Some wonderful conjectures (but very few theorems) at the boundary between analysis, combinatorics and probability

Alan Sokal
New York University / University College London

Mark Kac Seminar, Utrecht
March 7, 2014

References:

1. Roots of a formal power series $f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}$, with applications to graph enumeration and q-series, Series of 4 lectures at Queen Mary (London), March-April 2011, http://www.maths.qmw.ac.uk/~pjc/csgnotes/sokal/
2. The leading root of the partial theta function, arXiv:1106.1003 [math.CO], Adv. Math. 229, 2603-2621 (2012).

The deformed exponential function $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$

- Defined for complex x and y satisfying $|y| \leq 1$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- $F(\cdot, y)$ is entire for each $y \in \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

Applications:

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Enumeration of connected graphs, generating function for Tutte polynomials on K_{n} (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: $F^{\prime}(x)=F(y x)$ where ${ }^{\prime}=\partial / \partial x$
- Complex analysis: Whittaker and Goncharov constants

Application to enumeration of connected graphs

- Let $a_{n, m}=\#$ graphs with n labelled vertices and m edges
- Generating polynomial $A_{n}(v)=\sum_{m} a_{n, m} v^{m}$
- Exponential generating function $A(x, v)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} A_{n}(v)$
- Of course $a_{n, m}=\binom{n(n-1) / 2}{m} \quad \Longrightarrow \quad A_{n}(v)=(1+v)^{n(n-1) / 2} \quad \Longrightarrow$

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} A_{n}(v)=F(x, 1+v)
$$

- Now let $c_{n, m}=\#$ connected graphs with n labelled vertices and m edges
- Generating polynomial $C_{n}(v)=\sum_{m} c_{n, m} v^{m}$
- Exponential generating function $C(x, v)=\sum_{n=1}^{\infty} \frac{x^{n}}{n!} C_{n}(v)$
- No simple explicit formula for $C_{n}(v)$ is known, but ...
- The exponential formula tells us that $C(x, v)=\log A(x, v)$, i.e.

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} C_{n}(v)=\log F(x, 1+v)
$$

[see Tutte (1967) and Scott-A.D.S., arXiv:0803.1477 for generalizations to the Tutte polynomials of the complete graphs K_{n}]

- Usually considered as formal power series
- But series are convergent if $|1+v| \leq 1$ [see also Flajolet-Salvy-Schaeffer (2004)]

Elementary analytic properties of $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$

- $\boldsymbol{y}=\mathbf{0}: F(x, 0)=1+x$
$\bullet 0<|\boldsymbol{y}|<1: F(\cdot, y)$ is a nonpolynomial entire function of order 0 :

$$
F(x, y)=\prod_{k=0}^{\infty}\left(1-\frac{x}{x_{k}(y)}\right)
$$

where $\sum\left|x_{k}(y)\right|^{-\alpha}<\infty$ for every $\alpha>0$

- $\boldsymbol{y}=1: F(x, 1)=e^{x}$
- $|\boldsymbol{y}|=\mathbf{1}$ with $\boldsymbol{y} \neq \mathbf{1}: F(\cdot, y)$ is an entire function of order 1 and type 1 :

$$
F(x, y)=e^{x} \prod_{k=0}^{\infty}\left(1-\frac{x}{x_{k}(y)}\right) e^{x / x_{k}(y)}
$$

where $\sum\left|x_{k}(y)\right|^{-\alpha}<\infty$ for every $\alpha>1$
[see also Ålander (1914) for y a root of unity; Valiron (1938) and Eremenko-Ostrovskii (2007) for y not a root of unity]

- $|\boldsymbol{y}|>1$: The series $F(\cdot, y)$ has radius of convergence 0

Consequences for $C_{n}(v)$

- Make change of variables $y=1+v$:

$$
\bar{C}_{n}(y)=C_{n}(y-1)
$$

- Then for $|y|<1$ we have

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \bar{C}_{n}(y)=\log F(x, y)=\sum_{k} \log \left(1-\frac{x}{x_{k}(y)}\right)
$$

and hence

$$
\bar{C}_{n}(y)=-(n-1)!\sum_{k} x_{k}(y)^{-n} \quad \text { for all } n \geq 1
$$

(also holds for $n \geq 2$ when $|y|=1$)

- This is a convergent expansion for $\bar{C}_{n}(y)$
- In particular, gives large- n asymptotic behavior

$$
\bar{C}_{n}(y)=-(n-1)!x_{0}(y)^{-n}\left[1+O\left(e^{-\epsilon n}\right)\right]
$$

whenever $F(\cdot, y)$ has a unique root $x_{0}(y)$ of minimum modulus
Question: What can we say about the roots $x_{k}(y)$?

Small- y expansion of roots $x_{k}(y)$

- For small $|y|$, we have $F(x, y)=1+x+O(y)$, so we expect a convergent expansion

$$
x_{0}(y)=-1-\sum_{n=1}^{\infty} a_{n} y^{n}
$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

- More generally, for each integer $k \geq 0$, write $x=\xi y^{-k}$ and study

$$
F_{k}(\xi, y)=y^{k(k+1) / 2} F\left(\xi y^{-k}, y\right)=\sum_{n=0}^{\infty} \frac{\xi^{n}}{n!} y^{(n-k)(n-k-1) / 2}
$$

Sum is dominated by terms $n=k$ and $n=k+1$; gives root

$$
x_{k}(y)=-(k+1) y^{-k}\left[1+\sum_{n=1}^{\infty} a_{n}^{(k)} y^{n}\right]
$$

Rouché argument valid for $|y| \lesssim 0.207875$ uniformly in k : all roots are simple and given by convergent expansion $x_{k}(y)$

- Can also use theta function in Rouché (Eremenko)

Might these series converge for all $|y|<1$?
Two ways that $x_{k}(y)$ could fail to be analytic for $|y|<1$:

1. Collision of roots (\rightarrow branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in the open unit disc \mathbb{D} (except of course at $y=0$).

In fact, for any compact subset $K \subset \mathbb{D}$ and any $\epsilon>0$, there exists an integer k_{0} such that for all $y \in K \backslash\{0\}$ we have:
(a) The function $F(\cdot, y)$ has exactly k_{0} zeros (counting multiplicity) in the disc $|x|<k_{0}|y|^{-\left(k_{0}-\frac{1}{2}\right)}$, and
(b) In the region $|x| \geq k_{0}|y|^{-\left(k_{0}-\frac{1}{2}\right)}$, the function $F(\cdot, y)$ has a simple zero within a factor $1+\epsilon$ of $-(k+1) y^{-k}$ for each $k \geq k_{0}$, and no other zeros.

- Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)
- Conjecture that roots cannot escape to infinity even in the closed unit disc except at $y=1$

Big Conjecture \#1. All roots of $F(\cdot, y)$ are simple for $|y|<1$. [and also for $|y|=1$, I suspect]

Consequence of Big Conjecture \#1. Each root $x_{k}(y)$ is analytic in $|y|<1$.

But I conjecture more ...
Big Conjecture \#2. The roots of $F(\cdot, y)$ are non-crossing in modulus for $|y|<1$:

$$
\left|x_{0}(y)\right|<\left|x_{1}(y)\right|<\left|x_{2}(y)\right|<\ldots
$$

[and also for $|y|=1$, I suspect]
Consequence of Big Conjecture \#2. The roots are actually separated in modulus by a factor at least $|y|$, i.e.

$$
\left|x_{k}(y)\right|<|y|\left|x_{k+1}(y)\right| \quad \text { for all } k \geq 0
$$

Proof. Apply the Schwarz lemma to $x_{k}(y) / x_{k+1}(y)$.

Consequence for the zeros of $\bar{C}_{n}(y)$
Recall

$$
\bar{C}_{n}(y)=-(n-1)!\sum_{k} x_{k}(y)^{-n}
$$

and use a variant of the Beraha-Kahane-Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2] \Longrightarrow the limit points of zeros of \bar{C}_{n} are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is nonunique.

So if $F(\cdot, y)$ has a unique zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of Big Conjecture \#2), then the zeros of \bar{C}_{n} do not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to $n \approx 80$):
Big Conjecture $\# \mathbf{3}$. For each $n, \bar{C}_{n}(y)$ has no zeros with $|y|<1$. [and, I suspect, no zeros with $|y|=1$ except the point $y=1$]

What is the evidence for these conjectures?

Evidence \#1: Behavior at real y.
Theorem (Laguerre): For $0 \leq y<1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary: Each root $x_{k}(y)$ is analytic in a complex neighborhood of the interval $[0,1)$.
[Real-variables methods give further information about the roots $x_{k}(y)$ for $0 \leq y<1$: see Langley (2000).]

Now combine this with

Evidence \#2: From numerical computation of the series $x_{k}(y) \ldots \quad$ [algorithms to be discussed later]

Let Mathematica run for a weekend ...

$$
\begin{aligned}
-x_{0}(y)=1 & +\frac{1}{2} y+\frac{1}{2} y^{2}+\frac{11}{24} y^{3}+\frac{11}{24} y^{4}+\frac{7}{16} y^{5}+\frac{7}{16} y^{6} \\
& +\frac{493}{1152} y^{7}+\frac{163}{384} y^{8}+\frac{323}{768} y^{9}+\frac{1603}{3840} y^{10}+\frac{57283}{138240} y^{11} \\
& +\frac{170921}{414720} y^{12}+\frac{340171}{829440} y^{13}+\frac{22555}{55296} y^{14} \\
& +\ldots+\text { terms through order } y^{899}
\end{aligned}
$$

and all the coefficients (so far) are nonnegative!

- Very recently I have computed $x_{0}(y)$ through order y^{16383}.
- I also have shorter series for $x_{k}(y)$ for $k \geq 1$.

Big Conjecture $\# 4$. For each k, the series $-x_{k}(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \leq y<1$, and Pringsheim gives:

Consequence of Big Conjecture $\# 4$. Each root $x_{k}(y)$ is analytic in the open unit disc.

NEED TO DO: Extended computations for $k=1,2, \ldots$ and for symbolic k.

But more is true ...

Look at the reciprocal of $x_{0}(y)$:

$$
\begin{aligned}
-\frac{1}{x_{0}(y)}=1 & -\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{1}{12} y^{3}-\frac{1}{16} y^{4}-\frac{1}{48} y^{5}-\frac{7}{288} y^{6} \\
& -\frac{1}{96} y^{7}-\frac{7}{768} y^{8}-\frac{49}{6912} y^{9}-\frac{113}{23040} y^{10}-\frac{17}{4608} y^{11} \\
& -\frac{293}{92160} y^{12}-\frac{737}{276480} y^{13}-\frac{3107}{1658880} y^{14} \\
& -\ldots-\text { terms through order } y^{899}
\end{aligned}
$$

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture \#5. For each k, the series $-(k+1) y^{-k} / x_{k}(y)$ has all nonpositive coefficients after the constant term 1.
[This implies the preceding conjecture, but is stronger.]

- Relative simplicity of the coefficients of $-1 / x_{0}(y)$ compared to those of $-x_{0}(y) \longrightarrow$ simpler combinatorial interpretation?
- Note that $x_{k}(y) \rightarrow-\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1 / x_{k}(y) \rightarrow 0$. Therefore:

Consequence of Big Conjecture \#5. For each k, the coefficients (after the constant term) in the series $-(k+1) y^{-k} / x_{k}(y)$ are the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture \#5? (see also the next two slides)

But I conjecture that even more is true ...

Define $D_{n}(y)=\frac{\bar{C}_{n}(y)}{(-1)^{n-1}(n-1)!}$ and recall that $-x_{0}(y)=\lim _{n \rightarrow \infty} D_{n}(y)^{-1 / n}$
Big Conjecture \#6. For each n,
(a) the series $D_{n}(y)^{-1 / n}$ has all nonnegative coefficients, and even more strongly,
(b) the series $D_{n}(y)^{1 / n}$ has all nonpositive coefficients after the constant term 1 .

Since $D_{n}(y)>0$ for $0 \leq y<1$, Pringsheim shows that Big Conjecture \#6a implies Big Conjecture \#3:

For each $n, \bar{C}_{n}(y)$ has no zeros with $|y|<1$.

Moreover, Big Conjecture $\# 6 \mathrm{~b} \Longrightarrow$ for each n, the coefficients in the series $1-D_{n}(y)^{1 / n}$ are the probabilities for a positive-integer-valued random variable.

Such a random variable would generalize the one for $-1 / x_{0}(y)$ in roughly the same way that the binomial generalizes the Poisson.

What might such a random variable be?

- Probability generating function $P_{n}(y)=1-D_{n}(y)^{1 / n}$ where $D_{n}(y)=\frac{\bar{C}_{n}(y)}{(-1)^{n-1}(n-1)!}$
- Presumably has something to do with random graphs on n vertices
- Maybe some structure built on top of a random graph (some kind of tree? Markov chain?)

Try to understand the first two cases:

$$
\begin{aligned}
P_{2}(y)= & 1-(1-y)^{1 / 2} \\
= & \frac{1}{2} y+\frac{1}{8} y^{2}+\frac{1}{16} y^{3}+\frac{5}{128} y^{4}+\frac{7}{256} y^{5}+\frac{21}{1024} y^{6} \\
& \quad+\frac{33}{2048} y^{7}+\frac{429}{32768} y^{8}+\frac{715}{65536} y^{9}+\frac{2431}{262144} y^{10}+\ldots \\
\sim & \text { Sibuya }\left(\frac{1}{2}\right) \text { random variable } \\
P_{3}(y)= & 1-\left(1-\frac{3}{2} y+\frac{1}{2} y^{3}\right)^{1 / 3} \\
= & \frac{1}{2} y+\frac{1}{4} y^{2}+\frac{1}{24} y^{3}+\frac{1}{24} y^{4}+\frac{1}{48} y^{5}+\frac{5}{288} y^{6} \\
& \quad+\frac{7}{576} y^{7}+\frac{23}{2334} y^{8}+\frac{329}{41472} y^{9}+\frac{553}{82944} y^{10}+\ldots
\end{aligned}
$$

How are these related to random graphs on 2 or 3 vertices?
I have an analytic proof that $P_{3}(y) \succeq 0$, but it doesn't shed any light on the possible probabilistic interpretation.

Jim Fill has a probabilistic interpretation for $n=2,3$ in terms of birth-and-death chains, but it doesn't seem to generalize to $n \geq 4$.

Ratios of roots $x_{k}(y) / x_{k+1}(y)$
The series

$$
\frac{x_{0}(y)}{x_{1}(y)}=\frac{1}{2} y+\frac{1}{6} y^{2}+\frac{5}{72} y^{3}+\frac{11}{216} y^{4}+\frac{29}{1296} y^{5}+\ldots
$$

has nonnegative coefficients at least up to order y^{136}.
(But its reciprocal does not have any fixed signs.)

Big Conjecture $\# 7$. The series $x_{0}(y) / x_{1}(y)$ has all nonnegative coefficients.

Consequence of Big Conjecture \#7. Since $\lim _{y \uparrow 1} x_{0}(y) / x_{1}(y)=1$, Big Conjecture $\# 7$ implies that $\left|x_{0}(y)\right|<\left|x_{1}(y)\right|$ for all $y \in \mathbb{D}$ (a special case of Big Conjecture $\# 2$ on the separation in modulus of roots).

- But unfortunately ... the series

$$
\frac{x_{1}(y)}{x_{2}(y)}=\frac{2}{3} y+\frac{1}{18} y^{2}+\frac{17}{216} y^{3}+\frac{23}{810} y^{4}+\frac{343}{17280} y^{5}+\ldots
$$

has a negative coefficient at order y^{13}. This doesn't contradict the conjecture that $\left|x_{1}(y) / x_{2}(y)\right|<1$ in the unit disc, but it does rule out the simplest method of proof.

NEED TO DO: Use Schur algorithm to test $\left|x_{1}(y) / x_{2}(y)\right|<1$ to higher order. Then extend to $x_{k}(y) / x_{k+1}(y)$.

Asymptotics of roots as $y \rightarrow 1$

Write $y=e^{-\gamma}$ with $\operatorname{Re} \gamma>0$.
Want to study $\gamma \rightarrow 0$ (non-tangentially in the right half-plane).
I believe I will be able to prove that

$$
-x_{k}\left(e^{-\gamma}\right) \approx \frac{1}{e} \gamma^{-1}+c_{k} \gamma^{-1 / 3}+\ldots
$$

for suitable constants $c_{0}<c_{1}<c_{2}<\ldots$. But I have not yet worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for $F\left(x, e^{-\gamma}\right)$ when $\gamma \rightarrow 0$ and x is taken to be of order γ^{-1}, because this is the regime where the zeros will be found.
2. Use this expansion for $F\left(x, e^{-\gamma}\right)$ to deduce an expansion for $x_{k}\left(e^{-\gamma}\right)$.

Sketch of step \#1: Insert Gaussian integral representation for $e^{-\frac{\gamma}{2} n^{2}}$ to obtain

$$
F\left(x, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \int_{-\infty}^{\infty} \exp [g(t)] d t
$$

with

$$
g(t)=-\frac{t^{2}}{2 \gamma}+x e^{\gamma / 2} e^{i t}
$$

Saddle-point equation $g^{\prime}(t)=0$ is $-i t e^{-i t}=\gamma e^{\gamma / 2} x$, so it makes sense to make the change of variables

$$
x=\gamma^{-1} e^{-\gamma / 2} w e^{w}
$$

which puts the saddle point at $t_{0}=i w$. (Note that this brings in the Lambert W function, i.e. the inverse function to $w \mapsto w e^{w}$.) We then have

$$
F\left(\gamma^{-1} e^{-\gamma / 2} w e^{w}, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \int_{-\infty}^{\infty} d t \exp \left[-\frac{t^{2}}{2 \gamma}+\frac{w e^{w}}{\gamma} e^{i t}\right]
$$

Now shift the contour to go through the saddle point (parallel to the real axis) and make the change of variables $t=s+i w$: we have

$$
F\left(\gamma^{-1} e^{-\gamma / 2} w e^{w}, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \exp \left[\frac{w^{2}}{2 \gamma}+\frac{w}{\gamma}\right] \int_{-\infty}^{\infty} d s \exp [h(s)]
$$

where

$$
h(s)=-\frac{(1+w)}{2 \gamma} s^{2}+\frac{w}{\gamma}\left(e^{i s}-1-i s+\frac{s^{2}}{2}\right)
$$

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics
(a) $\gamma \rightarrow 0$ (in a suitable way) for (suitable values of) fixed w; and
(b) $w \rightarrow \infty$ (in a suitable direction) for (suitable values of) fixed γ.

Focus for now on (a).

Recall that

$$
h(s)=-\frac{(1+w)}{2 \gamma} s^{2}+\frac{w}{\gamma}\left(e^{i s}-1-i s+\frac{s^{2}}{2}\right)
$$

Consider for simplicity γ and x real. There seem to be three regimes:

- "High temperature": $w>-1$ (i.e. $w e^{w}>-1 / e$).

Easiest case: $s=0$ saddle point is Gaussian, and can compute the asymptotics to all orders in terms of 3 -associated Stirling subset numbers $\left\{\begin{array}{c}n \\ m\end{array}\right\}_{\geq 3}$. [Still need to justify this formal calculation by showing that only the $s=0$ saddle point contributes.]

- "Low temperature": $w=-\eta \cot \eta+\eta i$ with $-\pi<\eta<\pi$ (i.e. $w e^{w}<-1 / e$).

Saddle points at $s=0$ and $s=2 \eta$ contribute; I think this is all.

- "Critical regime": $w=-\left(1+\xi \gamma^{1 / 3}\right)$ with ξ fixed, which corresponds to

$$
x=-\frac{1}{e \gamma}\left[1-\frac{\xi^{2}}{2} \gamma^{2 / 3}+O(\gamma)\right]
$$

- At the "critical point" $\xi=0$: Dominant behavior at $s=0$ saddle point is no longer Gaussian (it vanishes) but rather the cubic term $i s^{3} /(6 \gamma)$. Can compute the asymptotics to all orders in terms of 4 -associated Stirling subset numbers $\left\{\begin{array}{l}n \\ m\end{array}\right\}_{\geq 4}$ (at least formally).
- In the critical regime (ξ arbitrary): Expect to have Airy asymptotics as in Flajolet-Salvy-Schaeffer (2004). This is where the roots will lie.

I would appreciate help with the details!!!

The polynomials $P_{N}(x, w)=\sum_{n=0}^{N}\binom{N}{n} x^{n} w^{n(N-n)}$

- Partition function of Ising model on complete graph K_{N}, with $x=e^{2 h}$ and $w=e^{-2 J}$
- Related to binomial $(1+x)^{N}$ in same way as our $F(x, y)$ is related to exponential e^{x} [but we have written $w^{n(N-n)}$ instead of $y^{n(n-1) / 2}$]
- $\lim _{N \rightarrow \infty} P_{N}\left(\frac{x w^{1-N}}{N}, w\right)=F\left(x, w^{-2}\right)$ when $|w|>1$
- So results about zeros of P_{N} generalize those about F (just as results about the binomial generalize those about the exponential function)
- Lee-Yang theorem: In ferromagnetic case ($0 \leq w \leq 1$), all zeros are on the unit circle $|x|=1$
- Laguerre: In antiferromagnetic case ($w \geq 1$), all zeros are real and negative
- What about "complex antiferromagnetic" case $|w|>1$??

Big Conjecture \#8. For $|w|>1$, all zeros of $P_{N}(\cdot, w)$ are separated in modulus (by at least a factor $|w|^{2}$).

Taking $N \rightarrow \infty$, this implies Big Conjecture \#2 about the separation in modulus of the zeros of $F(\cdot, y)$.

Differential-equation approach to $P_{N}(x, w)=\sum_{n=0}^{N}\binom{N}{n} x^{n} w^{n(N-n)}$ On the space of polynomials $Q_{N}(x)=\sum_{n=0}^{N} a_{n} x^{n}$ of degree N with $a_{0} \neq 0$,
define the semigroup define the semigroup

$$
\left(\mathcal{A}_{t} Q_{N}\right)(x) \equiv \sum_{n=0}^{N} a_{n} x^{n} e^{\operatorname{tn}(N-n)}
$$

Roots of $\mathcal{A}_{t} Q_{N}$ evolve according to an autonomous differential equation, which is best expressed in terms of logarithms of roots $\zeta_{i}=\log x_{i}$:

$$
\frac{d \zeta_{i}}{d t}=\sum_{j \neq i} f\left(\zeta_{i}-\zeta_{j}\right)
$$

where

$$
f(z)=\operatorname{coth}(z / 2)
$$

These are first-order ("Aristotelian") equations of motion for a system of n "particles" (in \mathbb{R} or \mathbb{C}) with a translation-invariant "force" f.

Moreover, the specific force $f=$ coth is a Calogero-Moser-Sutherland system, much studied in the theory of integrable systems.

For polynomials Q_{N} with real roots and real $t>0$, this approach gives interesting results on separation of zeros. (In particular, it gives a new proof of Laguerre's theorem.)

Is this approach useful for complex t with $\operatorname{Re} t>0$??? Can it be used to prove Big Conjecture \#8?

A more general approach to the leading root $x_{0}(y)$ (When stumped, generalize . . .!)

Consider a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}
$$

normalized to $\alpha_{0}=\alpha_{1}=1$, or more generally

$$
f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
$$

where
(a) $a_{0}(0)=a_{1}(0)=1$;
(b) $a_{n}(0)=0$ for $n \geq 2$; and
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \infty} \nu_{n}=\infty$.

Examples:

- The "partial theta function"

$$
\Theta_{0}(x, y)=\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}
$$

- The "deformed exponential function"

$$
F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}
$$

- More generally, consider

$$
\widetilde{R}(x, y, q)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\ldots+q^{n-1}\right)}
$$

which reduces to Θ_{0} when $q=0$, and to F when $q=1$.

- "Deformed binomial" and "deformed hypergeometric" series (see below).

A more general approach, continued ...

- A power series for the leading root $x_{0}(y)$ can be computed from the power-series expansion of $\log f(x, y)$. This is extremely efficient! (see next lecture)
- Example: For Θ_{0} we have

$$
-x_{0}(y)=1+y+2 y^{2}+4 y^{3}+9 y^{4}+21 y^{5}+52 y^{6}+133 y^{7}+351 y^{8}+\ldots
$$

with strictly positive coefficients at least through order y^{6999}.

- More generally, for $\widetilde{R}(x, y, q)$ it can be proven that

$$
-x_{0}(y, q)=1+\sum_{n=1}^{\infty} \frac{P_{n}(q)}{Q_{n}(q)} y^{n}
$$

where

$$
Q_{n}(q)=\prod_{k=2}^{\infty}\left(1+q+\ldots+q^{k-1}\right)^{\left\lfloor n /\binom{k}{2}\right\rfloor}
$$

and $P_{n}(q)$ is a self-inversive polynomial with integer coefficients.
I have verified for $n \leq 349$ that $P_{n}(q)$ has two interesting positivity properties:
(a) $P_{n}(q)$ has all nonnegative coefficients. Indeed, all the coefficients are strictly positive except $\left[q^{1}\right] P_{5}(q)=0$.
(b) $P_{n}(q)>0$ for $q>-1$.

Can any of this be proven???

YES!!! ... A first teeny breakthrough ...
... but please stay tuned for our next installment ...

A general approach to the leading root $x_{0}(y)$

- Start from a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
$$

where
(a) $a_{0}(0)=a_{1}(0)=1$
(b) $a_{n}(0)=0$ for $n \geq 2$
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \infty} \nu_{n}=\infty$
and coefficients lie in a commutative ring-with-identity-element R.

- By (c), each power of y is multiplied by only finitely many powers of x.
- That is, f is a formal power series in y whose coefficients are polynomials in x, i.e. $f \in R[x][[y]]$.
- Hence, for any formal power series $X(y)$ with coefficients in R [not necessarily with zero constant term], the composition $f(X(y), y)$ makes sense as a formal power series in y.
- Not hard to see (by the implicit function theorem for formal power series or by a direct inductive argument) that there exists a unique formal power series $x_{0}(y) \in R[[y]]$ satisfying $f\left(x_{0}(y), y\right)=0$.
- We call $x_{0}(y)$ the leading root of f.
- Since $x_{0}(y)$ has constant term -1 , we will write $x_{0}(y)=-\xi_{0}(y)$ where $\xi_{0}(y)=1+O(y)$.

How to compute $\xi_{0}(y)$?

1. Elementary method: Insert $\xi_{0}(y)=1+\sum_{n=1}^{\infty} b_{n} y^{n}$ into $f\left(-\xi_{0}(y), y\right)=0$ and solve term-by-term.
2. Method based on the explicit implicit function formula (see below).
3. Method based on the exponential formula and expansion of $\log f(x, y)$ (see again below).

- Method \#3 is computationally very efficient. (It's what I used above.)
- Method \#2 gives an explicit formula for the coefficients of $\xi_{0}(y) \ldots$
- Can it also be used to give proofs?

Tools I: The explicit implicit function formula

- See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59
- (Almost trivial) generalization of Lagrange inversion formula
- Comes in analytic-function and formal-power-series versions
- Recall Lagrange inversion: If $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ with $a_{1} \neq 0$ (as either analytic function or formal power series), then

$$
f^{-1}(y)=\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right]\left(\frac{\zeta}{f(\zeta)}\right)^{m}
$$

where $\left[\zeta^{n}\right] g(\zeta)$ denotes the coefficient of ζ^{n} in the power series $g(\zeta)$. More generally, if $h(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, we have

$$
h\left(f^{-1}(y)\right)=h(0)+\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] h^{\prime}(\zeta)\left(\frac{\zeta}{f(\zeta)}\right)^{m}
$$

- Rewrite this in terms of $g(x)=x / f(x)$: then $f(x)=y$ becomes $x=g(x) y$, and its solution $x=\varphi(y)=f^{-1}(y)$ is given by the power series

$$
\varphi(y)=\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] g(\zeta)^{m}
$$

and

$$
h(\varphi(y))=h(0)+\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] h^{\prime}(\zeta) g(\zeta)^{m}
$$

The explicit implicit function formula, continued

- Generalize $x=g(x) y$ to $x=G(x, y)$, where
- $G(0,0)=0$ and $|(\partial G / \partial x)(0,0)|<1$ (analytic-function version)
$-G(0,0)=0$ and $(\partial G / \partial x)(0,0)=0$ (formal-power-series version)
- Then there is a unique $\varphi(y)$ with zero constant term satisfying $\varphi(y)=G(\varphi(y), y)$, and it is given by

$$
\varphi(y)=\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] G(\zeta, y)^{m}
$$

More generally, for any $H(x, y)$ we have

$$
H(\varphi(y), y)=H(0, y)+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] \frac{\partial H(\zeta, y)}{\partial \zeta} G(\zeta, y)^{m}
$$

- Proof imitates standard proof of the Lagrange inversion formula: the variables y simply "go for the ride".
- Alternate interpretation: Solving fixed-point problem for the family of maps $x \mapsto G(x, y)$ parametrized by y. Variables y again "go for the ride".

Application to leading root of $f(x, y)$

- Start from a formal power series $f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}$ satisfying properties (a)-(c) above.
- Write out $f\left(-\xi_{0}(y), y\right)=0$ and add $\xi_{0}(y)$ to both sides:

$$
\xi_{0}(y)=a_{0}(y)-\left[a_{1}(y)-1\right] \xi_{0}(y)+\sum_{n=2}^{\infty} a_{n}(y)\left(-\xi_{0}(y)\right)^{n}
$$

- Insert $\xi_{0}(y)=1+\varphi(y)$ where $\varphi(y)$ has zero constant term. Then $\varphi(y)=G(\varphi(y), y)$ where

$$
G(z, y)=\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+z)^{n}
$$

and

$$
\widehat{a}_{n}(y)= \begin{cases}a_{n}(y)-1 & \text { for } n=0,1 \\ a_{n}(y) & \text { for } n \geq 2\end{cases}
$$

And $\varphi(y)$ is the unique formal power series with zero constant term satisfying this fixed-point equation.

- Since this G satisfies $G(0,0)=0$ and $(\partial G / \partial z)(0,0)=0$ [indeed it satisfies the stronger condition $G(z, 0)=0$], we can apply the explicit implicit function formula to obtain an explicit formula for $\xi_{0}(y)$:

$$
\xi_{0}(y)=1+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right]\left(\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+\zeta)^{n}\right)^{m}
$$

More generally, for any formal power series $H(z, y)$, we have

$$
\begin{aligned}
& H\left(\xi_{0}(y)-1, y\right) \\
& =H(0, y)+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] \frac{\partial H(\zeta, y)}{\partial \zeta}\left(\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+\zeta)^{n}\right)^{m}
\end{aligned}
$$

Application to leading root of $f(x, y)$, continued

- In particular, by taking $H(z, y)=(1+z)^{\beta}$ we can obtain an explicit formula for an arbitrary power of $\xi_{0}(y)$:

$$
\xi_{0}(y)^{\beta}=1+\sum_{m=1}^{\infty} \frac{\beta}{m} \sum_{n_{1}, \ldots, n_{m} \geq 0}\binom{\beta-1+\sum n_{i}}{m-1} \prod_{i=1}^{m}(-1)^{n_{i}} \widehat{a}_{n_{i}}(y)
$$

- Important special case: $a_{0}(y)=a_{1}(y)=1$ and $a_{n}(y)=\alpha_{n} y^{\lambda_{n}}$ $(n \geq 2)$ where $\lambda_{n} \geq 1$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Then

$$
\left[y^{N}\right] \frac{\xi_{0}(y)^{\beta}-1}{\beta}=\sum_{m=1}^{\infty} \frac{1}{m} \sum_{\substack{n_{1}, \ldots, n_{m} \geq 2 \\ \sum_{i=1}^{m} \lambda_{n_{i}}=N}}(-1)^{\sum n_{i}}\binom{\beta-1+\sum_{i} n_{i}}{m-1} \prod_{i=1}^{m} \alpha_{n_{i}}
$$

- Can this formula be used for proofs of nonnegativity???
- Empirically I know that the RHS is ≥ 0 when $\lambda_{n}=n(n-1) / 2$:
- For $\beta \geq-2$ with $\alpha_{n}=1$ (partial theta function)
- For $\beta \geq-1$ with $\alpha_{n}=1 / n$! (deformed exponential function)
- For $\beta \geq-1$ with $\alpha_{n}=(1-q)^{n} /(q ; q)_{n}$ and $q>-1$
- And I can prove this (by a different method!) for the partial theta function (but not yet for the others).
- How can we see these facts from this formula???
[open combinatorial problem]

Tools II: Variants of the exponential formula

- Let R be a commutative ring containing the rationals.
- Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a formal power series (with coefficients in R) satisfying $a_{0}=1$.
- Now consider $C(x)=\log A(x)=\sum_{n=1}^{\infty} c_{n} x^{n}$.
- It is well known (and easy to prove) that

$$
a_{n}=\sum_{k=1}^{n} \frac{k}{n} c_{k} a_{n-k} \quad \text { for } n \geq 1
$$

This allows $\left\{a_{n}\right\}$ to be calculated given $\left\{c_{n}\right\}$, or vice versa.

- Sometimes useful to introduce $\widetilde{C}_{n}=n c_{n}$, which are the coefficients in the logarithmic derivative

$$
\frac{x A^{\prime}(x)}{A(x)}=\sum_{n=1}^{\infty} \widetilde{C}_{n} x^{n}
$$

- See Scott-Sokal, arXiv:0803.1477 for generalizations to $A(x)^{\lambda}$ and applications to the multivariate Tutte polynomial
- Now specialize to $R=R_{0}[[y]]$ and $A(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}$ where $a_{0}(y)=1$
- Assume further that $a_{1}(0)=1$ and $a_{n}(0)=0$ for $n \geq 2$ [conditions (a) and (b) for our $f(x, y)$]
- Then

$$
\frac{x A^{\prime}(x, y)}{A(x, y)}=\sum_{n=1}^{\infty} \widetilde{C}_{n}(y) x^{n}
$$

where ' denotes $\partial / \partial x$ and $\widetilde{C}_{n}(y)$ has constant term $(-1)^{n-1}$.

Application to leading root of $f(x, y)$

- Start from a formal power series $f(x, y)=1+x+\sum_{n=2}^{\infty} a_{n}(y) x^{n}$ satisfying

$$
a_{n}(y)=O\left(y^{\alpha(n-1)}\right) \quad \text { for } n \geq 2
$$

for some real $\alpha>0$. [This is a bit stronger than (a)-(c).]

- Define $\left\{\widetilde{C}_{n}(y)\right\}_{n=1}^{\infty}$ by

$$
\frac{x f^{\prime}(x, y)}{f(x, y)}=\sum_{n=1}^{\infty} \widetilde{C}_{n}(y) x^{n}
$$

where ' denotes $\partial / \partial x$.

- Theorem: We have

$$
\widetilde{C}_{n}(y)=(-1)^{n-1} \xi_{0}(y)^{-n}+O\left(y^{\alpha n}\right)
$$

or equivalently

$$
\xi_{0}(y)=\left[(-1)^{n-1} \widetilde{C}_{n}(y)\right]^{-1 / n}+O\left(y^{\alpha n}\right)
$$

- This theorem provides an extraordinarily efficient method for computing the series $\xi_{0}(y)$:
- Compute the $\widetilde{C}_{n}(y)$ inductively using the recursion

$$
\widetilde{C}_{n}=n a_{n}-\sum_{k=1}^{n-1} \widetilde{C}_{k} a_{n-k}
$$

- Take the power $-1 / n$ to extract $\xi_{0}(y)$ through order $y^{\lceil\alpha n\rceil-1}$
- This abstracts the recursive method first used for the special case

$$
F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}
$$

Proof of Theorem (via complex analysis)

- Use complex-analysis argument to prove Theorem when $R=\mathbb{C}$ and f is a polynomial.
- Infer general validity by some abstract nonsense.

Lemma. Fix a real number $\alpha>0$, and let $P(x, y)=1+x+$ $\sum_{n=2}^{N} a_{n}(y) x^{n}$ where the $\left\{a_{n}(y)\right\}_{n=2}^{N}$ are polynomials with complex coefficients satisfying $a_{n}(y)=O\left(y^{\alpha(n-1)}\right)$. Then there exist numbers $\rho>0$ and $\gamma>0$ such that $P(\cdot, y)$ has precisely one root in the disc $|x|<\gamma|y|^{-\alpha}$ whenever $|y| \leq \rho$.
Idea of proof of Lemma: Apply Rouchés theorem to $f(x)=x$ and $g(x)=1+\sum_{n=2}^{N} a_{n}(y) x^{n}$ on the circle $|x|=\gamma|y|^{-\alpha}$.

Proof of Theorem when $R=\mathbb{C}$ and f is a polynomial:

 Write$$
P(x, y)=\prod_{i=1}^{k(y)}\left(1-\frac{x}{X_{i}(y)}\right)
$$

with $k(y) \leq N$. Therefore

$$
\frac{x P^{\prime}(x, y)}{P(x, y)}=\sum_{i=1}^{k(y)} \frac{-x / X_{i}(y)}{1-x / X_{i}(y)}
$$

and hence

$$
\widetilde{C}_{n}(y)=-\sum_{i=1}^{k(y)} X_{i}(y)^{-n}
$$

Now, for small enough $|y|$, one of the roots is given by the convergent series $-\xi_{0}(y)$ and is smaller than $\gamma|y|^{-\alpha}$ in magnitude, while the
other roots have magnitude $\geq \gamma|y|^{-\alpha}$ by the Lemma. We therefore have

$$
\left|\widetilde{C}_{n}(y)-(-1)^{n-1} \xi_{0}(y)^{-n}\right| \leq(N-1) \gamma^{-n}|y|^{\alpha n}
$$

for small enough $|y|$, as claimed.

Proof of Theorem in general case: Write

$$
a_{n}(y)=\sum_{m=\lceil\alpha(n-1)\rceil}^{\infty} a_{n m} y^{m}
$$

Work in the ring $R=\mathbb{Z}[\boldsymbol{a}]$ where $\boldsymbol{a}=\left\{a_{n m}\right\}_{n \geq 2, m \geq\lceil\alpha(n-1)\rceil}$ are treated as indeterminates. Then the claim of the Theorem amounts to a series of identities between polynomials in \boldsymbol{a} with integer coefficients. We have verified these identities when evaluated on collections \boldsymbol{a} of complex numbers of which only finitely many are nonzero; and this is enough to prove them as identities in $\mathbb{Z}[\boldsymbol{a}]$.

There is also a direct formal-power-series proof (due to Ira Gessel) at least in the case $\alpha=1$. I don't know whether it extends to arbitrary real $\alpha>0$.

More recently, Jim Fill and I have discovered an even simpler formal-power-series proof, based on Waring's (1762) formula for the power-sum symmetric functions in terms of the elementary symmetric functions.

General philosophy. Some positivity properties (proven or conjectured) for $\xi_{0}(y)$ may actually hold for $\left[(-1)^{n-1} \widetilde{C}_{n}(y)\right]^{-1 / n}$ for each finite n.

Computational use of Theorem

- Can compute $\xi_{0}(y)$ through order y^{N-1} by computing $\widetilde{C}_{N}(y)$
- Do this by computing $\widetilde{C}_{n}(y)$ for $1 \leq n \leq N$ using recursion
- Observe that all $\widetilde{C}_{n}(y)$ can be truncated to order y^{N-1} [no need to keep the full polynomial of degree $n(n-1) / 2$]
- For F, have done $N=900$
[$N=400$ takes a minute, $N=900$ takes less than 6 hours; but $N=900$ needs 24 GB memory!]
- For Θ_{0}, have done $N=7000$
[$N=500$ takes a minute, $N=1500$ takes less than an hour;
$N=7000$ took 11 days and 21 GB memory]
- For \widetilde{R}, have done $N=350$
[$N=50$ takes a minute, $N=100$ takes less than an hour; $N=350$ took a month and 10 GB memory]

Some positivity properties of formal power series

- Consider formal power series with real coefficients

$$
f(y)=1+\sum_{m=1}^{\infty} a_{m} y^{m}
$$

- For $\alpha \in \mathbb{R}$, define the class \mathcal{S}_{α} to consist of those f for which

$$
\frac{f(y)^{\alpha}-1}{\alpha}=\sum_{m=1}^{\infty} b_{m}(\alpha) y^{m}
$$

has all nonnegative coefficients (with a suitable limit when $\alpha=0$).

- In other words:
- For $\alpha>0$ (resp. $\alpha=0$), the class \mathcal{S}_{α} consists of those f for which f^{α} (resp. $\log f$) has all nonnegative coefficients.
- For $\alpha<0$, the class \mathcal{S}_{α} consists of those f for which f^{α} has all nonpositive coefficients after the constant term 1.
- Containment relations among the classes \mathcal{S}_{α} are given by the following fairly easy result:

Proposition (Scott-A.D.S., unpublished):
Let $\alpha, \beta \in \mathbb{R}$. Then $\mathcal{S}_{\alpha} \subseteq \mathcal{S}_{\beta}$ if and only if either
(a) $\alpha \leq 0$ and $\beta \geq \alpha$, or
(b) $\alpha>0$ and $\beta \in\{\alpha, 2 \alpha, 3 \alpha, \ldots\}$.

Moreover, the containment is strict whenever $\alpha \neq \beta$.

Application to deformed exponential function F
As shown earlier, it seems that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\begin{aligned}
\xi_{0}(y)=1 & +\frac{1}{2} y+\frac{1}{2} y^{2}+\frac{11}{24} y^{3}+\frac{11}{24} y^{4}+\frac{7}{16} y^{5}+\frac{7}{16} y^{6} \\
& +\frac{493}{1152} y^{7}+\frac{163}{384} y^{8}+\frac{323}{768} y^{9}+\frac{1603}{3840} y^{10}+\frac{57283}{138240} y^{11} \\
& +\frac{170921}{414720} y^{12}+\frac{340171}{829440} y^{13}+\frac{22555}{55296} y^{14} \\
& +\ldots+\text { terms through order } y^{899}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}=1 & -\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{1}{12} y^{3}-\frac{1}{16} y^{4}-\frac{1}{48} y^{5}-\frac{7}{288} y^{6} \\
& -\frac{1}{96} y^{7}-\frac{7}{768} y^{8}-\frac{49}{6912} y^{9}-\frac{113}{23040} y^{10}-\frac{17}{4608} y^{11} \\
& -\frac{293}{92160} y^{12}-\frac{737}{276480} y^{13}-\frac{3107}{1658880} y^{14} \\
& -\ldots-\text { terms through order } y^{899}
\end{aligned}
$$

But I have no proof of either of these conjectures!!!

- Note that $\xi_{0}(y)$ is analytic on $0 \leq y<1$ and diverges as $y \uparrow 1$ like $1 /[e(1-y)]$.
- It follows that $\xi_{0}(y) \notin \mathcal{S}_{\alpha}$ for $\alpha<-1$.

Application to partial theta function Θ_{0}
It seems that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\begin{aligned}
\xi_{0}(y)=1 & +y+2 y^{2}+4 y^{3}+9 y^{4}+21 y^{5}+52 y^{6}+133 y^{7}+351 y^{8} \\
& +948 y^{9}+2610 y^{10}+\ldots+\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}= & 1-y-y^{2}-y^{3}-2 y^{4}-4 y^{5}-10 y^{6}-25 y^{7}-66 y^{8} \\
& -178 y^{9}-490 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-2}$:

$$
\begin{aligned}
& \xi_{0}(y)^{-2}=1-2 y-y^{2} \quad-y^{4}-2 y^{5}-7 y^{6}-18 y^{7}-50 y^{8} \\
&-138 y^{9}-386 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

Here I do have a proof of these properties (see below).

- Note that

$$
\frac{\xi_{0}(y)^{\alpha}-1}{\alpha}=y+\frac{\alpha+3}{2} y^{2}+\frac{(\alpha+2)(\alpha+7)}{6} y^{3}+O\left(y^{4}\right)
$$

- So $\xi_{0}(y) \notin \mathcal{S}_{\alpha}$ for $\alpha<-2$.

Application to $\widetilde{R}(x, y, q)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(1+q) \cdots\left(1+q+\ldots+q^{n-1}\right)}$

- Can use explicit implicit function formula to prove that

$$
\xi_{0}(y ; q)=1+\sum_{n=1}^{\infty} \frac{P_{n}(q)}{Q_{n}(q)} y^{n}
$$

where

$$
Q_{n}(q)=\prod_{k=2}^{\infty}\left(1+q+\ldots+q^{k-1}\right)^{\left\lfloor n /\binom{k}{2}\right\rfloor}
$$

and $P_{n}(q)$ is a self-inversive polynomial in q with integer coefficients.

- Empirically $P_{n}(q)$ has two interesting positivity properties:
(a) $P_{n}(q)$ has all nonnegative coefficients. Indeed, all the coefficients are strictly positive except $\left[q^{1}\right] P_{5}(q)=0$.
(b) $P_{n}(q)>0$ for $q>-1$.
- Empirically $\xi_{0}(y ; q) \in \mathcal{S}_{-1}$ for all $q>-1$:

- Can any of this be proven for $q \neq 0$?

The deformed binomial series

Here is an even simpler family that interpolates between the partial theta function Θ_{0} and the deformed exponential function F :

- Start from the Taylor series for the binomial $f(x)=(1-\mu x)^{-1 / \mu}$ [it is convenient to parametrize it in this way] and introduce factors $y^{n(n-1) / 2}$ as usual:

$$
\begin{aligned}
F_{\mu}(x, y) & =\sum_{n=0}^{\infty}(-\mu)^{n}\binom{-1 / \mu}{n} x^{n} y^{n(n-1) / 2} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{j=0}^{n-1}(1+j \mu)\right) x^{n} y^{n(n-1) / 2}
\end{aligned}
$$

- We call $F_{\mu}(x, y)$ the deformed binomial function.
- For $\mu=0$ it reduces to the deformed exponential function.
- For $\mu=1$ it reduces to the partial theta function.
- For $\mu=-1 / N(N=1,2,3, \ldots)$ it is a polynomial of degree N that is the " y-deformation" of the binomial $(1+x / N)^{N}$

The deformed binomial series, continued

- Can use explicit implicit function formula to prove that

$$
\xi_{0}(y ; \mu)=1+\sum_{n=1}^{\infty} \frac{P_{n}(\mu)}{d_{n}} y^{n}
$$

where $P_{n}(\mu)$ is a polynomial of degree n with integer coefficients and d_{n} are explicit integers.

- Empirically $P_{n}(\mu)$ has two interesting positivity properties:
(a) $P_{n}(\mu)$ has all strictly positive coefficients.
(b) $P_{n}(\mu)>0$ for $\mu>-1$.
- Empirically $\xi_{0}(y ; \mu) \in \mathcal{S}_{-1}$ for all $\mu>-1$:

- Can any of this be proven for $\mu \neq 1$?

The deformed hypergeometric series

- Exponential $\left({ }_{0} F_{0}\right)$ and binomial $\left({ }_{1} F_{0}\right)$ are simplest cases of the hypergeometric series ${ }_{p} F_{q}$.
- Can apply " y-deformation" process to ${ }_{p} F_{q}$:
${ }_{p} F_{q}^{*}\left(\left.\begin{array}{c}\mu_{1}, \ldots, \mu_{p} \\ \nu_{1}, \ldots, \nu_{q}\end{array} \right\rvert\, x, y\right)=\sum_{n=0}^{\infty} \frac{\left(1 ; \mu_{1}\right)^{\pi} \cdots\left(1 ; \mu_{p}\right)^{\pi}}{\left(1 ; \nu_{1}\right)^{\pi} \cdots\left(1 ; \nu_{q}\right)^{\pi}} \frac{x^{n}}{n!} y^{n(n-1) / 2}$
where

$$
(1 ; \mu)^{\bar{n}}=\prod_{j=0}^{n-1}(1+j \mu)
$$

- Note that setting $\mu_{p}=0$ reduces ${ }_{p} F_{q}^{*}$ to ${ }_{p-1} F_{q}^{*}$ (and likewise for ν_{q}).
- Empirically the two positivity properties for the deformed binomial appear to extend to ${ }_{2} F_{0}^{*}$ (in the two variables μ_{1}, μ_{2}).
- I expect that this will generalize to all ${ }_{p} F_{0}^{*}$.
- But the cases ${ }_{p} F_{q}^{*}$ with $q \geq 1$ are different, and I do not yet know the complete pattern of behavior.

Identities for the partial theta function

- Use standard notation for q-shifted factorials:

$$
\begin{aligned}
(a ; q)_{n} & =\prod_{j=0}^{n-1}\left(1-a q^{j}\right) \\
(a ; q)_{\infty} & =\prod_{j=0}^{\infty}\left(1-a q^{j}\right) \quad \text { for }|q|<1
\end{aligned}
$$

- A pair of identities for the partial theta function:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(y ; y)_{\infty}(-x ; y)_{\infty} \sum_{n=0}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x ; y)_{n}} \\
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(-x ; y)_{\infty} \sum_{n=0}^{\infty} \frac{(-x)^{n} y^{n^{2}}}{(y ; y)_{n}(-x ; y)_{n}}
\end{aligned}
$$

as formal power series and as analytic functions on $(x, y) \in \mathbb{C} \times \mathbb{D}$

- Rewrite these as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(y ; y)_{\infty}(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right] \\
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{(-x)^{n} y^{n^{2}}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right]
\end{aligned}
$$

- The first identity goes back to Heine (1847).
- The second identity can be found in Andrews and Warnaar (2007) but is probably much older.

Proof that $\xi_{0} \in \mathcal{S}_{1}$ for the partial theta function

- Let's say we use the first identity:

$$
\Theta_{0}(x, y)=(y ; y)_{\infty}(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right]
$$

- So $\Theta_{0}(x, y)=0$ is equivalent to "brackets $=0$ ".
- Insert $x=-\xi_{0}(y)$ and bring $\xi_{0}(y)$ to the LHS:

$$
\xi_{0}(y)=1+\sum_{n=1}^{\infty} \frac{y^{n}}{\prod_{j=1}^{n}\left(1-y^{j}\right) \prod_{j=1}^{n-1}\left[1-y^{j} \xi_{0}(y)\right]}
$$

- This formula can be used iteratively to determine $\xi_{0}(y)$, and in particular to prove the strict positivity of its coefficients:
- Define the map $\mathcal{F}: \mathbb{Z}[[y]] \rightarrow \mathbb{Z}[[y]]$ by

$$
(\mathcal{F} \xi)(y)=1+\sum_{n=1}^{\infty} \frac{y^{n}}{\prod_{j=1}^{n}\left(1-y^{j}\right) \prod_{j=1}^{n-1}\left[1-y^{j} \xi(y)\right]}
$$

- Define a sequence $\xi_{0}^{(0)}, \xi_{0}^{(1)}, \ldots \in \mathbb{Z}[[y]]$ by $\xi_{0}^{(0)}=1$ and $\xi_{0}^{(k+1)}=\mathcal{F} \xi_{0}^{(k)}$.
- Then $\xi_{0}^{(0)} \preceq \xi_{0}^{(1)} \preceq \ldots \preceq \xi_{0}$ and $\xi_{0}^{(k)}(y)=\xi_{0}(y)+O\left(y^{3 k+1}\right)$.
- In particular, $\lim _{k \rightarrow \infty} \xi_{0}^{(k)}(y)=\xi_{0}(y)$, and $\xi_{0}(y)$ has strictly positive coefficients.
- Thomas Prellberg (arXiv:1210.0095) has a combinatorial interpretation of $\xi_{0}(y)$ and $\xi_{0}^{(k)}(y)$.
- Proofs of $\xi_{0} \in \mathcal{S}_{-1}$ and $\xi_{0} \in \mathcal{S}_{-2}$ use second identity in a similar way.

A conjectured big picture

I conjecture that there are three different things going on here:

- Positivity properties for the leading root $\xi_{0}(y)$:
- $\xi_{0}(y)$ in various classes \mathcal{S}_{β} for a fairly large class of series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}
$$

- Appears to include deformed hypergeometric ${ }_{\rho} F_{0}^{*}$, Rogers-Ramanujan $\widetilde{R}(x, y, q)$, probably others
- Find sufficient conditions on $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$??

- Positivity properties for the higher roots $\xi_{k}(y)$:

- Some positivity for partial theta function and perhaps others (needs further investigation)
- Positivity of all $\xi_{k}(y)$ only for deformed exponential??
- Positivity properties for ratios $\xi_{k}(y) / \xi_{k+1}(y)$:
- Holds for some unknown class of series $f(x, y)$
- Even for polynomials, class is unknown (cf. Calogero-Moser): roots should be "not too unevenly spaced"
- Class appears to include at least deformed exponential
- Needs much further investigation

Summary of open questions

- All the Big Conjectures concerning $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$.
- For a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}
$$

with $\alpha_{0}=\alpha_{1}=1$, find simple sufficient conditions to have $\xi_{0}(y) \succeq 0$ or more generally $\xi_{0}(y) \in \mathcal{S}_{\beta}$.

- In particular, want to handle $\alpha_{n}=1 / n$! or $\alpha_{n}=(1-q)^{n} /(q ; q)_{n}$ or $\alpha_{n}=(-\mu)^{n}\binom{-1 / \mu}{n}$ or hypergeometric generalizations.
- Can this be done using explicit implicit function formula?
(open combinatorial problem)
- Understand positivity properties for higher roots $x_{k}(y)$ and ratios of roots $x_{k}(y) / x_{k+1}(y)$.
- Understand the first-order Calogero-Moser-Sutherland system

$$
\frac{d \zeta_{i}}{d t}=\sum_{j \neq i} f\left(\zeta_{i}-\zeta_{j}\right)
$$

with $f(z)=1 / z$ [roots of polynomial solution of 1D heat equation] or $f(z)=$ coth z, especially at complex time t.

