MasterMath: Representation Theory

Hans Cuypers and Shona Yu

Week 8 - October 26^{th} 2010

Select 4 exercises in total from this and previous sheets to hand in (on paper or electronically to s.h.yu@tue.nl but please send all Leiden exercises to gdt@math.leidenuniv.nl) by Tuesday November 9nd 2010.

- 1. (a) Describe the restriction of the irreducible representations of \mathfrak{S}_3 to \mathfrak{S}_2 , and give the decomposition of $\operatorname{Ind}_{\mathfrak{S}_2}^{\mathfrak{S}_3}(U)$, where U is the sign representation of \mathfrak{S}_2 , into irreducibles.
 - (b) Let G be the dihedral group of order 8 with presentation $D_8 = \langle a, b | a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ and let H be the subgroup $\langle a^2, b \rangle$. Define V to be the $\mathbb{C}H$ -submodule of $\mathbb{C}H$ spanned by $1 a^2 + b a^2b$. Find a basis of the induced $\mathbb{C}G$ -module $\mathrm{Ind}_H^G(V)$. Is it irreducible?
- 2. Let G be a finite group and k an algebraically closed field. Suppose k[G] is semisimple. Use Frobenius reciprocity to prove that every simple submodule S of k[G] occurs with multiplicity $\dim_k(S)$ in k[G].
- 3. Let G be the symmetric group \mathfrak{S}_n , where $n \ge 6$, and X_i be the set of all subsets of $\{1, \ldots, n\}$ of size *i*.
 - (a) Suppose $i, j < \frac{n}{2}$. Let H be the stabilizer in G of an element in X_i . Determine the number of orbits of H on X_j .
 - (b) Prove that the permutation representation of G on X_i over the field \mathbb{C} is the sum of i + 1 distinct simple submodules.
- 4. Let k be a field. Suppose G is a finite group and H a subgroup of G. Prove that if W is a k[H]-module and V a k[G]-module, then $\operatorname{Ind}_{H}^{G}(W \otimes_{k} \operatorname{Res}_{H}^{G}(V))$ and $\operatorname{Ind}_{H}^{G}(W) \otimes_{k} V$ are isomorphic as k[G]-modules.
- 5. Let H be a normal subgroup of a finite group G. Suppose V is a k[G]-module and W a k[H]-submodule of $\operatorname{Res}_{H}^{G}(V)$.
 - (a) Show that gW is also a k[H]-submodule, for any $g \in G$.
 - (b) Show that $\operatorname{Ind}_{H}^{G}(W) = \operatorname{Ind}_{H}^{G}(gW)$, for any $g \in G$.
 - (c) Let $N_G(W) = \{g \in G \mid gW \text{ is isomorphic to } W\}$. Prove that $N_G(W)$ is a subgroup of G containing H, and that $|G|/|N_G(W)|$ is the number of non-isomorphic gW.

- (d) Prove that $\operatorname{Res}_{H}^{G}(\operatorname{Ind}_{H}^{G}(W)) = \frac{|N_{G}(W)|}{|H|} \bigoplus_{g \in R} gW$, where R is a set of left coset representatives of N(W) in G.
- 6. (Clifford's Theorem) Let H be a normal subgroup of a finite group G and k an algebraically closed field of characteristic 0 or $p \not| |G|$.

Suppose V is a simple k[G]-module and W a simple k[H]-submodule of $\operatorname{Res}_{H}^{G}(V)$. Recall the definition of $N_{G}(W)$ from the previous question. Let $V_{1} = \Sigma_{g \in S} gW$, where S is a set of representatives of $N_{G}(W)/H$ and $V_{2} = \Sigma_{g \in R \setminus S} gW$, where R is a set of representatives of G/H containing S.

- (a) Prove that $V = V_1 + V_2$.
- (b) Prove that $V_1 \cap V_2 = 0$.
- (c) Prove that $V = \operatorname{Ind}_{N_G(W)}^G(V_1)$.
- (d) Prove that V_1 is a simple $N_G(W)$ -module.