# MasterMath: Representation Theory 

Hans Cuypers and Shona Yu

Week 2 - September $14^{\text {th }} 2010$

Select 4 in total out of the following exercises and part 2 of last week's exercises to hand in (on paper or electronically to s.h.yu@tue.nl) by Tuesday September $28^{\text {th }} 2010$.

1. Compute all the composition series of $\mathbb{Z}_{48}, \mathfrak{S}_{3} \times \mathbb{Z}_{2}$ and the dihedral group $D_{5}$. Also, show that an infinite abelian group has no composition series. [Hint: an infinite abelian group always has a proper normal subgroup].
2. Let $G$ be a group of order $p^{n}$, where $p$ is prime. Suppose $H$ is a proper subgroup of $G$. Prove that $N_{G}(H)$ does contain $H$ as a proper subgroup.
3. Let $G$ be a group of order $p^{m} q$, where $p, q$ are distinct primes.
(a) By Sylow's third theorem, the number of Sylow $p$-subgroups is $q$. Prove that, if every pair of Sylow $p$-subgroups has a trivial intersection, then the number of Sylow $q$-subgroups is 1 , and hence $G$ is not simple.
(b) Now suppose that there exists two Sylow $p$-subgroups $P_{1}, P_{2}$ of $G$ with non-trivial intersection. Choose such $P_{1}$ and $P_{2}$ with the largest intersection possible, and let $N_{i}=N_{P_{i}}\left(P_{1} \cap P_{2}\right)$ and $J=\left\langle N_{1}, N_{2}\right\rangle$. Then prove that $J$ is not a $p$-group. [Hint: You may use the fact that if $L$ is a finite $p$-group, then $H<N_{L}(H)$, for any subgroup $H<L$, see the above exercise].
(c) Thus finish the proof that $G$ is not simple by considering a Sylow $q$-subgroup of $J$ and showing that $P_{1}$ contains the intersection of all the normal subgroups of $G$ containing $P_{1} \cap P_{2}$.
4. Let $G$ be a group with a finite normal subgroup $K$ and $P$ denote a Sylow $p$-subgroup of $K$. Show that $K N_{G}(P)=G$. [Hint: Show that $G$ acts transitively on the set of Sylow $p$-subgroups of $K$ by conjugation].
5. If $G$ is a transitive subgroup of $\mathfrak{S}_{n}$ (i.e. the action of $G$ on $\{1, \ldots, n\}$, as a subgroup of $\mathfrak{S}_{n}$, is transitive), show that

$$
\sum_{g \in G}|F i x(g)|=|G| \quad \text { and } \quad \sum_{g \in G}|F i x(g)|^{2}=m|G|,
$$

where $m$ is the number of orbits of the point stabilizers of $G$.
6. Give an example of a transitive permutation group of infinite degree in which every element has infinitely many fixed points.

