MasterMath: Representation Theory

Hans Cuypers and Shona Yu

Week 11 - November $16^{\text {th }} 2010$

Select 4 exercises in total from this and previous sheets to hand in (on paper or electronically to s.h.yu@tue.nl but please send all Leiden exercises to gdt@math.leidenuniv.nl) by Tuesday November $30^{\text {nd }} 2010$.

1. Consider the group $G=\mathfrak{S}_{4}$ and the subgroup $H=\langle(123)\rangle \cong C_{3}$.
(a) If $\chi_{1}, \ldots, \chi_{5}$ are the irreducible characters of G (see e.g., Exercise L.71), work out the restrictions $\operatorname{Res}_{H}^{G} \chi_{i}$, for each $1 \leq i \leq 5$, as sums of the irreducible characters $\phi_{1}, \phi_{2}, \phi_{3}$ of C_{3}.
(b) Calculate the induced characters $\operatorname{Ind}_{H}^{G} \phi_{j}$, for each $1 \leq j \leq 3$, as sums of the irreducible characters χ_{i} of G.
2. Suppose G is a group. Let χ be a character of G and ϕ a character of a subgroup $H \leq G$. For $x \in G$, define the class function φ_{x}^{G} on G by

$$
\varphi_{x}^{G}(g)= \begin{cases}1 & \text { if } g \in[x] \\ 0 & \text { if } g \notin[x]\end{cases}
$$

φ is the characteristic function of the conjugacy class $[x]$.
(a) Prove that

$$
\left\langle\chi, \varphi_{x}^{G}\right\rangle_{G}=\frac{\chi(x)}{\left|C_{G}(x)\right|} .
$$

(b) Use part (a) and Frobenius Reciprocity to show that
(1) If no element of $[x]$ lies in H, then $\left(\operatorname{Ind}_{H}^{G} \phi\right)(x)=0$.
(2)

$$
\left(\operatorname{Ind}_{H}^{G} \phi\right)(x)=\left|C_{G}(x)\right|\left(\frac{\phi\left(x_{1}\right)}{\left|C_{H}\left(x_{1}\right)\right|}+\cdots+\frac{\phi\left(x_{m}\right)}{\left|C_{H}\left(x_{m}\right)\right|}\right),
$$

where $x_{1}, \ldots, x_{m} \in H$ and $\operatorname{Res}_{H}^{G}\left(\varphi_{x}^{G}\right)=\varphi_{x_{1}}^{H}+\ldots+\varphi_{x_{m}}^{H}$.
3. Let G be a finite permutation group with character π over \mathbb{C}, and $\chi_{1}(G)$ be the trivial character of G over \mathbb{C}. Then recall that the number of G-orbits is equal to $\left\langle\pi, \chi_{1}(G)\right\rangle_{G}$. If G is transitive and H is a point stabilizer in G, then prove that the number of H-orbits equals $\langle\pi, \pi\rangle_{G}=\frac{1}{|G|} \sum_{x \in G}(\pi(x))^{2}$.
4. Let H be a subgroup of G, φ a character of H, and let χ be a character of G. Prove that

$$
\operatorname{Ind}_{H}^{G}\left(\varphi\left(\operatorname{Res}_{H}^{G} \chi\right)\right)=\left(\operatorname{Ind}_{H}^{G} \varphi\right) \chi .
$$

[Hint: Consider the inner product of each side with an arbitrary irreducible character of G, and use Frobenius Reciprocity.]
5. Let G be a group with an abelian subgroup H such that there exists a series of subgroups $H=N_{0} \subset \ldots \subset N_{l}=G$, where each $N_{i} \triangleleft N_{i+1}$. Prove that if χ is an irreducible complex character of G, then $\chi(1)$ divides $[G: H]$. [Hint: Let G be a group with normal subgroup N, and V an irreducible $\mathbb{C} G$-module such that V_{N} is the direct sum of s irreducible $\mathbb{C} N$-modules, then s divides $[G: N]$.]
6. Consider $G=P S L_{3}(2)$, the projective special linear group of degree three over the field \mathbb{F}_{2} of two elements. $\left(G \cong S L_{3}(2) \cong G L_{3}(2) \cong\right.$ $\left.P S L_{2}(7)\right)$. The group G is simple and has order 168. It is 2-transitive on the 7 points of the projective plane of order 2 . The point stabilizer is the subgroup $H=S L_{2}(2) \ltimes \mathbb{F}_{2}^{2}$, which is the split extension of $S L_{2}(2) \cong \mathfrak{S}_{3}$ by \mathbb{F}_{2}^{2} and is of order 24. This question aims to construct the character table of G using induction from this subgroup H.

By studying the action of G on the 7 points of the Fano plane, one can determine the conjugacy classes of G whose orders are given in the following table:

conj class	1	C_{2}	C_{4}	C_{3}	C_{7}	C_{7}^{\prime}
number of elts	1	21	42	56	24	24

The group H has a normal subgroup $N \cong \mathbb{F}_{2}^{2}$ with quotient isomorphic to \mathfrak{S}_{3}. The 24 elements of H can be partitioned as follows: the identity element 1 , a subset I_{3} consisting of 3 involutions in N, a subset I_{6} of 6 involutions not in N, a subset E_{8} of 8 elements of order 3, and a subset E_{6} of 6 elements of order 4 . It is well-known that there are two 1 -dimensional irreducible representations of \mathfrak{S}_{3}. Composing the map $H \rightarrow H / N$ with these produces the following table for the corresponding characters

	1	I_{3}	I_{6}	E_{8}	E_{6}
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	1	-1

(a) Using an induction of characters formula applied to the characters in the above table, fill in the following table.

conj class	1	C_{2}	C_{4}	C_{3}	C_{7}	C_{7}^{\prime}
number of elts	1	21	42	56	24	24
$\operatorname{Ind}_{H}^{G} \chi_{1}$						
$\operatorname{Ind}_{H}^{G} \chi_{2}$						

(b) Let φ_{1} be the trivial character of G. Consider the characters $\varphi_{2}:=\operatorname{Ind}_{H}^{G}\left(\chi_{1}\right)-\varphi_{1}$ and $\varphi_{3}:=\operatorname{Ind}_{H}^{G} \chi_{2}$. Explain why φ_{2} and φ_{3} are irreducible. Furthermore, determine the values of the remaining three irreducible characters $\varphi_{4}, \varphi_{5}, \varphi_{6}$, evaluated at 1 .
(c) Using the properties and relations on characters you have learnt (e.g., the column orthogonality relations), complete the rest of the character table.

conj class	1	C_{2}	C_{4}	C_{3}	C_{7}	C_{7}^{\prime}
number of elts	1	21	42	56	24	24
φ_{1}						
φ_{2}						
φ_{3}						
φ_{4}						
φ_{5}						
φ_{6}						

