
Representation theory

Prof. Hendrik Lenstra∗

Do not hand in solutions to problems that you consider trivial (unless too few
are left). Do hand in the solutions to the hardest problems you can actually solve.

Theorem 1 (Frobenius, 1901). Let G be a group acting transitively on a finite set
X such that for all σ ∈ G \ {1} one has #{x ∈ X : σx = x} ≤ 1. Then

N = {1} ∪ {σ ∈ G : ∀x ∈ X : σx 6= x}

is a (normal) subgroup of G.

A group G is called a Frobenius group if an X and an action as in the theorem
exist with #X ≥ 2 and the additional property that there are σ ∈ G \ {1} and
x ∈ X with σx = x; also, N is called the Frobenius kernel of G, and #X is called
the degree.

Exercise L.1. Let G, X, N be as in the theorem of Frobenius, with n = #X ≥ 2.
(a) Prove: #N = n.
(b) Suppose N is a subgroup. Prove: N is normal, and N acts transitively on

X.
(c) Prove: #G = nd for some divisor d of n − 1.

Exercise L.2. Show by means of an example that the condition that X is finite
cannot be omitted from Frobenius’ theorem.

Exercise L.3. (a) Let R be a ring, I ⊂ R a left ideal of finite index, and H a
subgroup of the group R∗ of units of R such that for all a ∈ H \ {1} one has
R = (a− 1)R + I. Prove that X = R/I and G = {σ : X → X : there exist a ∈ H,
b ∈ R : for all x ∈ R : σ(x mod I) = (ax + b mod I)} satisfy the conditions of
Frobenius’ theorem. What is N?

(b) Show how to recover the examples Dn (n odd) from (a).

∗Exercises from lectures at Vrije Universiteit (Free University) Amsterdam, Fall 2010, by
Gabriele Dalla Torre, gabrieledallatorre@gmail.com
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Exercise L.4. (a) Apply Exercise L.3 to the subring R = Z[i, j] of the division
ring H = R + R · i + R · j + R · ij of quaternions to construct a Frobenius group
G of order 8 · 9 and degree 9 such that G contains the quaternion group Q = 〈i, j〉
of order 8.

(b) Apply Exercise L.3 to R = Z[i, (1 + i + j + ij)/2] to construct a Frobenius
group of order 24 · 25 and degree 25 that contains Q.

Exercise L.5*. Can you think of an example of a Frobenius group whose Frobe-
nius kernel is non-abelian?

Exercise L.6. (a) Let R be a ring. Prove that there is a unique ring homomor-
phism Z → R.

(b) Let M be an abelian group. Prove that M has a unique Z-module structure.

Exercise L.7 Chinese reminder theorem. (a) Let R be a commutative ring,
t ∈ Z≥2, and let I1, . . . , It be ideals of R such that for any two distinct indices
i, j one has Ii + Ij = R. Prove that

∩t
i=1 Ii =

∏t
i=1 Ii, and show that the ring

R/
∏t

i=1 Ii is isomorphic to the product ring
∏t

i=1 R/Ii.
(b) Let the commutativity assumption on R in (a) be dropped, and interpret

“ideal” to mean “two-sided ideal”. Show how one can replace the product ideal
by a suitable sum of product ideals so that the statements in (a) remain correct.

Exercise L.8. Let R be a ring, M an R-module, and x ∈ M . Write Ann x =
{r ∈ R : rx = 0} (the annihilator of x), and Rx = {rx : r ∈ R} ⊂ M .

(a) Prove that Ann x is a left ideal of R, that Rx is a sub-R-module of M , and
that there is an isomorphism R/ Ann x ∼= Rx of R-modules.

(b) We call M cyclic (as an R-module) if there exists x ∈ M with M = Rx.
Prove: M is cyclic if and only if there exists a left ideal I ⊂ R with M ∼= R/I.

Exercise L.9. (a) Let R be a domain, i. e. a commutative ring with 1 6= 0 without
zero-divisors, and let M be an R-module. A torsion element of M is an element
x ∈ M with Ann x 6= {0} (see Exercise L.8). Prove that the set Mtor of torsion
elements is a submodule of M .

(b) Give an example of a ring R and an R-module M for which {x ∈ M :
Ann x 6= {0}} is not a submodule of M .

Exercise L.10. Let k be a field, and denote by R the ring {(a
b

0
c) : a, b, c ∈ k} of

lower-triangular 2×2-matrices over k. In this exercise all R-modules are described.
(a) Let V and W be k-vector spaces, and let f : V → W be a k-linear map.

Prove that the group V ⊕ W is an R-module with multiplication (a
b

0
c) · (v, w) =

(av, b · f(v) + cw) (for a, b, c ∈ k, v ∈ V , w ∈ W ).
(b) Prove that, up to isomorphism, any R-module is obtained as in (a).

Exercise L.11. Let Q[X] be the polynomial ring in one indeterminate X over
the field Q of rational numbers, and let M be the Q-vector space consisting of
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all sequences (ai)
∞
i=0 = (a0, a1, a2, . . .) of elements ai of Q. Make M into a Q[X]-

module by putting

X · (a0, a1, a2, . . .) = (a1, a2, a3, . . .).

Let (Fi)
∞
i=0 = (F0, F1, F2, . . .) = (0, 1, 1, 2, 3, 5, 8, 13, . . .) be the sequence of Fi-

bonacci numbers, defined by F0 = 0, F1 = 1, Fi+2 = Fi+1 + Fi (i ≥ 0). Prove that
Ann

(
(Fi)

∞
i=0

)
is the Q[X]-ideal generated by X2 − X − 1.

Exercise L.12. Let A be one of the groups Z, Q, Z/12Z, and let B be one of
the groups Z, Q, Z/18Z. To which ‘known’ group is HomZ(A,B) isomorphic?
Motivate all your nine answers.

Exercise L.13. Let R, S, T be rings, let M be an R-S-bimodule, and let N be
an R-T -bimodule. Exhibit an S-T -bimodule structure on the group R Hom(M,N)
of R-linear maps M → N .

Exercise L.14. Let R1 and R2 be rings, and let R be the ring R1 × R2. Let Li

and Mi be Ri-modules, for i = 1, 2, and define the R-modules L and M by L =
L1 ×L2 and M = M1 ×M2. Prove that there is a bijective map HomR1(L1,M1)×
HomR2(L2,M2) → HomR(L,M) sending the pair (f1, f2) to the map f : L → M
defined by f(x1, x2) = (f1(x1), f2(x2)) (for x1 ∈ L1, x2 ∈ L2).

Exercise L.15. Let G = 〈σ〉 be a group of order 2, and let Z[G] be the group
ring of G over the ring Z of integers. For a Z[G]-module M , write M+ = {x ∈ M :
σx = x} and M− = {x ∈ M : σx = −x}. Prove: for every Z[G]-module M there
is an exact sequence

0 → L → M+ ⊕ M− → M → N → 0

of Z[G]-modules, where the middle arrow sends (x, y) to x + y, and where L and
N are Z[G]-modules with L = L+ = L− and N = N+ = N−.

Can you find an example of a Z[G]-module M for which L and N are both
non-zero?

Exercise L.16. Let A be the abelian group
∏

p Z/pZ, and let B be the subgroup⊕
p Z/pZ of A; in both cases, p ranges over the set of primes. Let C be the abelian

group A/B.
(a) Prove: for each positive integer n, the map C → C sending x to nx is

bijective.
(b) Prove: the group C has a module structure over the field Q of rational

numbers.

Exercise L.17. Let A be the ring
∏

p Fp with componentwise ring operations, the
product ranging over all prime numbers p.
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(a) Prove that A contains Z as a subring.
(b) Let R = {a ∈ A : there exists n ∈ Z, n 6= 0, such that na ∈ Z}. Prove

that R is a subring of A, and that there is an exact sequence of abelian groups

0 →
⊕

p

Fp → R → Q → 0.

Does this sequence split?

Exercise L.18. Let R be a ring. The opposite ring Ropp has the same underlying
additive group as R, but with multiplication ∗ defined by a∗b = ba, for a, b ∈ Ropp.

(a) Prove that, for every positive integer n and every commutative ring A, the
ring M(n,A) of n × n-matrices over A is isomorphic to its opposite.

(b) * Is every ring isomorphic to its opposite? Give a proof or a counterexample.

Exercise L.19. Let I be an infinite set, for each i ∈ I let Ri be a non-zero
ring, and let R be the product ring

∏
i∈I Ri. Construct an R-module M that

is not isomorphic to an R-module of the form
∏

i∈I Mi, with each Mi being an
Ri-module and R =

∏
i∈I Ri acting componentwise on

∏
i∈I Mi.

Exercise L.20. (This exercise counts for two). Prove the structure theorem for
finitely generated modules over a principal ideal domain.

Exercise L.21. Let R be a ring. In class we defined two R-modules to be Jordan-
Hölder isomorphic if they have isomorphic chains of submodules. Prove that this
is an equivalence relation on the class of all R-modules.

Exercise L.22. Are Z × (Z/3Z) × (Z/75Z) and Z × (Z/14Z) Jordan-Hölder iso-
morphic as Z-modules? Motivate your answer.

Exercise L.23. Are Z and Z × Z Jordan-Hölder isomorphic as Z-modules? Mo-
tivate your answer.

Exercise L.24. Let R be a ring, and let M be an R-module of finite length with
composition series (Mi)

l(M)
i=0 . ‘The’ semisimplification Mss of M is the R-module

Mss =

l(M)⊕
i=1

(Mi/Mi−1).

Prove: M and its semisimplification are Jordan-Hölder isomorphic.

Exercise L.25. Let R be a ring, let K, L, M , N be R-modules, and let f : K → L,
g : L → M , h : M → N be R-linear maps such that h ◦ g ◦ f = 0 (the zero map).
Construct an exact sequence

0 → ker f → ker(g ◦ f) → ker g →
(
ker(h ◦ g)

)
/ im f →
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(ker h)/ im(g ◦ f) → cok g → cok(h ◦ g) → cok h → 0

of R-modules, where ker denotes kernel, im denotes image, and cok denotes cok-
ernel.

This result is often called the snake lemma. Can you see why?

Exercise L.26. (a) Let n ∈ Z>0, and let 1 → A1 → A2 → . . . → An → 1 be
an exact sequence of groups. Suppose that all Ai with at most one exception are
finite. Prove that they are all finite, and that one has

∏n
i=1(#Ai)

(−1)i
= 1.

(b) Let n ∈ Z>0, and let A0 → A1 → . . . → An → A0 be an exact sequence
of groups such that the kernel of the first map equals the image of the last. Sup-
pose that all Ai with at most one exception are finite. Prove that they are all
finite, that

∏n
i=0 #Ai is the square of some integer, and that for odd n one has∏n

i=0(#Ai)
(−1)i

= 1.

Exercise L.27. (a) Let R be the ring from Exercise L.17. Prove that the multi-
plication map R × R → R induces an isomorphism R ⊗Z R → R.

(b) Let M be an R-R-bimodule. Prove that for all r ∈ R and m ∈ M one has
rm = mr.

Exercise L.28. Let A, B, C be groups. A map f : A × B → C is called bilinear
if for all α, α′ ∈ A and β, β′ ∈ B one has f(αα′, β) = f(α, β) · f(α′, β) and
f(α, ββ′) = f(α, β) · f(α, β′).

(a) Suppose f : A×B → C is bilinear. Prove that the subgroup of C generated
by f(A × B) is abelian.

(b) Exhibit a bijection between the set of bilinear maps A × B → C and the
set of group homomorphisms (A/[A,A]) ⊗Z (B/[B,B]) → C.

Exercise L.29. Let A and B be subgroups of a group G. Prove that the map
A × B → G sending (α, β) to the commutator [α, β] = αβα−1β−1 is bilinear (as
defined in Exercise L.28) if and only if the image of this map is contained in the
center of the subgroup of G generated by A and B.

Exercise L.30. Let n be an integer, A an additively written abelian group, and
nA : A → A the map a 7→ na. Prove: (Z/nZ) ⊗Z A ∼= cok nA.

Exercise L.31. A torsion group is a group of which every element has finite order.
A group B is called divisible if for each m ∈ Z>0 and each b ∈ B there exists c ∈ B
with cm = b. Prove: if A and B are abelian groups such that A is torsion and B
is divisible, then A ⊗Z B = 0.

Exercise L.32. Describe the group A ⊗Z B when each of A and B is one of the
following: (a) finite cyclic; (b) infinite cyclic; (c) the Klein four group; (d) the
additive group Q; and (e) Q/Z. (Be sure to cover all combinations.)
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Exercise L.33. Construct a non-trivial abelian group A such that A ⊗Z A = 0.
Can such a group be finitely generated?

Exercise L.34. Let A, B, C be additively written abelian groups, and let f : A×
B → C be a bilinear map that is also a group homomorphism. Prove that f is the
zero map.

Exercise L.35. In this exercise, all tensor products are over Z.
Is the tensor product of two finitely generated abelian groups finitely generated?

Is the tensor product of two finite abelian groups finite? Give in each case a proof
or a counterexample.

Exercise L.36. Suppose that A and B are non-zero finitely generated abelian
groups. Prove: A⊗ZB = 0 if and only if A and B are finite with gcd(#A, #B) = 1.

Exercise L.37. Let k be a field, let V be the k-vector space k2, and let M2(k)
be the ring of 2 × 2-matrices over k. We view M2(k) as a k-vector space in the
natural way. Define the map f : V × V → M2(k) by f

(
(a, b), (c, d)

)
=

(
ac
bc

ad
bd

)
.

(a) Prove that f is k-bilinear, and that the image of f consists of the set of
2 × 2-matrices over k of rank at most 1.

(b) Prove that the pair
(
M2(k), f

)
is a tensor product of V and V over k, as

defined in class.
(c) Prove that not every element of V ⊗k V is of the form x⊗ y, with x, y ∈ V .

Exercise L.38. Let A and B be abelian groups.
(a) Prove: if at least one of A and B is cyclic, then every element of A⊗Z B is

of the form x ⊗ y, with x ∈ A, y ∈ B.
(b) Suppose A is finitely generated. Prove: A is cyclic if and only if every

element of A ⊗Z A is of the form x ⊗ y, with x, y ∈ A.

Exercise L.39. Let A be an additively written abelian group. For n ∈ Z, we
write nA = {nx : x ∈ A}. Let a ∈ A.

(a) Prove: the element a ⊗ a of A ⊗Z A equals 0 if there exists n ∈ Z with
na = 0 and a ∈ nA.

(b) Is the statement in (a) valid with “if” replaced by “only if”? Give a proof
or a counterexample.

Exercise L.40. Let S be a finite simple group. By an S-degree we mean a function
that assigns to each finite separable field extension k ⊂ l a positive rational number
[l : k]S such that the following two axioms are satisfied:

(i) if k ⊂ l is a Galois extension with a simple group G, then one has [l : k]S =
[l : k] if G ∼= S, and [l : k]S = 1 if G 6∼= S;

(ii) one has [m : k]S = [m : l]S · [l : k]S whenever k ⊂ l and l ⊂ m are finite
separable field extensions.

Prove that there exists a unique S-degree.
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In the following three problems we let the S-degree [l : k]S of a finite separable
field extension k ⊂ l be as in the previous exercise.

Exercise L.41. Let k ⊂ l be a finite separable field extension. Prove that, as S
ranges over all finite simple groups up to isomorphism, all but finitely many of the
numbers [l : k]S are equal to 1, and that one has

[l : k] =
∏
S

[l : k]S.

Exercise L.42. Let k ⊂ l be a finite separable field extension. We call k ⊂ l
solvable if the Galois group of the Galois closure of k ⊂ l is solvable.

(a) Prove: if k ⊂ l is solvable, then one has [l : k]S = 1 for every non-abelian
finite simple group S.

(b) Suppose that [l : k] = 5, and that k ⊂ l is not solvable. Determine [l : k]S
for all finite simple groups S.

Exercise L.43. Let k ⊂ l be a finite separable field extension.
(a) Suppose that m is a finite Galois extension of k inside some overfield of l,

with m∩ l = k. Prove that for all finite simple groups S one has [m · l : m]S = [l :
k]S.

(b) Is the converse of Exercise L.42(a) true? Give a proof or a counterexample.

Exercise L.44. (This exercise counts for two). Let M be a Z-module. Prove the
following facts.

(a) The module M is semisimple if and only if every x ∈ M has finite square-
free order.

(b) The module M is injective if and only if it is divisible.
(c) The module M is projective if and only if it is free over Z.
(d) If M satisfies two of the previous three properties, then M = {0}.
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