Problem #101

Originator: Hitoshi Ohsaki [OT02]
Date: July 2002

Summary: Are universality and inclusion of AC-recognizable languages decidable?

An AC-tree automaton as defined by [Ohs01] is given by a signature Σ, a set of AC-axioms (that is, associativity and commutativity) for some function symbols of Σ, and a set of rewrite rules R of the form

\begin{align*}
f(q_1, \ldots, q_n) & \rightarrow q \\
f(q_1, \ldots, q_n) & \rightarrow f(p_1, \ldots, p_n) \\
q & \rightarrow p
\end{align*}

where the q's and p's are state symbols. Such an automaton accepts a term t iff it rewrites t modulo the given AC-axioms to some final state. $L(A)$ denotes the language recognized by an AC-tree automaton A; a language L is called AC-recognizable iff $L = L(A)$ for some AC-tree automaton A.

Are the following questions decidable?

- **Universality:** Given an AC-tree automaton A, is $L(A)$ equal to the set of all ground terms over the given signature Σ?

- **Inclusion:** Given AC-tree automata A and B, is $L(A)$ a subset of $L(B)$?

It has been shown [OT02] that emptiness of AC-recognizable languages is decidable. Furthermore, as a consequence of the results of [ZL03], universality and inclusion are decidable if transition rules of the form $f(q_1, \ldots, q_n) \rightarrow f(p_1, \ldots, p_n)$ are not allowed (this is the sub-class of so-called *regular AC tree-automata*). However, both questions are still open in the general case.

Remark

The inclusion problem of AC-tree automata is undecidable [OTTR05]. Decidability of universality is still an open question.

http://rtaloo.pps.jussieu.fr
Bibliography

June 15, 2012