Representation theory

Prof. Hendrik Lenstra*

Do not hand in solutions to problems that you consider trivial (unless too few are left). Do hand in the solutions to the hardest problems you can actually solve.

Theorem 1 (Frobenius, 1901). Let G be a group acting transitively on a finite set X such that for all $\sigma \in G \backslash\{1\}$ one has $\#\{x \in X: \sigma x=x\} \leq 1$. Then

$$
N=\{1\} \cup\{\sigma \in G: \forall x \in X: \sigma x \neq x\}
$$

is a (normal) subgroup of G.
A group G is called a Frobenius group if an X and an action as in the theorem exist with $\# X \geq 2$ and the additional property that there are $\sigma \in G \backslash\{1\}$ and $x \in X$ with $\sigma x=x$; also, N is called the Frobenius kernel of G, and $\# X$ is called the degree.

Exercise L.1. Let G, X, N be as in the theorem of Frobenius, with $n=\# X \geq 2$.
(a) Prove: $\# N=n$.
(b) Suppose N is a subgroup. Prove: N is normal, and N acts transitively on X.
(c) Prove: $\# G=n d$ for some divisor d of $n-1$.

Exercise L.2. Show by means of an example that the condition that X is finite cannot be omitted from Frobenius' theorem.

Exercise L.3. (a) Let R be a ring, $I \subset R$ a left ideal of finite index, and H a subgroup of the group R^{*} of units of R such that for all $a \in H \backslash\{1\}$ one has $R=(a-1) R+I$. Prove that $X=R / I$ and $G=\{\sigma: X \rightarrow X$: there exist $a \in H$, $b \in R:$ for all $x \in R: \sigma(x \bmod I)=(a x+b \bmod I)\}$ satisfy the conditions of Frobenius' theorem. What is N ?
(b) Show how to recover the examples D_{n} (n odd) from (a).

[^0]Exercise L.4. (a) Apply Exercise L. 3 to the subring $R=\mathbb{Z}[i, j]$ of the division ring $\mathbb{H}=\mathbb{R}+\mathbb{R} \cdot i+\mathbb{R} \cdot j+\mathbb{R} \cdot i j$ of quaternions to construct a Frobenius group G of order $8 \cdot 9$ and degree 9 such that G contains the quaternion group $Q=\langle i, j\rangle$ of order 8 .
(b) Apply Exercise L. 3 to $R=\mathbb{Z}[i,(1+i+j+i j) / 2]$ to construct a Frobenius group of order $24 \cdot 25$ and degree 25 that contains Q.
Exercise L.5*. Can you think of an example of a Frobenius group whose Frobenius kernel is non-abelian?

Exercise L.6. (a) Let R be a ring. Prove that there is a unique ring homomorphism $\mathbb{Z} \rightarrow R$.
(b) Let M be an abelian group. Prove that M has a unique \mathbb{Z}-module structure.

Exercise L. 7 Chinese reminder theorem. (a) Let R be a commutative ring, $t \in \mathbb{Z}_{\geq 2}$, and let I_{1}, \ldots, I_{t} be ideals of R such that for any two distinct indices i, j one has $I_{i}+I_{j}=R$. Prove that $\bigcap_{i=1}^{t} I_{i}=\prod_{i=1}^{t} I_{i}$, and show that the ring $R / \prod_{i=1}^{t} I_{i}$ is isomorphic to the product ring $\prod_{i=1}^{t} R / I_{i}$.
(b) Let the commutativity assumption on R in (a) be dropped, and interpret "ideal" to mean "two-sided ideal". Show how one can replace the product ideal by a suitable sum of product ideals so that the statements in (a) remain correct.

Exercise L.8. Let R be a ring, M an R-module, and $x \in M$. Write Ann $x=$ $\{r \in R: r x=0\}$ (the annihilator of x), and $R x=\{r x: r \in R\} \subset M$.
(a) Prove that $\operatorname{Ann} x$ is a left ideal of R, that $R x$ is a sub- R-module of M, and that there is an isomorphism $R / \operatorname{Ann} x \cong R x$ of R-modules.
(b) We call M cyclic (as an R-module) if there exists $x \in M$ with $M=R x$. Prove: M is cyclic if and only if there exists a left ideal $I \subset R$ with $M \cong R / I$.
Exercise L.9. (a) Let R be a domain, i. e. a commutative ring with $1 \neq 0$ without zero-divisors, and let M be an R-module. A torsion element of M is an element $x \in M$ with Ann $x \neq\{0\}$ (see Exercise L.8). Prove that the set $M_{\text {tor }}$ of torsion elements is a submodule of M.
(b) Give an example of a ring R and an R-module M for which $\{x \in M$: Ann $x \neq\{0\}\}$ is not a submodule of M.

Exercise L.10. Let k be a field, and denote by R the $\left.\operatorname{ring}\left\{\begin{array}{c}a \\ a \\ b\end{array}\right): a, b, c \in k\right\}$ of lower-triangular 2×2-matrices over k. In this exercise all R-modules are described.
(a) Let V and W be k-vector spaces, and let $f: V \rightarrow W$ be a k-linear map. Prove that the group $V \oplus W$ is an R-module with multiplication $\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right) \cdot(v, w)=$ $(a v, b \cdot f(v)+c w)$ (for $a, b, c \in k, v \in V, w \in W$).
(b) Prove that, up to isomorphism, any R-module is obtained as in (a).

Exercise L.11. Let $\mathbb{Q}[X]$ be the polynomial ring in one indeterminate X over the field \mathbb{Q} of rational numbers, and let M be the \mathbb{Q}-vector space consisting of
all sequences $\left(a_{i}\right)_{i=0}^{\infty}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of elements a_{i} of \mathbb{Q}. Make M into a $\mathbb{Q}[X]$ module by putting

$$
X \cdot\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right) .
$$

Let $\left(F_{i}\right)_{i=0}^{\infty}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)=(0,1,1,2,3,5,8,13, \ldots)$ be the sequence of $F i$ bonacci numbers, defined by $F_{0}=0, F_{1}=1, F_{i+2}=F_{i+1}+F_{i}(i \geq 0)$. Prove that $\operatorname{Ann}\left(\left(F_{i}\right)_{i=0}^{\infty}\right)$ is the $\mathbb{Q}[X]$-ideal generated by $X^{2}-X-1$.
Exercise L.12. Let A be one of the groups $\mathbb{Z}, \mathbb{Q}, \mathbb{Z} / 12 \mathbb{Z}$, and let B be one of the groups $\mathbb{Z}, \mathbb{Q}, \mathbb{Z} / 18 \mathbb{Z}$. To which 'known' group is $\operatorname{Hom}_{\mathbb{Z}}(A, B)$ isomorphic? Motivate all your nine answers.

Exercise L.13. Let R, S, T be rings, let M be an R - S-bimodule, and let N be an R - T-bimodule. Exhibit an S - T-bimodule structure on the $\operatorname{group}_{R} \operatorname{Hom}(M, N)$ of R-linear maps $M \rightarrow N$.
Exercise L.14. Let R_{1} and R_{2} be rings, and let R be the ring $R_{1} \times R_{2}$. Let L_{i} and M_{i} be R_{i}-modules, for $i=1,2$, and define the R-modules L and M by $L=$ $L_{1} \times L_{2}$ and $M=M_{1} \times M_{2}$. Prove that there is a bijective map $\operatorname{Hom}_{R_{1}}\left(L_{1}, M_{1}\right) \times$ $\operatorname{Hom}_{R_{2}}\left(L_{2}, M_{2}\right) \rightarrow \operatorname{Hom}_{R}(L, M)$ sending the pair $\left(f_{1}, f_{2}\right)$ to the map $f: L \rightarrow M$ defined by $f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ (for $\left.x_{1} \in L_{1}, x_{2} \in L_{2}\right)$.
Exercise L.15. Let $G=\langle\sigma\rangle$ be a group of order 2, and let $\mathbb{Z}[G]$ be the group ring of G over the ring \mathbb{Z} of integers. For a $\mathbb{Z}[G]$-module M, write $M_{+}=\{x \in M$: $\sigma x=x\}$ and $M_{-}=\{x \in M: \sigma x=-x\}$. Prove: for every $\mathbb{Z}[G]$-module M there is an exact sequence

$$
0 \rightarrow L \rightarrow M_{+} \oplus M_{-} \rightarrow M \rightarrow N \rightarrow 0
$$

of $\mathbb{Z}[G]$-modules, where the middle arrow sends (x, y) to $x+y$, and where L and N are $\mathbb{Z}[G]$-modules with $L=L_{+}=L_{-}$and $N=N_{+}=N_{-}$.

Can you find an example of a $\mathbb{Z}[G]$-module M for which L and N are both non-zero?

Exercise L.16. Let A be the abelian group $\prod_{p} \mathbb{Z} / p \mathbb{Z}$, and let B be the subgroup $\bigoplus_{p} \mathbb{Z} / p \mathbb{Z}$ of A; in both cases, p ranges over the set of primes. Let C be the abelian group A / B.
(a) Prove: for each positive integer n, the map $C \rightarrow C$ sending x to $n x$ is bijective.
(b) Prove: the group C has a module structure over the field \mathbb{Q} of rational numbers.

Exercise L.17. Let A be the ring $\prod_{p} \mathbb{F}_{p}$ with componentwise ring operations, the product ranging over all prime numbers p.
(a) Prove that A contains \mathbb{Z} as a subring.
(b) Let $R=\{a \in A$: there exists $n \in \mathbb{Z}, n \neq 0$, such that $n a \in \mathbb{Z}\}$. Prove that R is a subring of A, and that there is an exact sequence of abelian groups

$$
0 \rightarrow \bigoplus_{p} \mathbb{F}_{p} \rightarrow R \rightarrow \mathbb{Q} \rightarrow 0
$$

Does this sequence split?
Exercise L.18. Let R be a ring. The opposite ring $R^{\text {opp }}$ has the same underlying additive group as R, but with multiplication $*$ defined by $a * b=b a$, for $a, b \in R^{\text {opp }}$.
(a) Prove that, for every positive integer n and every commutative ring A, the ring $M(n, A)$ of $n \times n$-matrices over A is isomorphic to its opposite.
(b) * Is every ring isomorphic to its opposite? Give a proof or a counterexample.

Exercise L.19. Let I be an infinite set, for each $i \in I$ let R_{i} be a non-zero ring, and let R be the product ring $\prod_{i \in I} R_{i}$. Construct an R-module M that is not isomorphic to an R-module of the form $\prod_{i \in I} M_{i}$, with each M_{i} being an R_{i}-module and $R=\prod_{i \in I} R_{i}$ acting componentwise on $\prod_{i \in I} M_{i}$.
Exercise L.20. (This exercise counts for two). Prove the structure theorem for finitely generated modules over a principal ideal domain.

Exercise L.21. Let R be a ring. In class we defined two R-modules to be JordanHölder isomorphic if they have isomorphic chains of submodules. Prove that this is an equivalence relation on the class of all R-modules.
Exercise L.22. Are $\mathbb{Z} \times(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 75 \mathbb{Z})$ and $\mathbb{Z} \times(\mathbb{Z} / 14 \mathbb{Z})$ Jordan-Hölder isomorphic as \mathbb{Z}-modules? Motivate your answer.
Exercise L.23. Are \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$ Jordan-Hölder isomorphic as \mathbb{Z}-modules? Motivate your answer.

Exercise L.24. Let R be a ring, and let M be an R-module of finite length with composition series $\left(M_{i}\right)_{i=0}^{l(M)}$. 'The' semisimplification M_{ss} of M is the R-module

$$
M_{\mathrm{ss}}=\bigoplus_{i=1}^{l(M)}\left(M_{i} / M_{i-1}\right)
$$

Prove: M and its semisimplification are Jordan-Hölder isomorphic.
Exercise L.25. Let R be a ring, let K, L, M, N be R-modules, and let $f: K \rightarrow L$, $g: L \rightarrow M, h: M \rightarrow N$ be R-linear maps such that $h \circ g \circ f=0$ (the zero map). Construct an exact sequence

$$
0 \rightarrow \operatorname{ker} f \rightarrow \operatorname{ker}(g \circ f) \rightarrow \operatorname{ker} g \rightarrow(\operatorname{ker}(h \circ g)) / \operatorname{im} f \rightarrow
$$

$$
(\operatorname{ker} h) / \operatorname{im}(g \circ f) \rightarrow \operatorname{cok} g \rightarrow \operatorname{cok}(h \circ g) \rightarrow \operatorname{cok} h \rightarrow 0
$$

of R-modules, where ker denotes kernel, im denotes image, and cok denotes cokernel.

This result is often called the snake lemma. Can you see why?
Exercise L.26. (a) Let $n \in \mathbb{Z}_{>0}$, and let $1 \rightarrow A_{1} \rightarrow A_{2} \rightarrow \ldots \rightarrow A_{n} \rightarrow 1$ be an exact sequence of groups. Suppose that all A_{i} with at most one exception are finite. Prove that they are all finite, and that one has $\prod_{i=1}^{n}\left(\# A_{i}\right)^{(-1)^{i}}=1$.
(b) Let $n \in \mathbb{Z}_{>0}$, and let $A_{0} \rightarrow A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow A_{0}$ be an exact sequence of groups such that the kernel of the first map equals the image of the last. Suppose that all A_{i} with at most one exception are finite. Prove that they are all finite, that $\prod_{i=0}^{n} \# A_{i}$ is the square of some integer, and that for odd n one has $\prod_{i=0}^{n}\left(\# A_{i}\right)^{(-1)^{i}}=1$.
Exercise L.27. (a) Let R be the ring from Exercise L.17. Prove that the multiplication map $R \times R \rightarrow R$ induces an isomorphism $R \otimes_{\mathbb{Z}} R \rightarrow R$.
(b) Let M be an R - R-bimodule. Prove that for all $r \in R$ and $m \in M$ one has $r m=m r$.

Exercise L.28. Let A, B, C be groups. A map $f: A \times B \rightarrow C$ is called bilinear if for all $\alpha, \alpha^{\prime} \in A$ and $\beta, \beta^{\prime} \in B$ one has $f\left(\alpha \alpha^{\prime}, \beta\right)=f(\alpha, \beta) \cdot f\left(\alpha^{\prime}, \beta\right)$ and $f\left(\alpha, \beta \beta^{\prime}\right)=f(\alpha, \beta) \cdot f\left(\alpha, \beta^{\prime}\right)$.
(a) Suppose $f: A \times B \rightarrow C$ is bilinear. Prove that the subgroup of C generated by $f(A \times B)$ is abelian.
(b) Exhibit a bijection between the set of bilinear maps $A \times B \rightarrow C$ and the set of group homomorphisms $(A /[A, A]) \otimes_{\mathbb{Z}}(B /[B, B]) \rightarrow C$.
Exercise L.29. Let A and B be subgroups of a group G. Prove that the map $A \times B \rightarrow G$ sending (α, β) to the commutator $[\alpha, \beta]=\alpha \beta \alpha^{-1} \beta^{-1}$ is bilinear (as defined in Exercise L.28) if and only if the image of this map is contained in the center of the subgroup of G generated by A and B.

Exercise L.30. Let n be an integer, A an additively written abelian group, and $n_{A}: A \rightarrow A$ the map $a \mapsto n a$. Prove: $(\mathbb{Z} / n \mathbb{Z}) \otimes_{\mathbb{Z}} A \cong \operatorname{cok} n_{A}$.
Exercise L.31. A torsion group is a group of which every element has finite order. A group B is called divisible if for each $m \in \mathbb{Z}_{>0}$ and each $b \in B$ there exists $c \in B$ with $c^{m}=b$. Prove: if A and B are abelian groups such that A is torsion and B is divisible, then $A \otimes_{\mathbb{Z}} B=0$.

Exercise L.32. Describe the group $A \otimes_{\mathbb{Z}} B$ when each of A and B is one of the following: (a) finite cyclic; (b) infinite cyclic; (c) the Klein four group; (d) the additive group \mathbb{Q}; and $(\mathrm{e}) \mathbb{Q} / \mathbb{Z}$. (Be sure to cover all combinations.)

Exercise L.33. Construct a non-trivial abelian group A such that $A \otimes_{\mathbb{Z}} A=0$. Can such a group be finitely generated?

Exercise L.34. Let A, B, C be additively written abelian groups, and let $f: A \times$ $B \rightarrow C$ be a bilinear map that is also a group homomorphism. Prove that f is the zero map.
Exercise L.35. In this exercise, all tensor products are over \mathbb{Z}.
Is the tensor product of two finitely generated abelian groups finitely generated? Is the tensor product of two finite abelian groups finite? Give in each case a proof or a counterexample.

Exercise L.36. Suppose that A and B are non-zero finitely generated abelian groups. Prove: $A \otimes_{\mathbb{Z}} B=0$ if and only if A and B are finite with $\operatorname{gcd}(\# A, \# B)=1$.
Exercise L.37. Let k be a field, let V be the k-vector space k^{2}, and let $M_{2}(k)$ be the ring of 2×2-matrices over k. We view $M_{2}(k)$ as a k-vector space in the natural way. Define the map $f: V \times V \rightarrow M_{2}(k)$ by $f((a, b),(c, d))=\left(\begin{array}{cc}a c & a d \\ b c & b d\end{array}\right)$.
(a) Prove that f is k-bilinear, and that the image of f consists of the set of 2×2-matrices over k of rank at most 1 .
(b) Prove that the pair $\left(M_{2}(k), f\right)$ is a tensor product of V and V over k, as defined in class.
(c) Prove that not every element of $V \otimes_{k} V$ is of the form $x \otimes y$, with $x, y \in V$.

Exercise L.38. Let A and B be abelian groups.
(a) Prove: if at least one of A and B is cyclic, then every element of $A \otimes_{\mathbb{Z}} B$ is of the form $x \otimes y$, with $x \in A, y \in B$.
(b) Suppose A is finitely generated. Prove: A is cyclic if and only if every element of $A \otimes_{\mathbb{Z}} A$ is of the form $x \otimes y$, with $x, y \in A$.

Exercise L.39. Let A be an additively written abelian group. For $n \in \mathbb{Z}$, we write $n A=\{n x: x \in A\}$. Let $a \in A$.
(a) Prove: the element $a \otimes a$ of $A \otimes_{\mathbb{Z}} A$ equals 0 if there exists $n \in \mathbb{Z}$ with $n a=0$ and $a \in n A$.
(b) Is the statement in (a) valid with "if" replaced by "only if"? Give a proof or a counterexample.

Exercise L.40. Let S be a finite simple group. By an S-degree we mean a function that assigns to each finite separable field extension $k \subset l$ a positive rational number $[l: k]_{S}$ such that the following two axioms are satisfied:
(i) if $k \subset l$ is a Galois extension with a simple group G, then one has $[l: k]_{S}=$ [$l: k]$ if $G \cong S$, and $[l: k]_{S}=1$ if $G \nsubseteq S$;
(ii) one has $[m: k]_{S}=[m: l]_{S} \cdot[l: k]_{S}$ whenever $k \subset l$ and $l \subset m$ are finite separable field extensions.

Prove that there exists a unique S-degree.

In the following three problems we let the S-degree $[l: k]_{S}$ of a finite separable field extension $k \subset l$ be as in the previous exercise.
Exercise L.41. Let $k \subset l$ be a finite separable field extension. Prove that, as S ranges over all finite simple groups up to isomorphism, all but finitely many of the numbers $[l: k]_{S}$ are equal to 1 , and that one has

$$
[l: k]=\prod_{S}[l: k]_{S}
$$

Exercise L.42. Let $k \subset l$ be a finite separable field extension. We call $k \subset l$ solvable if the Galois group of the Galois closure of $k \subset l$ is solvable.
(a) Prove: if $k \subset l$ is solvable, then one has $[l: k]_{S}=1$ for every non-abelian finite simple group S.
(b) Suppose that $[l: k]=5$, and that $k \subset l$ is not solvable. Determine $[l: k]_{S}$ for all finite simple groups S.
Exercise L.43. Let $k \subset l$ be a finite separable field extension.
(a) Suppose that m is a finite Galois extension of k inside some overfield of l, with $m \cap l=k$. Prove that for all finite simple groups S one has $[m \cdot l: m]_{S}=[l$: $k]_{S}$.
(b) Is the converse of Exercise L.42(a) true? Give a proof or a counterexample.

Exercise L.44. (This exercise counts for two). Let M be a \mathbb{Z}-module. Prove the following facts.
(a) The module M is semisimple if and only if every $x \in M$ has finite squarefree order.
(b) The module M is injective if and only if it is divisible.
(c) The module M is projective if and only if it is free over \mathbb{Z}.
(d) If M satisfies two of the previous three properties, then $M=\{0\}$.

Exercise L.45. Let R be a ring. An R-module M is said to be of finite length if for some $t \in \mathbb{Z}_{\geq 0}$ it has a chain $\{0\}=M_{0} \subset M_{1} \subset \ldots \subset M_{t}=M$ of submodules for which each of the modules $M_{i} / M_{i-1}(0<i \leq t)$ is simple.
(a) Two pairs $\left(M, M^{\prime}\right)$ of $\left(N, N^{\prime}\right)$ of R-modules of finite length are called equivalent if $M \oplus N^{\prime}$ is Jordan-Hölder isomorphic to $M^{\prime} \oplus N$ (see Exercise L.21). Prove that this is indeed an equivalence relation.
(b) We write $G_{\mathrm{ff}}(R)$ for the set of equivalence classes of the equivalence relation from (a). If M, M^{\prime} are R-modules of finite length, then $\left[M, M^{\prime}\right] \in G_{\mathrm{f}}(R)$ denotes the class of the pair $\left(M, M^{\prime}\right)$, and we write $[M]=[M,\{0\}]$. Prove that there is a unique operation + on $G_{f l}(R)$ that makes $G_{f l}(R)$ into an abelian group and satisfies the rules $[M]+\left[M^{\prime}\right]=\left[M \oplus M^{\prime}\right]$ and $\left[M, M^{\prime}\right]=[M]-\left[M^{\prime}\right]$ for any two R-modules M, M^{\prime} of finite length.

Exercise L.46. Let R be a ring, and let $G_{f l}(R)$ be the abelian group defined in the previous exercise.
(a) Let \mathcal{S} be a set of simple R-modules such that each simple R-module is isomorphic to exactly one element of \mathcal{S}. Prove that $([S])_{S \in \mathcal{S}}$ is a \mathbb{Z}-basis for $G_{f l}(R)$.
(b) Suppose R is a field. Prove: $G_{f l}(R) \cong \mathbb{Z}$ (as groups).

Exercise L.47. (a) Suppose that R is a ring that, when viewed as a module over itself, is of finite length. Prove that an R-module is finitely generated if and only if it is of finite length. Prove also that the group $G_{f l}(R)$ from Exercise L. 45 is finitely generated.
(b) Prove that there is a group isomorphism from $G_{f l}(\mathbb{Z})$ with the multiplicative group $\mathbb{Q}_{>0}^{*}$ of positive rational numbers that, for each finite abelian group M, sends $[M]$ to $\# M$. Prove also that $G_{f l}(\mathbb{Z})$ is not finitely generated.
Exercise L.48. Let R be a semisimple ring, and let M, N be two finitely generated R-modules. Prove: M is isomorphic to N if and only if $[M]=[N]$ in $G_{f l}(R)$, the notation being as in Exercise L. 45 .

Exercise L.49. Let k be a field, let G be a group, and let M, N be $k[G]$-modules.
(a) Prove that the k-vector space structure on $M \otimes_{k} N$ can in a unique way be extended to a $k[G]$-module structure on $M \otimes_{k} N$ such that for all $\sigma \in G, x \in M$, $y \in N$ one has $\sigma(x \otimes y)=(\sigma x) \otimes(\sigma y)$.
(b) Prove that the k-vector space structure on $\operatorname{Hom}_{k}(M, N)$ can in a unique way be extended to a $k[G]$-module structure on $\operatorname{Hom}_{k}(M, N)$ such that for all $\sigma \in G, x \in M, f \in \operatorname{Hom}_{k}(M, N)$ one has $(\sigma f)(x)=\sigma f\left(\sigma^{-1} x\right)$.
Exercise L.50. Let k, G be as in the previous exercise. For a $k[G]$-module M, we write M^{G} for the k-vector space $\{x \in M$: for all $\sigma \in G$ one has $\sigma x=x\}$, and we write M_{G} for the k-vector space $M / \sum_{\sigma \in G}(\sigma-1) M$. Let now M, N be $k[G]-$ modules, and let $M \otimes_{k} N$ and $\operatorname{Hom}_{k}(M, N)$ be $k[G]$-modules as in the previous exercise.
(a) Prove: $\operatorname{Hom}_{k[G]}(M, N)=\operatorname{Hom}_{k}(M, N)^{G}$.
(b) Show how one can make M into a right $k[G]$-module by putting $x \sigma=\sigma^{-1} x$ for $\sigma \in G, x \in M$. Conclude that one define the k-vector space $M \otimes_{k[G]} N$. Prove also that $M \otimes_{k[G]} N$ is isomorphic to $\left(M \otimes_{k} N\right)_{G}$.
Exercise L.51. Let k, G be as in the previous exercise, and let M be a $k[G]-$ module. Let $\left(e_{i}\right)_{i \in I}$ be a basis for M as a k-vector space. Prove that each of $\left(\sigma \otimes e_{i}\right)_{\sigma \in G, i \in I}$ and $\left(\sigma \otimes \sigma e_{i}\right)_{\sigma \in G, i \in I}$ forms a basis for $k[G] \otimes_{k} M$ as a k-vector space, and that $k[G] \otimes_{k} M$ is free when viewed as a $k[G]$-module (as in Exercise L.49).
Exercise L.52. Let k be a field and let G be a finite group.
(a) Prove that the abelian group $G_{f l}(k[G])$ from Exercise L. 45 has a unique \mathbb{Z}-bilinear operation $\cdot: G_{f l}(k[G]) \times G_{f l}(k[G]) \rightarrow G_{f l}(k[G])$ such that for any two
$k[G]$-modules M, N of finite length one has $[M] \cdot[N]=\left[M \otimes_{k} N\right]$, where $M \otimes_{k} N$ is a $k[G]$-module as in Exercise L.49.
(b) Prove that the operation • from (a) makes $G_{f l}(k[G])$ into a commutative ring. This ring is called the representation ring of G over k, notation: $\mathcal{R}_{k}(G)$.
Exercise L.53. Let G be a finite abelian group, and let k be an algebraically closed field of characteristic not dividing $\# G$. Put $\hat{G}=\operatorname{Hom}\left(G, k^{*}\right)$. Prove that the representation $\operatorname{ring} \mathcal{R}_{k}(G)$ is, as a ring, isomorphic to the group ring $\mathbb{Z}[\hat{G}]$.
Exercise L.54. (This exercise counts for two.) Denote by S_{3} a non-abelian group of order 6 . Let k be an algebraically closed field of characteristic not dividing 6 . In this exercise we "compute" the representation ring $\mathcal{R}_{k}\left(S_{3}\right)$ as a ring.
(a) Prove that S_{3} has three pairwise non-isomorphic irreducible representations over k : the trivial representation k, another one-dimensional representation coming from the sign map $S_{3} \rightarrow\{1,-1\} \subset k^{*}$, and a two-dimensional representation.
(b) Write $1, \epsilon, t$ (respectively) for the classes in $\mathcal{R}_{k}\left(S_{3}\right)$ of the three representations mentioned in (a). Prove that $1, \epsilon, t$ form a basis of $\mathcal{R}_{k}\left(S_{3}\right)$ over \mathbb{Z} and that 1 is the unit element of $\mathcal{R}_{k}\left(S_{3}\right)$.
(c) Express $\epsilon^{2}, \epsilon t$ and t^{2} on the \mathbb{Z}-basis $1, \epsilon, t$.
(d) Determine all ring homomorphisms $\mathcal{R}_{k}\left(S_{3}\right) \rightarrow \mathbb{Z}$, and prove that $\mathcal{R}_{k}\left(S_{3}\right)$ is isomorphic to the subring $\{(a, b, c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}: a \equiv b \bmod 2, b \equiv c \bmod 3\}$ of the ring $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ (with component-wise ring operations).
Exercise L.55. (This exercise also counts for two.) Choose a non-abelian group G of order 8 , and let k be an algebraically closed field of characteristic different from 2. Describe $\mathcal{R}_{k}(G)$ as a subring of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, by proceeding as in the previous exercise.

Exercise L.56. (The converse of Maschke's theorem.) Let G be a finite group and let k be a field of characteristic dividing $\# G$. Prove that the ring $k[G]$ is not semisimple. (Hint: construct a short exact sequence of $k[G]$-modules that does not split.)
Exercise L.57. Let k be a field, let V, W be two finite-dimensional k-vector spaces, and let $f \in \operatorname{End}_{k} V, g \in \operatorname{End}_{k} W$. Prove: $\operatorname{Tr}(f \otimes g)=\operatorname{Tr}(f) \cdot \operatorname{Tr}(g)$. Here Tr denotes trace, and $f \otimes g$ is viewed as an element of $\operatorname{End}_{k}\left(V \otimes_{k} W\right)$.
Exercise L.58. Let k be a field. For a k-vector space V, write V^{\dagger} for the dual k-vector space $\operatorname{Hom}_{k}(V, k)$.

Let V, W be two finite-dimensional k-vector spaces. Exhibit an isomorphism $V^{\dagger} \otimes_{k} W^{\dagger} \cong\left(V \otimes_{k} W\right)^{\dagger}$ of k-vector spaces. Your isomorphism should be $k[G]-$ linear if G is a group for which V, W carry $k[G]$-structures; here the $k[G]$-module structures on the duals and on the tensor products are as in Exercise L.49, with G acting trivially on k.

Exercise L.59. Let G be a finite group, let k be an algebraically closed field of characteristic zero, and let M, N be finitely generated $k[G]$-modules. Suppose that for each $\sigma \in G$, there is an isomorphism between M and N when viewed as modules over the subring $k[\langle\sigma\rangle]$ of $k[G]$. Prove that M and N are isomorphic as $k[G]$-modules.
Exercise L.60. Denote by Q_{8} the quaternion group of order 8 .
(a) Prove: $\mathbb{C}\left[Q_{8}\right] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times M(2, \mathbb{C})$ (as rings).
(b) Denote by \mathbb{R} the field of real numbers and by \mathbb{H} the division ring of quaternions. Exhibit a ring isomorphism $\mathbb{R}\left[Q_{8}\right] \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{H}$.

Exercise L.61. Let A_{4} be the alternating group of order 12 .
(a) Determine positive integers n_{1}, \ldots, n_{t} such that $\mathbb{C}\left[A_{4}\right] \cong \prod_{i=1}^{t} M\left(n_{i}, \mathbb{C}\right)$ (as rings).
(b) Describe all simple $\mathbb{C}\left[A_{4}\right]$-modules.

Exercise L.62. Let G be a finite group.
(a) Let k be a field, let M be a $k[G]$-module with $\operatorname{dim}_{k} M=1$, and let N be a simple $k[G]$-module. Prove: the $k[G]$-module $M \otimes_{k} N$ is simple.
(b) Let \mathbb{C} be the field of complex numbers. Prove: G is abelian if and only if for any two simple $\mathbb{C}[G]$-modules M and N the $\mathbb{C}[G]$-module $M \otimes_{\mathbb{C}} N$ is simple.
Exercise L.63. Let k be field. An ordering of k is a subset $P \subset k^{*}$ that is closed under addition and multiplication, with the property that for each $a \in k^{*}$ one has either $a \in P$ or $-a \in P$, but not both. Suppose that k has an ordering.
(a) Prove: char $k=0$.
(b) Prove: for every index set I the field $k\left(X_{i}: i \in I\right)$ of rational functions in the indeterminates $X_{i}, i \in I$, has an ordering.
Exercise L.64. Let k be field, with algebraic closure \bar{k}. A theorem of Artin and Schreier (1927) implies that for each $\rho \in \operatorname{Aut}_{k} \bar{k}$ of order 2 the set $P_{\rho}=\{\alpha \cdot \rho \alpha$: $\left.\alpha \in \bar{k}^{*}\right\} \cap k^{*}$ is an ordering of k, as defined in the previous exercise. In addition, the map from the set of conjugacy classes of elements of order 2 in Aut ${ }_{k} \bar{k}$ to the set of orderings of k that sends the class of ρ to P_{ρ} is bijective. You may use these results in this exercise.
(a) Let K be an algebraically closed field. Prove: K has an automorphism of order 2 if and only if char $K=0$.
(b) Let K be an algebraically closed field, and let ρ be an automorphism of order 2 of K. Suppose that $t \in \mathbb{Z}_{\geq 0}$ and $\alpha_{1}, \ldots, \alpha_{t} \in K$ satisfy $\sum_{i=1}^{t} \alpha_{i} \cdot \rho\left(\alpha_{i}\right)=0$. Prove: $\alpha_{i}=0$ for each i.
(c) Let K and ρ be as in (b). Prove that for every root of unity $\zeta \in K$ one has $\rho(\zeta)=\zeta^{-1}$.

Exercise L.65. Let k be an algebraically closed field of characteristic zero, and let G be a finite group. For a finitely generated $k[G]$-module M, denote by M^{\dagger} the $k[G]$-module $\operatorname{Hom}_{k}(M, k)$.
(a) Prove that the following two assertions about G are equivalent: (i) for every finitely generated $k[G]$-module M one has $M^{\dagger} \cong{ }_{k[G]} M$; and (ii) every element of G is conjugate to its inverse.
(b) Suppose G has odd order, and $G \neq 1$. Prove that there exists an irreducible $k[G]$-module M with $M^{\dagger} \not \not_{k[G]} M$.

Exercise L.66. Prove that every finite group G can be embedded as a subgroup in a finite group H with the property that each element of H is conjugate to its inverse.

Exercise L.67. Let G be a finite group, let k be an algebraically closed field of characteristic char k not dividing $\# G$, let $\mathcal{R}_{k}(G)$ be the representation ring as defined in class, and let $k^{G / \sim}$ be the ring of central functions $G \rightarrow k$.
(a) Prove: the kernel of the ring homomorphism $\mathcal{R}_{k}(G) \rightarrow k^{G / \sim}$ defined in class equals ($\operatorname{char} k) \cdot \mathcal{R}_{k}(G)$.
(b) Prove that 0 is the only nilpotent element of the $\operatorname{ring} \mathcal{R}_{k}(G)$. (An element a of a ring R is called nilpotent if there exists $n \in \mathbb{Z}_{>0}$ with $a^{n}=0$.)

Exercise L.68. Let k, G be as in Exercise L.67, let M be a finitely generated $k[G]$-module, and let $\sigma \in G$. Prove: $\chi_{M^{\dagger}}(\sigma)=\chi_{M}\left(\sigma^{-1}\right)$, and if $k=\mathbb{C}$ then $\chi_{M}\left(\sigma^{-1}\right)=\overline{\chi_{M}(\sigma)}$.
Exercise L.69. Let G be a finite group, and let M be a finitely generated $\mathbb{C}[G]$ module. Define a finitely generated $\mathbb{C}[G]$-module $M^{\#}$ such that for all $a \in \mathbb{C}[G]$ one has $\chi_{M \#}(a)=\overline{\chi_{M}(a)}$.

In Exercises L.70-L.72, we denote by k an algebraically closed field of characteristic 0 . By the character table of a finite group G we mean the square matrix $(\chi(\sigma))$, the rows being numbered by the irreducible characters χ of G over k, and the columns by the conjugacy classes $[\sigma]$ of G.
Exercise L.70. (a) Compute the character table of the dihedral group D_{4} of order 8 , and construct the corresponding simple modules over $k\left[D_{4}\right]$.
(b) The same as (a), but with D_{4} replaced by the quaternion group Q of order 8 .

Exercise L.71. This is the same as the previous exercise, but with D_{4} and Q replaced by (a) the alternating group A_{4} of order 12 , and (b) the symmetric group S_{4} of order 24.

Exercise L.72. Let n be an integer with $n \geq 3$, and denote by D_{n} the dihedral group of order $2 n$.
(a) Suppose n is odd. Prove: D_{n} has two irreducible characters of degree 1, it has $(n-1) / 2$ irreducible characters of degree 2 , and it has no irreducible characters of degree greater than 2 . Can you draw up the character table?
(b) Treat the case n is even similarly.

Exercise L.73. Let R, S, T, U be rings, let K be an R - S-bimodule, L be an S - T-bimodule, M be an R - U-bimodule, and N be an $U-T$-bimodule.

Prove that ${ }_{R} \operatorname{Hom}\left(K \otimes_{S} L, M\right)$ and ${ }_{S} \operatorname{Hom}\left(L,_{R} \operatorname{Hom}(K, M)\right)$ are isomorphic T - U-bimodules, and that $\operatorname{Hom}_{T}\left(K \otimes_{S} L, N\right)$ and $\operatorname{Hom}_{S}\left(K, \operatorname{Hom}_{T}(L, N)\right)$ are isomorphic U - R-bimodules.
Exercise L.74. Let G be a finite group, and let $H \subset G$ be a subgroup. Let k be a field with char k not dividing $\# G$.
(a) Prove that there is a unique ring homomorphism $\mathcal{R}_{k}(G) \rightarrow \mathcal{R}_{k}(H)$ sending $[M]$ to $\left[\operatorname{Res}_{H}^{G} M\right]$, for each finitely generated $k[G]$-module M.
(b) Prove that there is a unique additive group homomorphism $\mathcal{R}_{k}(H) \rightarrow$ $\mathcal{R}_{k}(G)$ sending $[N]$ to $\left[\operatorname{Ind}_{H}^{G} N\right]$, for each finitely generated $k[H]$-module N.
(c) View $\mathcal{R}_{k}(H)$ as an $\mathcal{R}_{k}(G)$-module by means of the map from (a). Prove that the map from (b) is $\mathcal{R}_{k}(G)$-linear.
Exercise L.75. Let G, H, k be as in Exercise L.74, and assume that k is algebraically closed.
(a) Prove that there is a unique k-linear ring homomorphism $r: k^{G / \sim} \rightarrow k^{H / \sim}$ such that the diagram

is commutative, and give a formula for r; here the horizontal maps send $[M]$ to χ_{M}, and the first vertical map is from Exercise L.74(a).
(b) Prove that there is a unique k-linear map $i: k^{H / \sim} \rightarrow k^{G / \sim}$ such that the diagram

is commutative, and give a formula for i : here the horizontal maps are as in (a), and the first vertical map is from Exercise L.74(b).

[^0]: *Exercises from lectures at Vrije Universiteit (Free University) Amsterdam, Fall 2010, by Gabriele Dalla Torre, gabrieledallatorre@gmail.com

