Definition

Let G be a group and N a subgroup. Then N is called *normal* if and only if gN = Ng for all $g \in G$.

Proposition

If N is a normal subgroup of G, then the product defined by $gN \cdot hN = ghN$ on G/N defines a group on G/N.

Definition A group *G* is called *simple* if its only normal subgroups are

 $\{1\}$ and G.

Example

An abelian simple group is cyclic of prime order.

Example

The alternating group A_n , with $N \ge 5$ is simple.

If G is a group, one can construct a tower of subgroups

$$\{1\} \lhd G_1 \lhd \cdots G_n \lhd G,$$

such that each quotient G_{i+1}/G_i is simple.

The Jordan-Hölder Theorem states that the composition factors G_{i+1}/G_i are (up to permutation of *i* and isomorphism) uniquely determined.

Definition

A group G is called *solvable* if there is a sequence of subgroups

```
\{1\} \lhd G_1 \lhd \cdots G_n \lhd G,
```

such that each quotient G_{i+1}/G_i is abelian.

Example

The group A_4 is solvable.

Example

The group of upper triangular invertible $n \times n$ -matrices is solvable.

Theorem

Let G be a finite group of prime power order, then G is solvable.

Proof.

If G is abelian, there is nothing to prove.

So, assume G is not abelian.

G acts on itself by conjugation. The size of a conjugacy class of an element $g \in G$ equals $|G|/|C_G(g)|$, which is 1 if $g \in Z(G)$ and divisible by *p* otherwise.

This implies that the order of Z(G) is divisible by p. In particular, $1 \neq Z(G) \neq G$.

Clearly, Z(G) is solvable and, by induction, G/Z(G) is solvable. But then also G is solvable.

Definition

Let G be a finite group and p a prime dividing the order of G. A Sylow p-subgroup of G is a subgroup of G of order p^n , where p^n is the highest power of p dividing the order of G.

Figure: Ludwig Sylow, 1832-1918

Theorem (Sylow, 1872)

Let G be a finite group and p a prime dividing the order of G. Then the following hold:

- G contains a Sylow p-subgroup;
- G contains an element of order p;
- all Sylow p-subgroups of G are conjugate;
- the number of Sylow p-subgroups divides |G| and is 1 modulo p.

Proposition

Suppose p and q are prime. Let G be a group of order pq. Then G is solvable.

Proof.

If p = q, we can apply the previous result. Suppose p < q. The number of Sylow *q*-subgroups is 1 mod *q* and divides *p*. Thus, there is only one *q*-Sylow subgroup, *Q* say. The group *Q* is normal in *G*. Both *Q* and *G*/*Q* are of prime power order, and hence solvable. Thus, also *G* is solvable.

Two famous results

Theorem (Burnside, 1897)

Let p and q be two primes. A group G of order $p^{\alpha}q^{\beta}$ is solvable.

Figure: William Burnside, 1852-1927

Theorem (Feit-Thompson, The Odd Order Theorem, 1963) *A finite group of odd order is solvable.*

This result was conjectured by Burnside.

Corollary

A non-abelian finite simple group contains an involution.

The Odd Order Theorem is the starting point to the classification of all non-abelian simple groups.

Theorem (Brauer-Fowler, 1956)

Let H be a finite group. Then there are only finitely many finite simple groups G containing an involution t in G with $C_G(t)$ isomorphic to H.

Figure: Thompson and Tits, winners of the Abel price for their work on finite simple groups

Theorem The finite simple groups are known!

Theorem (Schreier's conjecture)

The outer automorphism group of a simple group is solvable.

Towards a proof of Burnside's Theorem

Theorem

If G is a finite group containing a conjugacy class C of size a power of a prime, then $N = \langle gh^{-1} | g, h \in C \rangle$ is a proper normal subgroup of G.

Proof of Burnside's Theorem.

Fix a Sylow *p*-subgroup *P* of *G*. Then Z(P) is non-trivial. Let $1 \neq z \in Z(P)$. Now $P \leq C_G(z)$. So, either $z \in Z(G)$ or z^G is a conjugacy class of order q^n .

In both cases G contains a proper normal subgroup, and we can apply induction to finish the proof.