MasterMath: Representation Theory

Hans Cuypers and Shona Yu

Week 12 - November $23^{\text {th }} 2010$

Select 4 exercises in total from this and previous sheets to hand in (on paper or electronically to s.h.yu@tue.nl but please send all Leiden exercises to gdt @math.leidenuniv.nl) by Tuesday December $7^{\text {th }} 2010$.

1. Prove that there exists an irreducible representation of A_{5} of degree 3 over \mathbb{C}. Show that this representation is not induced from a representation of some subgroup of A_{5}.
2. Let μ be a faithful character of a representation of a group G over \mathbb{C}; faithful here means that μ has a trivial kernel.
Put $\mu(G):=\{\mu(x) \mid x \in G\}$. Then $|\mu(G)|$ is the number of distinct values μ assumes on G. Prove that each irreducible character ζ of G appears with positive multiplicity in at least one of $\mu^{0}\left(=1_{G}\right)$, $\mu, \mu^{2}, \ldots, \mu^{t-1}$, where $t=|\mu(G)|$. [Hint: You may use the fact that the Vandermonde determinant $\operatorname{det}\left(\mu^{i}\left(x_{j}\right)\right)$ is non zero].
3. Let H be a subgroup of G and ψ a character of H over \mathbb{C}. Let $x \in G$, and let L be the conjugacy class containing x. Prove the following holds.

$$
\left(\operatorname{Ind}_{H}^{G} \psi\right)(x)=\frac{\left|C_{G}(x)\right|}{|H|} \sum_{y \in L \cap H} \psi(y) .
$$

4. Prove that the Frobenius Reciprocity formula characterizes induction of class functions. In other words, show that if ψ and ψ^{\prime} are class functions of H and G, respectively, satisfying the condition

$$
\left(\psi^{\prime}, \zeta\right)=\left(\psi, \operatorname{Res}_{H}^{G} \zeta\right), \text { for all class functions } \zeta \text { of } G,
$$

then $\psi^{\prime}=\operatorname{Ind}_{H}^{G} \psi$.
5. Show that no simple group has an irreducible character (over \mathbb{C}) of degree 2. [Hints: You may use the following facts - (1) Recall that the derived subgroup G^{\prime} of G is the subgroup of G which is generated by all elements of the form $g^{-1} h^{-1} g h$, where $g, h \in G$. The number of distinct linear characters of G is equal to $\left|G / G^{\prime}\right|$, and so divides $|G|$; (2) Suppose ρ is a representation of G over \mathbb{C}. Then $\delta: g \rightarrow \operatorname{det}(g \rho)$, where $g \in G$, is a linear character of G.
6. Theorem: An irreducible representation V (with corresponding character function χ) must be one and only one of the following:
(1) Complex: χ is not real-valued; V does not have a G-invariant non-degenerate bilinear form.
(2) Real: $V=V_{0} \otimes_{\mathbb{R}} \mathbb{C}$, where V_{0} is a real vector space on which G acts; V has a G-invariant symmetric non-degenerate bilinear form.
(3) Quaternionic: χ is real, but V is not real; V has a G-invariant skew-symmetric non-degenerate bilinear form. [Recall: Definition - A (complex) representation V is quaternionic if it has a G-invariant homomorphism $\varphi: V \rightarrow V$ which is conjugate linear and satisfies $\left.\phi^{2}=-\mathrm{id}\right]$.

Let V be an irreducible representation of G over \mathbb{C} and χ be the corresponding character function. Show that

$$
\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)=\left\{\begin{aligned}
0 & \text { if } V \text { is complex; } \\
1 & \text { if } V \text { is real } \\
-1 & \text { if } V \text { is quaternionic }
\end{aligned}\right.
$$

(Note: This implies that if the order of G is odd, all nontrivial representations must be complex).
7. (a) Let $n>2$. Consider the representation of $\mathbb{Z} / n \mathbb{Z}$ on \mathbb{R}^{2} given by

$$
\rho: k \mapsto\left(\begin{array}{cc}
\cos \left(\frac{2 \pi k}{n}\right) & -\sin \left(\frac{2 \pi k}{n}\right) \\
\sin \left(\frac{2 \pi k}{n}\right) & \cos \left(\frac{2 \pi k}{n}\right)
\end{array}\right)
$$

ρ is irreducible over \mathbb{R}. Is it also irreducible over \mathbb{C} ? Explain why.
(b) Let V_{0} be a real vector space on which G acts irreducibly, and $V=V_{0} \otimes_{\mathbb{R}} \mathbb{C}$ be the corresponding real representation of G. Show that if V is not irreducible, then it has exactly two irreducible factors, and they are conjugate complex representations of G.

