
Representation theory

Prof. Hendrik Lenstra∗

Do not hand in solutions to problems that you consider trivial (unless too few
are left). Do hand in the solutions to the hardest problems you can actually solve.

Theorem 1 (Frobenius, 1901). Let G be a group acting transitively on a finite set
X such that for all σ ∈ G \ {1} one has #{x ∈ X : σx = x} ≤ 1. Then

N = {1} ∪ {σ ∈ G : ∀x ∈ X : σx 6= x}

is a (normal) subgroup of G.

A group G is called a Frobenius group if an X and an action as in the theorem
exist with #X ≥ 2 and the additional property that there are σ ∈ G \ {1} and
x ∈ X with σx = x; also, N is called the Frobenius kernel of G, and #X is called
the degree.

Exercise L.1. Let G, X, N be as in the theorem of Frobenius, with n = #X ≥ 2.
(a) Prove: #N = n.
(b) Suppose N is a subgroup. Prove: N is normal, and N acts transitively on

X.
(c) Prove: #G = nd for some divisor d of n − 1.

Exercise L.2. Show by means of an example that the condition that X is finite
cannot be omitted from Frobenius’ theorem.

Exercise L.3. (a) Let R be a ring, I ⊂ R a left ideal of finite index, and H a
subgroup of the group R∗ of units of R such that for all a ∈ H \ {1} one has
R = (a− 1)R + I. Prove that X = R/I and G = {σ : X → X : there exist a ∈ H,
b ∈ R : for all x ∈ R : σ(x mod I) = (ax + b mod I)} satisfy the conditions of
Frobenius’ theorem. What is N?

(b) Show how to recover the examples Dn (n odd) from (a).

∗Exercises from lectures at Vrije Universiteit (Free University) Amsterdam, Fall 2010, by
Gabriele Dalla Torre, gabrieledallatorre@gmail.com
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Exercise L.4. (a) Apply Exercise L.3 to the subring R = Z[i, j] of the division
ring H = R + R · i + R · j + R · ij of quaternions to construct a Frobenius group
G of order 8 · 9 and degree 9 such that G contains the quaternion group Q = 〈i, j〉
of order 8.

(b) Apply Exercise L.3 to R = Z[i, (1 + i + j + ij)/2] to construct a Frobenius
group of order 24 · 25 and degree 25 that contains Q.

Exercise L.5*. Can you think of an example of a Frobenius group whose Frobe-
nius kernel is non-abelian?

Exercise L.6. (a) Let R be a ring. Prove that there is a unique ring homomor-
phism Z → R.

(b) Let M be an abelian group. Prove that M has a unique Z-module structure.

Exercise L.7 Chinese reminder theorem. (a) Let R be a commutative ring,
t ∈ Z≥2, and let I1, . . . , It be ideals of R such that for any two distinct indices
i, j one has Ii + Ij = R. Prove that

∩t
i=1 Ii =

∏t
i=1 Ii, and show that the ring

R/
∏t

i=1 Ii is isomorphic to the product ring
∏t

i=1 R/Ii.
(b) Let the commutativity assumption on R in (a) be dropped, and interpret

“ideal” to mean “two-sided ideal”. Show how one can replace the product ideal
by a suitable sum of product ideals so that the statements in (a) remain correct.

Exercise L.8. Let R be a ring, M an R-module, and x ∈ M . Write Ann x =
{r ∈ R : rx = 0} (the annihilator of x), and Rx = {rx : r ∈ R} ⊂ M .

(a) Prove that Ann x is a left ideal of R, that Rx is a sub-R-module of M , and
that there is an isomorphism R/ Ann x ∼= Rx of R-modules.

(b) We call M cyclic (as an R-module) if there exists x ∈ M with M = Rx.
Prove: M is cyclic if and only if there exists a left ideal I ⊂ R with M ∼= R/I.

Exercise L.9. (a) Let R be a domain, i. e. a commutative ring with 1 6= 0 without
zero-divisors, and let M be an R-module. A torsion element of M is an element
x ∈ M with Ann x 6= {0} (see Exercise L.8). Prove that the set Mtor of torsion
elements is a submodule of M .

(b) Give an example of a ring R and an R-module M for which {x ∈ M :
Ann x 6= {0}} is not a submodule of M .

Exercise L.10. Let k be a field, and denote by R the ring {(a
b

0
c) : a, b, c ∈ k} of

lower-triangular 2×2-matrices over k. In this exercise all R-modules are described.
(a) Let V and W be k-vector spaces, and let f : V → W be a k-linear map.

Prove that the group V ⊕ W is an R-module with multiplication (a
b

0
c) · (v, w) =

(av, b · f(v) + cw) (for a, b, c ∈ k, v ∈ V , w ∈ W ).
(b) Prove that, up to isomorphism, any R-module is obtained as in (a).

Exercise L.11. Let Q[X] be the polynomial ring in one indeterminate X over
the field Q of rational numbers, and let M be the Q-vector space consisting of
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all sequences (ai)
∞
i=0 = (a0, a1, a2, . . .) of elements ai of Q. Make M into a Q[X]-

module by putting

X · (a0, a1, a2, . . .) = (a1, a2, a3, . . .).

Let (Fi)
∞
i=0 = (F0, F1, F2, . . .) = (0, 1, 1, 2, 3, 5, 8, 13, . . .) be the sequence of Fi-

bonacci numbers, defined by F0 = 0, F1 = 1, Fi+2 = Fi+1 + Fi (i ≥ 0). Prove that
Ann

(
(Fi)

∞
i=0

)
is the Q[X]-ideal generated by X2 − X − 1.

Exercise L.12. Let A be one of the groups Z, Q, Z/12Z, and let B be one of
the groups Z, Q, Z/18Z. To which ‘known’ group is HomZ(A,B) isomorphic?
Motivate all your nine answers.

Exercise L.13. Let R, S, T be rings, let M be an R-S-bimodule, and let N be
an R-T -bimodule. Exhibit an S-T -bimodule structure on the group R Hom(M,N)
of R-linear maps M → N .

Exercise L.14. Let R1 and R2 be rings, and let R be the ring R1 × R2. Let Li

and Mi be Ri-modules, for i = 1, 2, and define the R-modules L and M by L =
L1 ×L2 and M = M1 ×M2. Prove that there is a bijective map HomR1(L1,M1)×
HomR2(L2,M2) → HomR(L,M) sending the pair (f1, f2) to the map f : L → M
defined by f(x1, x2) = (f1(x1), f2(x2)) (for x1 ∈ L1, x2 ∈ L2).

Exercise L.15. Let G = 〈σ〉 be a group of order 2, and let Z[G] be the group
ring of G over the ring Z of integers. For a Z[G]-module M , write M+ = {x ∈ M :
σx = x} and M− = {x ∈ M : σx = −x}. Prove: for every Z[G]-module M there
is an exact sequence

0 → L → M+ ⊕ M− → M → N → 0

of Z[G]-modules, where the middle arrow sends (x, y) to x + y, and where L and
N are Z[G]-modules with L = L+ = L− and N = N+ = N−.

Can you find an example of a Z[G]-module M for which L and N are both
non-zero?

Exercise L.16. Let A be the abelian group
∏

p Z/pZ, and let B be the subgroup⊕
p Z/pZ of A; in both cases, p ranges over the set of primes. Let C be the abelian

group A/B.
(a) Prove: for each positive integer n, the map C → C sending x to nx is

bijective.
(b) Prove: the group C has a module structure over the field Q of rational

numbers.

Exercise L.17. Let A be the ring
∏

p Fp with componentwise ring operations, the
product ranging over all prime numbers p.
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(a) Prove that A contains Z as a subring.
(b) Let R = {a ∈ A : there exists n ∈ Z, n 6= 0, such that na ∈ Z}. Prove

that R is a subring of A, and that there is an exact sequence of abelian groups

0 →
⊕

p

Fp → R → Q → 0.

Does this sequence split?

Exercise L.18. Let R be a ring. The opposite ring Ropp has the same underlying
additive group as R, but with multiplication ∗ defined by a∗b = ba, for a, b ∈ Ropp.

(a) Prove that, for every positive integer n and every commutative ring A, the
ring M(n,A) of n × n-matrices over A is isomorphic to its opposite.

(b) * Is every ring isomorphic to its opposite? Give a proof or a counterexample.

Exercise L.19. Let I be an infinite set, for each i ∈ I let Ri be a non-zero
ring, and let R be the product ring

∏
i∈I Ri. Construct an R-module M that

is not isomorphic to an R-module of the form
∏

i∈I Mi, with each Mi being an
Ri-module and R =

∏
i∈I Ri acting componentwise on

∏
i∈I Mi.

Exercise L.20. (This exercise counts for two). Prove the structure theorem for
finitely generated modules over a principal ideal domain.

Exercise L.21. Let R be a ring. In class we defined two R-modules to be Jordan-
Hölder isomorphic if they have isomorphic chains of submodules. Prove that this
is an equivalence relation on the class of all R-modules.

Exercise L.22. Are Z × (Z/3Z) × (Z/75Z) and Z × (Z/14Z) Jordan-Hölder iso-
morphic as Z-modules? Motivate your answer.

Exercise L.23. Are Z and Z × Z Jordan-Hölder isomorphic as Z-modules? Mo-
tivate your answer.

Exercise L.24. Let R be a ring, and let M be an R-module of finite length.
Prove: M and its semisimplification are Jordan-Hölder isomorphic.

Exercise L.25. Let R be a ring, let K, L, M , N be R-modules, and let f : K → L,
g : L → M , h : M → N be R-linear maps such that h ◦ g ◦ f = 0 (the zero map).
Construct an exact sequence

0 → ker f → ker(g ◦ f) → ker g →
(
ker(h ◦ g)

)
/ im f →

(ker h)/ im(g ◦ f) → cok g → cok(h ◦ g) → cok h → 0

of R-modules, where ker denotes kernel, im denotes image, and cok denotes cok-
ernel.

This result is often called the snake lemma. Can you see why?
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Exercise L.26. (a) Let n ∈ Z>0, and let 1 → A1 → A2 → . . . → An → 1 be
an exact sequence of groups. Suppose that all Ai with at most one exception are
finite. Prove that they are all finite, and that one has

∏n
i=1(#Ai)

(−1)i
= 1.

(b) Let n ∈ Z>0, and let A0 → A1 → . . . → An → A0 be an exact sequence
of groups such that the kernel of the first map equals the image of the last. Sup-
pose that all Ai with at most one exception are finite. Prove that they are all
finite, that

∏n
i=0 #Ai is the square of some integer, and that for odd n one has∏n

i=0(#Ai)
(−1)i

= 1.
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