Translating Chi 2.0 to mCRL2

F.P.M. Stappers M.A. Reniers

Dept. Mathematics and Computer Science,
Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{F.P.M.Stappers, M.A.Reniers}@tue.nl

ProSe -19/06/2008
Outline

1. Motivation
2. Introduction on Chi 2.0 and mCRL2
3. Semantical differences between Chi 2.0 to mCRL2
4. Projection from Chi 2.0 to mCRL2
5. Case Study: The turntable
6. Conclusion and Future work
Motivation

- Various disciplines are involved in the development of complex systems.
- Difficult integration trajectories.
- Models serve particular purpose.
Motivation

- **TWINS**: Optimizing HW-SW Co Design Flow for Software Intensive System Development
- **Focus**
 - Verification and validation of requirements and architecture models
 - Test-case generation
 - Hard-/software change and configuration management
 - Interdisciplinary ways to improve complex distributed and real-time embedded systems
- **Opportunity to transform models for simulation to models for verification purposes.**
Approach

- Explain Chi 2.0 and mCRL2
- Map Chi 2.0 process to mCRL2 process
- Based on Chi 2.0 process terms, a set of transformation rules are given for projecting Chi 2.0 models into mCRL2 models
Chi - Semantics

- Only consider un-timed Chi processes
- A Chi process is a triple $\langle p, \sigma, E \rangle$, where
 - p is a process term
 - σ is a variable valuation ($\{ x_1 \mapsto v_1, \ldots, x_n \mapsto v_n \}$)
 - $E = (D, J, H)$
- Action transition:
 $$\langle p, \sigma, E \rangle \xrightarrow{\sigma,l,W,\sigma'} \langle p', \sigma', E \rangle$$
 - $l = \mathcal{L}_{\text{basic}} \cup \mathcal{L}_{\text{com}} \cup \{ \tau \}$
 - W denotes the set of variables that is allowed to change
Chi - Syntax

Syntax:

\[P \ ::= \ P_{\text{atom}} \mid P ; \ P \mid P[P] \mid P \parallel P \mid \alpha P \mid \partial_H(P) \]

\[P_{\text{atom}} \ ::= \ u \rightarrow a : W : r \mid u \rightarrow h! e : W : r \mid u \rightarrow h? x : W : r \]

Sugared Syntax:

\[b \rightarrow x := e \triangleq b \rightarrow \tau : \{x\} : x = e^- \]
\[b \rightarrow h! e \triangleq b \rightarrow h! e : \emptyset : \text{true} \]
\[b \rightarrow h? x \triangleq b \rightarrow h? x : \emptyset : \text{true} \]
\[b \rightarrow \text{skip} \triangleq b \rightarrow \tau : \emptyset : \text{true} \]
Chi example

A finite buffer, whereby the buffer size is denoted by N, can be specified as:

\[
\langle \text{chan } a, b : \text{item}, \\
\text{disc } N : \text{nat}, \, xs : [\text{item}], \, x : \text{item} \\
, \, xs = [], \, N = 5 \\
: \ast (\text{len}(xs) < N \rightarrow a \, ? \, x : \, xs := xs++[x] \wedge \text{len}(xs) > 0 \rightarrow b \, ! \, \text{hd}(xs) : \, xs := \text{tl}(xs) \rangle
\]
mCRL2

Semantics:
A mCRL2 process is defined:

\[p \xrightarrow{a} p' \]

- \(p, p' \) are process terms
- \(a \) is a multi set of data parametrised action names

Syntax:

\[
P ::= \alpha \mid P + P \mid P \cdot P \mid P \parallel P \mid B \rightarrow P \mid \sum_{x:D} P \mid \nabla_A(P) \mid \partial_B(P) \mid \Gamma_V(P) \mid X(d) \\
\alpha ::= \tau \mid a(d) \mid \alpha \mid \alpha
\]
mCRL2 - Example

This is a process with states 1, \ldots, N, where every state i has transitions to the states 1, \ldots, i + 1.

\begin{align*}
\text{act} & \quad a; \\
\text{map} & \quad N : \mathbb{N}^+; \\
\text{eqn} & \quad N = 3; \\
\text{proc} & \quad X(i : \mathbb{N}^+) = \\
& \quad \sum_{j : \mathbb{N}^+} (j \leq i + 1 \land j \leq N) \\
& \quad \quad \rightarrow a.X(j); \\
\text{init} & \quad X(1);
\end{align*}
Approach

- Explain Chi 2.0 and mCRL2
- Map Chi 2.0 process to mCRL2 process
- Based on Chi 2.0 process terms, a set of transformation rules are given for projecting Chi 2.0 models into mCRL2 models
Solutions to the semantical differences 1/4

1. Chi 2.0 has model variables and assignments to them. mCRL2 does not facilitate a concept of model variables.

Store the value of the model variables in a separated process M

\[
\text{get}_m \mid \text{get}_p \rightarrow \text{pre}
\]

\[
\text{set}_m \mid \text{set}_p \rightarrow \text{post}
\]

Figure: Communication diagram between processes M and the translation function $\mathcal{T}(p)$
Solutions to the semantical differences 2/4

Memory process description:

\[M(x : D) = \sum_{d : D} \sum_{V \subseteq \{x\}} \left(\prod_{y \in \{x\} \setminus V} x_y = d_y \right) \rightarrow \]

\[\left(\text{get}_m(x) \mid \prod_{y \in V} \text{set}_m(y, d_y) \mid \prod_{y \in \{x\} \setminus V} \text{post}(y, x_y) \right) \]

\[\cdot M(d) \]

where the notation \(\prod_{i \in I} p_i \) is inductively defined by:

\[\prod_{i \in \emptyset} p_i = \tau \]

\[\prod_{i \in I \cup \{k\}} p_i = p_k \mid \prod_{i \in I \setminus \{k\}} p_i \]
Chi 2.0 has separate labels for the action name, set of changing variables and value advertisement on the action transition. mCRL2 only has parametrised multi-actions.

The separated labels are converted to a multi-action.

Example (separated labels to multi-action)

$$\sigma, l, W, \sigma' \quad \Rightarrow \quad \text{pre}(\alpha) | l | \text{diff}(W) \bigg|_{x \in \alpha} \text{post}(x, v)$$
Parallel composition in Chi 2.0 interleaves actions and corresponding send and receive actions are synchronised. In mCRL2 all actions are interleaved and combined into multi-actions. To prevent the occurrence of multi-actions the restriction operator ∇_{AA}\(^1\) is used.

\(^1\) AA will be explained in translation of parallel composition operator
Approach

- Explain Chi 2.0 and mCRL2
- Map Chi 2.0 process to mCRL2 process
- Based on Chi 2.0 process terms, a set of transformation rules are given for projecting Chi 2.0 models into mCRL2 models
Translation Scheme

For a given Chi process \(\langle p, \sigma, E \rangle \) and some arbitrary fixed vector \(x \) that consists of precisely the model variables from the set \(D \), the corresponding mCRL2 process is given by

\[
\left[\langle p, \sigma, (D, J, H) \rangle \right] = \partial_{B_M} (\Gamma_{C_M} (M(\sigma(x)) \parallel T_{x,J,H}(p)))
\]

where

- \(B_M = \{ \text{get}_m, \text{set}_m, \text{get}_p, \text{set}_p \} \)
- \(C_M = \{ \text{get}_m \mid \text{get}_p \rightarrow \text{pre}, \text{set}_m \mid \text{set}_p \rightarrow \text{post} \} \)
- The initial values for the variables are obtained from the valuation \(\sigma \): \(\sigma(x) \) denotes the vector of values of variables from \(x \) in \(\sigma \) in the same order as these variables appear in \(x \).
- \(J \) denotes the set of jumping variables
- \(H \) denotes the set of channel names
Action update term

\[T_{x,J,H}(u \to a : W : r) = \sum_{w : D} \sum_{s : D} (u[w/x] \land r[w/x^{-}, s/x]) \to \]
\[\text{get}_p(w) | a | \text{diff}(W) | \big|_{x \in J \cup W} \text{set}_p(x, s_x) \]

Execution of a guarded action update \(u \to a : W : r \) involves:

- checking whether the guard \(u \) is satisfied w.r.t. the current values of the model variables, and

- find a new valuation of the model variables in \(J \cup W \), such that the reset predicate \(r \) is satisfied w.r.t. the \(\sigma \) and \(\sigma' \).
Action update term Example - Guarded Assignment

\[T_{x,J,H}(true \rightarrow S := false) = T_{x,J,H}(true \rightarrow \tau : \{S\} : S = false) = \sum_{w:D} \left(true \land (S = false) \rightarrow \text{get}_p(w) \mid \tau \mid \text{diff} (\{S\}) \mid \text{set}_p(S, false) \right) \]

Example (Within M, S \approx true)

\[\text{pre}(\ldots, true, \ldots) \mid \tau \mid \text{diff} (\{S\}) \mid (\ldots \mid \text{post}(S, false) \mid \ldots) \]
Send and Receive communication term

- **Send**

\[
T_{x,J,H}(u \rightarrow h! e : W : r) = \sum_{w:D} \sum_{s:D} (u[w/x] \land r[w/x^{-}, s/x]) \rightarrow get_p(w) \mid send_h(e[w/x]) \mid diff(W) \mid \mid_{x \in J \cup W} set_p(x, s_x)
\]

- **Receive**

\[
T_{x,J,H}(u \rightarrow h? x : W : r) = \sum_{w:D} \sum_{s:D} (u[w/x] \land r[w/x^{-}, s/x]) \rightarrow get_p(w) \mid recv_h(s_x) \mid diff(W \cup \{x\}) \mid \mid_{y \in J \cup W \cup \{x\}} set_p(y, s_y)
\]
Parallel composition

\[T_{x,J,H}(p \parallel q) = \nabla_{AA}(\Gamma_{C \cup D}(T_{x,J,H}(p) \parallel T_{x,J,H}(q))) \]

where

- \(AA = \{ \text{get}_p|a|\text{diff}|i=0^n\text{set}_p, \text{get}_p|a|\text{diff}|\text{diff}|i=0^n\text{set}_p : a ∈ A_\chi, 0 ≤ n ≤ N \} \)

with \(N \) is the number of model variables and

- \(A_\chi = \{ \text{send}_h, \text{recv}_h, \text{comm}_h : h ∈ H \} \cup \mathcal{L}_{\text{basic}} \)

- \(C = \{ \text{send}_h|\text{recv}_h → \text{comm}_h : h ∈ H \} \)

- \(D = \{ \text{get}_p|\text{get}_p → \text{get}_p, \text{set}_p|\text{set}_p → \text{set}_p \} \)
Example communication

$$T_{x,J,H}(h!true \parallel h?b)$$

$$= \nabla_{AA}(\Gamma_{C\cup D}(T_{x,J,H}(h!true : \emptyset : true) \parallel T_{x,J,H}(h?b : \emptyset : true)))$$

$$= \nabla_{AA}(\Gamma_{C\cup D}(\sum_{w:D} \sum_{s:D} get_p(w) \mid send_h(true) \mid diff(\emptyset) \mid \tau$$

$$\parallel \sum_{w:D} \sum_{s:D} get_p(w) \mid recv_h(s_b) \mid diff(\{b\}) \mid set_p(b, s_b)$$

Example (Within M, $b \approx false$)

$pre(false) \mid comm_h(b, true) \mid diff(\{\emptyset\} \mid diff(\{b\}) \mid (post(b, true))$
Other operators

- **Sequential composition**
 \[T_{x,J,H}(p; q) = T_{x,J,H}(p) \cdot T_{x,J,H}(q) \]

- **Alternative composition**
 \[T_{x,J,H}(p □ q) = T_{x,J,H}(p) + T_{x,J,H}(q) \]

- **Iteration operator**
 \[T_{x,J,H}(\ast p) = X \]
 where \(X = T_{x,J,H}(p) \cdot X \);

- **Channel encapsulation**
 \[T_{x,J,H}(\partial_{H'}(p)) = \partial_B(T_{x,J,H}(p)) \]
 where \(B = \{send_h, recv_h : h \in H'\} \);
Turntable explained

Figure: Decomposition of the turntable system
The Chi model

- The Chi model is adapted from the model used in:

- Following modification are applied
 - All hierarchical modelling is removed
 - Time delays are removed
 - Uninitialised values are initialised
 - Multi-assignments are used where possible
 - Meaningful names are introduced for the values that represent a configuration or state of a product
Enumerated data types are modelled as structured sorts.

Example

```plaintext
enum configuration = {empty, addingSlot, removeSlot, filled} ⇒
sort configuration = struct empty | addingSlot | removeSlot | filled;
```

Chi process is translated with translation scheme

To linearize the mCRL2 following adaptations have been made:
- Removed local parallelism
- Partitioned the memory process.
The mCRL2 model

- 500 Lines of mCRL2 code
- Number of states: 13863
- Number of labels: 34
- Number of transitions: 73432
Conclusion & Future work

Conclusions
- Provide an interchange media for transforming Chi 2.0 specifications into mCRL2 models.
- Established an isomorph relation between Chi 2.0 and mCRL2.

Future Work
- Tool support for translating Chi (current version has different implementation).
- Incorporate transformation rules for scopes, recursion variables and hierarchical modelling.
- Model check properties that are stated in terms of the values of model variables.
- Find a suitable time model.
The End