Problem #25 (Solved !)

Originator: Ralf Treinen [Tre90]
Date: April 1991

Summary: Is the Σ_2-fragment of the first-order theory of ground terms modulo AC decidable?

Consider a finite set of function symbols containing at least one AC (associative-commutative) function symbol. Let T be the corresponding set of terms (modulo the AC properties). It is known from [Tre92] that the first-order theory (Σ_3 fragment) of T is undecidable when F contains at least a non-constant symbol (besides the AC symbol). When F only contains an AC symbol and constants, the theory reduces to Presburger’s arithmetic and is hence decidable. On the other hand the Σ_1 fragment of T is always decidable [Com93]. The decidability of the Σ_2 fragment of the theory of T remains open.

Remark

Even more, the solvability of the following important particular case is open: given $t,t_1,\ldots,t_n \in T(F,X)$, is there an instance of t which is not an instance of t_1,\ldots,t_n modulo the AC axioms? This is known as complement problems modulo AC.

Several special cases have been solved [Fer93][LM93], and in unpublished work in progress.

The undecidability of the Σ_2-fragment of the first-order theory of ground terms modulo AC has been shown by [Mar99].
Bibliography

June 15, 2012