Software and Hardware Tools Used in the SAN Group
SAN PhDs and PostDocs
Outline

• Milosh: Contiki, Cooja, IoT-Lab
• Jingyue: SimEvents Toolbox
• Aleksandra: KOALA, SPARK, SWIM
• Hrishikesh: Heracles
• Mike: Grasp, Virtual Sensors
• Ehsan: Weka, RapidMiner
• Martijn: Tool for evaluating scheduling analysis
My workflow (Milosh)

• Develop in Contiki

• Debug in Cooja/MSPSim

• Simulate in Cooja

• Evaluate on FIT IoT-Lab test bed
Contiki: Open-source OS for IoT

- Low memory footprint (standard C)
- Implements many standards
- Good hardware support
- Backed by industry and academia
Contiki: usage

• Provides full low-power IP networking
 • 6LowPAN, RPL, CoAP, MQTT

• Software energy estimation

• Easy to prototype and evaluate networking protocols
Contiki: availability

• Homepage: http://www.contiki-os.org/

• Source code: https://github.com/contiki-os/contiki/

• Virtual Machine (Instant Contiki): http://goo.gl/ozkUfb

• Tutorials: https://github.com/contiki-os/contiki/wiki

• Mailing list: http://goo.gl/8UEqJg
Cooja: Cross-layer simulator

- Part of Contiki distribution
- Device emulator (only MSP430, ARM under way)
- Network simulator
- GUI and command line support
- Can log and inspect radio traces
Cooja: how it looks like
Cooja: usage

• Fast debugging (MSPSim)

• Explore parameter space
FIT IoT-Lab: large scale open testbed

- 2700 sensor nodes in 6 sites
 - MSP430, STM32 (Cortex-A3), Cortex-A8
 - 800 MHz & 2.4 GHz radios (802.15.4)
- Synthetic test bed
- Support for Contiki, FreeRTOS, Riot, TinyOS, Linux, OpenWSN
FIT IoT-Lab: how it looks like

Lille Test-Bed (https://www.iot-lab.info/deployment/lille/)
FIT IoT-Lab: usage

• Evaluate networking protocols in real-life

• Link-layer assessment on radio traffic

• Provides tools for measuring energy consumption
FIT IoT-Lab: availability

- Homepage: https://www.iot-lab.info/
- Tools: https://github.com/iot-lab/iot-lab
- Tutorials: https://github.com/iot-lab/iot-lab/wiki
Introduction of SimEvents Toolbox

Jingyue Cao
Introduction of SimEvents Toolbox

- Simulink: SimEvents Toolbox
- Key Feature: Discrete Event Simulation
- Model Example:
 - Manufacturing
 - Controls
 - Network Communications
 - System Architecture
 - General Applications
SimEvents Libraries

• **Main Functionalities**

<table>
<thead>
<tr>
<th>Term</th>
<th>Example: Network Communication</th>
<th>Relevant Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity</td>
<td>Ethernet Packet</td>
<td>Generators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinks</td>
</tr>
<tr>
<td>Attribute</td>
<td>Timing, Destination/Source Address, Size, Class/Priority, ID, etc.</td>
<td>Attributes (Set/Get)</td>
</tr>
<tr>
<td>Events (Processing of Entities)</td>
<td>Queuing, Routing, Prioritization, Selection, Transmission, etc.</td>
<td>Entity Management (Combiner/Splitter)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Input/Output Switch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Servers</td>
</tr>
</tbody>
</table>

• **Other Functionalities**
 - Integration SimEvents with Simulink: Gateways(time-based <-> event-based)
 - Integration SimEvents with Matlab workspace: Sinks(to workspace)
 - Observations: Sinks(attribute/signal scope)
Example: Network Communication (1)

- Switched Ethernet
- Packets: CD (Control Data), AV (Audio/Video), BE (Best Effort)
- Shapers: Packet selection at the output ports

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>Max Frame Size</th>
<th>Transmission Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>170B</td>
<td>500us</td>
</tr>
<tr>
<td>AV</td>
<td>322B</td>
<td>125us</td>
</tr>
<tr>
<td>BE</td>
<td>298B</td>
<td>#</td>
</tr>
</tbody>
</table>
Example: Network Communication (2)

A: Packet generation
B: Packet routing
C: Packet classification
D: Packet queuing
E: Packet selection
F: Packet transmission

TU/e Technische Universiteit Eindhoven University of Technology
Example: Network Communication (3)

Graphic Representation of Simulation Result

Traffic Load

GATE: 2 for CDT, 1 for Non-CDT

Packet Transmission after Time Aware Shaping

Queuing Delay
Software and Hardware Tools Used in the SAN Group

Aleksandra Kuzmanovska
Tools

- KOALA resource manager
- SPARK framework
- SWIM workload generator
KOALA

- Resource manager for cluster/grid/cloud
- Support various application types
 - single parallel applications, workflows, frameworks
 - provisioning across cluster and cloud environments
- Deployed on DAS4
- Usage: active development
 - Scheduling heterogeneous frameworks
 - Provisioning policies
KOALA availability

• More information: http://www.pds.ewi.tudelft.nl/koala/

• Use KOALA on DAS4 :
 • request DAS-4 account: das-account@cs.vu.nl

• Download KOALA :
 • private repository: https://svn.st.ewi.tudelft.nl/koala/
 • koala@st.ewi.tudelft.nl
SPARK

• General purpose execution engine with distributed in-memory data storage

• Support variety of applications
 • Machine learning (iterative MapReduce)
 • SQL and structured data processing
 • Graph and stream processing

• Usage: one of the frameworks scheduled with KOALA
SPARK availability

- More information: https://spark.apache.org/
- Download SPARK: git://github.com/apache/spark.git
- Mailing lists: {user, dev}@spark.apache.org
SWIM: Statistical workload injector for MapReduce systems

- Suites of workloads
 - real life workloads from production systems (MapReduce)
 - thousands of jobs,
 - complex data, arrival, and computation patterns
- Generate representative workloads
 - sampling historical MapReduce cluster traces
- Execute workloads with low performance overhead
- Usage: to generate Hadoop workloads
SWIM availability

• More information:
 https://github.com/SWIMProjectUCB/SWIM/wiki

• Download SWIM:
 https://github.com/SWIMProjectUCB/SWIM.git
Heracles
The Hero of Dataflow Analysis
Software Defined Radio
Heracles Tool

Software Spec

Model Conversions
Response Modeling
Load Characterization
Simulation

Hardware Spec

Static Scheduling
Semi-Dynamic Scheduling
Memory Management
DVFS

Performance Analysis
Resources

• Source Code: will be made available soon...
Grasp: trace visualization

Available online:
http://www.win.tue.nl/~mholende/grasp
for Linux, Mac, Windows
Example
Example
Example
Example

Diagram showing the allocation of tasks to different cores over time. The tasks are represented by different colors:
- Task 1: Green
- Task 2: Yellow
- Task 3: Orange
- Task 4: Blue

The deferrable server load is depicted along the vertical axis, with time represented on the horizontal axis.
newTask task1 -priority 7 -name "Task 1"
newTask task2 -priority 8 -name "Task 2"
plot 5 jobArrived job2.1 task2
plot 5 jobResumed job2.1
plot 20 jobArrived job1.1 task1
plot 20 jobPreempted job2.1 -target job1.1
plot 20 jobResumed job1.1
plot 35 jobCompleted job1.1 -target job2.1
plot 35 jobResumed job2.1
plot 50 jobCompleted job2.1
Virtual Sensors

Available online:
http://www.win.tue.nl/~mholende/sensors
for Linux, Mac, Windows
Project: Mantis

Sensor 1

Sensor 2

Sensor 3

Failure event

Failure event

Sensor/service failure patterns

time
Reasons for synthetic data

• Gain better **insights** into the performance of data analytics algorithms

• Avoid labeling **unlabeled** data sets

• **Evaluate** and **demonstrate** data analytics implementations
Virtual sensors
Virtual sensors

• What’s provided:
 – Easy way for specifying sensor behavior
 – Infrastructure for streaming sensor data and controlling sensor behavior

• What’s missing:
 – Realistic sensor models
WEKA & RapidMiner
Data Mining/Machine Learning Tools

Ehsan Ullah Warriach
SAN Seminar

System Architecture and Networking Group

TU/e Technische Universiteit Eindhoven
University of Technology
Where innovation starts
WEKA (Waikato Environment for Knowledge Analysis) & RapidMiner

- A collection of machine learning algorithms
 - Logistic regression, decision tree, neural networks, support vector machines, Bayes' nets, k-means, etc.;
 - Classification – arranged into predefined classes,
 - Regression – to find a function that models the data with least error,
 - Clustering – similar to classification but classes are not predefined,
 - Association rule learning – search for relationship.
- Data preprocessing and visualization
 - Discretization, normalization, resampling, attribute selection, transforming, and combining attributes.
- WEKA supports 100 operators, RapidMiner supports 500 operators.
- Java based.
- GUI interfaces.
- Data can be imported from a file in various formats:
 - WEKA → ARFF, CSV. RapidMiner → 15-18 different file formats.
Time series analysis

- Time series analysis is the process of using machine learning algorithms to model a time-dependent series of data points;
 - Predictions are made using generated model for future events based on known past events.

- Comparison of machine learning algorithms:
 - multiple linear regression (MLR)
 - artificial neural networks (ANNs)
Research Problems

• WEKA
 • Time series data analysis (SAN)
 – Fault prediction models
 – predict remaining battery lifetime of the MyriaNed (WSN platform) using real traces of battery consumption.
 • Intelligent Lighting (Aravind - SAN)
 – Missing data treatments.
• RapidMiner
 • Fault detection (DS-RUG)
 – Outlier, spikes.
 • Activity recognition (DS-RUG)
 – Presence, absence, meeting, working with PC, working without PC.
 • Vehicle types classification (DS-RUG)
WEKA resources

- WEKA Data Mining Books:
 - Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, 2nd ed.
- Download
 - WEKA (>= 3.7.3) - time series analysis environment.
- Support multiple platforms (written in java):
 - Windows, Mac OS X and Linux.
- Online tutorials
 - For beginners: https://www.youtube.com/watch?v=m7kpIBGEdkI
RapidMiner resources

- RapidMiner website: https://rapidminer.com/
- Download
 - An individual can manage online account to download RapidMiner (software license keys),
 - RapidMiner (>=5.3) - time series analysis environment.
- Support multiple platforms (written in java)
 - Windows, Mac OS X and Linux.
Tools for the evaluation of scheduling analysis

Martijn van den Heuvel

Systems Architecture and Networking (SAN) group
Department of Mathematics and Computer Science
Eindhoven University of Technology
Example evaluation

- Generate random samples
- Perform scheduling tests

Source:
R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, J.J. Lukkien,
Generalized fixed-priority scheduling with limited preemptions,
ECRTS, pp. 209--220, July 2012
Tools

• GnuPlot:
 – opensource data plotting (Win/Linux/Mac)
 – scalable graphics
 – automated plots through scripts

• Generate random samples:
 – **Uunifast algorithm**: E. Bini and G. Buttazzo,
 “Biasing effects in schedulability measures,”
 in ECRTS, July 2004, pp. 196–203

 – http://retis.sssup.it/~bini/resources/matlab/UUUniFast.m
Generate random samples

- Generate \(n \) values adding up to value \(U \):
 \[
 U = \sum_{i=1}^{n} x_i
 \]

Example:
- Processor utilization is \(U = 0.8 \);
- Total of \(n = 10 \) tasks.

Random output:
values \(x_1 \ldots x_{10} \)

Plot:
- Perform test
- Repeat many times
- Count successes