) = x, S(γ) = s

)

Yvan Velenik Statistical Physics of Stretched Polymers



Model and terminology
Stretched phase of selfinteracting polymers

Diffusivity in weak quenched random environment
Some open problems

Phase transition in the attractive case
Geometry in the stretched phase
Some additional results
Ideas of proof

Irreducible decomposition for G(x;n)

In particular, if

S(γ) = S(γL) +
m∑
i=1

S(γi) + S(γR),

then

eξλ(x)
∑
γ: 0→x
S(γ)=s

e−Φ(γ)−λ|γ| = O(e−ν‖x‖) +

∑
m≥c‖x‖

Qm
λ

(
F (γL) +

m∑
i=1

F (γi) + F (γR) = (x, s)
)

where F (γ) = (D(γ), S(γ)).
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Irreducible decomposition for G(x;n)

Now, let λ > λ0 be s.t. F ∈ ∂Kλ, and let x be s.t.

〈F, x〉 = ξλ(x)

We then have

e〈F,x〉G(x;n) = eξλ(x)G(x;n)

and the previous result applies with S(γ) = |γ|, yielding the
desired asymptotics. In particular,

v̄F = Q(D(γ))
Q(|γ|) .
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Quenched disorder

As explained before: precise results about the stretched phase for
polymers in an annealed random potential. What happens in the
quenched case?
Lot of progress recently, for a fully directed version of this model.

Most works rely heavily on specific martingale structures present
in this version of the model.
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Quenched disorder

For x ∈ Zd, we write x = (x⊥, x‖), with x⊥ ∈ Zd−1 and x‖ ∈ Z.

For N ∈ N, Let DN be the set of n.n. paths γ = (γ(0), . . . , γ(n))
on Zd, n ∈ N, such that

γ(0) = 0,

γ(n) ∈ LN =
{
x ∈ Zd : x‖ = N

}
.
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Quenched disorder

We associate to γ ∈ DN the weight

Wω
λ,β(γ) = exp

{
−λ|γ| − β

n∑
`=1

V ω(γ(`))
}
,

where λ > λ0 = log(2d), β > 0, and the random environment
{V ω(x)}x∈Zd is assumed to be i.i.d. and s.t.

0 ∈ supp(V ω) ⊂ [0,∞];
p = P(V ω =∞) is sufficiently small.

In particular, the annealed weight E(Wω
λ,β(γ)) is attractive, and

the vertices x at which V ω(x) =∞ do not percolate (a.s.).
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Quenched disorder

We introduce the quenched and annealed partition functions

Dω
N = Dω

N (λ, β) =
∑
γ∈DN

Wω
λ,β(γ),

DN (γ) = EDω
N .

For this model, it was shown in [Flury ’08, Zygouras ’09], under
somewhat stronger assumptions on the potential, that the
corresponding free energies coincide

− lim
N→∞

1
N

log Dω
N = ξ = − lim

N→∞

1
N

log Dω
N ,

when d ≥ 4 and β is small enough (and p = 0).
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Our first result is the following strengthening of the latter
statement (under our weaker assumptions on V ):

Assume that d ≥ 4, and β and p are small enough. Then the limit

dω = lim
N→∞

Dω
N

DN

exists P-a.s. and in L2.
Moreover, dω > 0, P-a.s., on the event that 0 ∈ Cl∞(V ).

Above, Cl∞(V ) is the (unique) infinite cluster of vertices for which
V ω(x) <∞.
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Our second result extends results for the directed polymer by
[Imbrie, Spencer ’88] and [Bolthausen ’89] to our setting:

Assume that d ≥ 4, and β and p are small enough. Then, for any
bounded continuous function f on Rd−1,

P*-lim
N→∞

∑
x∈Zd−1

µωN
(
π⊥(γ) = x

)
f(x/

√
N)

=
1√

det(2πΣ)

∫
Rd−1

f(x)e−
1
2
〈Σ−1x,x〉dx.

Here Σ is the diffusion matrix of the corresponding annealed
polymer model, and P∗(·) = P(· | 0 ∈ Cl∞(V )).
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Order of the phase transition in the attractive case

We have seen that, in the attractive case, there is a phase
transition between a collapsed and stretched phase. Some related
questions (still under investigation):

Order of the phase transition: apparently always 1st order
when d ≥ 2, but sometimes second order when d = 1 (seems
to depend on φ and even on the temperature!).

Behaviour at the critical force, when d ≥ 2.

‖F‖

‖v̄F‖

‖F‖

‖v̄F‖
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Quenched random environment

Diffusivity at very high temperature and d ≥ 4 is OK, but much
remain to be understood. In particular, it would be very desirable
to

prove diffusivity in the whole weak disorder regime (not only
very high temperatures);

analyze the strong disorder regime: path localization
(macroscopic atoms, etc.), effective random walk
representation;

Extend these results to the stretched case (rather than
point-to-plane).
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Pincus blob picture

In 1976, when studying the scaling properties of stretched polymers
(SAW), Pincus introduced a heuristic “blob picture”, which has
turned out to be very useful in analyzing polymer systems (see de
Gennes’ book Scaling Concepts in Polymer Physics).
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Pincus blob picture

The main properties assumed by Pincus are

Blobs are statistically independent

OK!

Blobs’ size ≈ correlation length

Partially

Blobs scale like critical polymers (SAW)

???
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The main properties assumed by Pincus are

Blobs are statistically independent OK!

Blobs’ size ≈ correlation length Partially

Blobs scale like critical polymers (SAW) ???
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Models with mixed interactions

A widely used model of polymers is that of a SAW with attractive
interactions between spatially nearest-neighbour bonds.
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Models with mixed interactions

A widely used model of polymers is that of a SAW with attractive
interactions between spatially nearest-neighbour bonds.

Currently: only SAW with weak attraction.

Desirable: systems with competing attraction/repulsion.

Main difficulty: decomposition into irreducible pieces.
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The end

Thank you!
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