MasterMath: Representation Theory

Hans Cuypers and Shona Yu

Week 2 - September 14^{th} 2010

Select 4 in total out of the following exercises and part 2 of last week's exercises to hand in (on paper or electronically to s.h.yu@tue.nl) by Tuesday September 28th 2010.

- 1. Compute all the composition series of \mathbb{Z}_{48} , $\mathfrak{S}_3 \times \mathbb{Z}_2$ and the dihedral group D_5 . Also, show that an infinite abelian group has no composition series. [**Hint:** an infinite abelian group always has a proper normal subgroup].
- 2. Let G be a group of order p^n , where p is prime. Suppose H is a proper subgroup of G. Prove that $N_G(H)$ does contain H as a proper subgroup.
- 3. Let G be a group of order $p^m q$, where p, q are distinct primes.
 - (a) By Sylow's third theorem, the number of Sylow p-subgroups is q. Prove that, if every pair of Sylow p-subgroups has a trivial intersection, then the number of Sylow q-subgroups is 1, and hence G is not simple.
 - (b) Now suppose that there exists two Sylow *p*-subgroups P_1 , P_2 of *G* with non-trivial intersection. Choose such P_1 and P_2 with the largest intersection possible, and let $N_i = N_{P_i}(P_1 \cap P_2)$ and $J = \langle N_1, N_2 \rangle$. Then prove that *J* is not a *p*-group. [Hint: You may use the fact that if *L* is a finite *p*-group, then $H < N_L(H)$, for any subgroup H < L, see the above exercise].
 - (c) Thus finish the proof that G is not simple by considering a Sylow q-subgroup of J and showing that P_1 contains the intersection of all the normal subgroups of G containing $P_1 \cap P_2$.
- 4. Let G be a group with a finite normal subgroup K and P denote a Sylow p-subgroup of K. Show that $KN_G(P) = G$. [Hint: Show that G acts transitively on the set of Sylow p-subgroups of K by conjugation].
- 5. If G is a transitive subgroup of \mathfrak{S}_n (i.e. the action of G on $\{1, \ldots, n\}$, as a subgroup of \mathfrak{S}_n , is transitive), show that

$$\sum_{g \in G} |Fix(g)| = |G| \quad \text{and} \quad \sum_{g \in G} |Fix(g)|^2 = m|G|,$$

where m is the number of orbits of the point stabilizers of G.

6. Give an example of a transitive permutation group of infinite degree in which every element has infinitely many fixed points.