
Exploiting Differentiated Tuple Distribution in Shared
Data Spaces

Giovanni Russello1, Michel Chaudron1, Maarten van Steen2

1 Eindhoven University of Technology
2 Vrije Universiteit Amsterdam

Abstract. The shared data space model has proven to be an effective paradigm
for building distributed applications. However, building an efficient distributed
implementation remains a challenge. A plethora of different implementations ex-
ists. Each of them has a specific policy for distributing data across nodes. Often,
these policies are tailored to a specific application domain. Thus, those systems
may often perform poorly with applications extraneous to their domain. In this
paper, we propose that implementations of a distributed shared data space system
should provide mechanisms for tailoring data distribution policies. Through this
flexibility the shared data space system can cope with a wide spectrum of appli-
cation classes. The need for this flexibility is illustrated by experiments which
show that there is no single distribution policy that works well in all cases.

1 Introduction

As distributed systems scale in the number of components and in their dispersion across
large networks, the need for loose coupling between those components increases. This
decoupling can take place in two dimensions: time and space [3]. Time decoupling
means that communicating parties need not be active simultaneously. Space decoupling
means that communicating parties need not have an explicit reference to each other.

Generative communication [9], also referred to as data-oriented coordination [11],
provides both types of decoupling. In the literature several implementations of gener-
ative communication using shared data space systems have been proposed. To meet
extra-functional system properties, such as scalability and timeliness, these distribution
policies are often optimized for a specific application domain or technical infrastructure.
This hard-wiring of a single policy limits the ability of these systems to suit different
application characteristics.

Instead, we propose to cater for a wide variety of extra-functional requirements by
a using a flexible architecture. This architecture provides the possibility of adapting
the distribution policies to application-level characteristics of access to the shared data
space. In this way, the implementation provides a means to balance extra-functional
properties of a system, such as performance, resource use and scalability, for a large
class of applications.

In our design of a distributed shared data space, we apply the principle of separation
of concerns. This means that we address functional requirements of an application sep-
arately from its extra-functional requirements. In particular, we propose to separate the



policies for distributing data between nodes from the application functionality. Through
this separation, tuning the distribution policy for extra-functional properties such as low
latency or low bandwith use becomes transparent to the application. Also, through ap-
plication of this principle, application logic and distribution logic are separate units of
implementation. In this way, both the application code and the distribution code can be
reused in different environments.

To substantiate this claim, we show in this paper, that matching the distribution pol-
icy with an application’s needs, yields better performance than any single distribution
policy. While, differentiation of policies has been applied to distributed shared mem-
ory systems [2, 4], this paper is the first to demonstrate also the need for differentiation
in shared data spaces. Furthermore, we present experimental results that suggest that
continuous adaptation of policies may also be needed.

The paper is organized as follows. In Section 2 we introduce the shared data space
model and common distribution schemes. We also explain succintly our distributed
shared data space implementation. In Section 3 we describe the setup for our experi-
ments, followed by a discussion of the results in Section 4. We conclude in Section 5.

2 The Shared Data Space Model

A shared data space is capable of storingtuples. A tuple is an indivisible, ordered
collection of named values. Tuples may betyped. Applications can interact with the
data space via the three operations described in Figure 1. In this paper, we adopt the
semantics of the corresponding operators as specified for JavaSpaces [10].

Operation Description
put(tuple) Stores a given tuple in the data space.
read(template) Reads an arbitrary tuple that matchestemplatefrom the data space.

If no match can be found, the caller is blocked.
take(template) Removes an arbitrary tuple that matchestemplatefrom the data space.

If no match could be found, the caller is blocked.

Fig. 1.The three data space operations.

Various approaches have been followed for constructing distributed shared data
spaces. However, the most common approach is still to build acentralizeddata space,
in which all tuples are stored at a single node. Examples of this approach include JavaS-
paces [8] and TSpaces [16]. The obvious drawback is that the single node may become
a bottleneck for performance, reliability and scalability.

For local-area systems, a popular solution is thestatically distributeddata space,
in which tuples are assigned to nodes according to a systemwide hash function [13].
Static distribution is primarily done to balance the load between various servers, and
assumes that access to tuples is more or less uniformly distributed. With the distributed



hashing techniques as now being applied in peer-to-peer file sharing systems, hash-
based solutions can also be applied to wide-area systems, although it would seem that
there is a severe performance penalty due to high access latencies.

Fully replicateddata spaces have also been developed, as in [7]. In these cases,
which have been generally applied to high-performance computing, each tuple is repli-
cated to every node. Since tuples can be found locally, search time can be short. How-
ever, sophisticated mechanisms are needed to efficiently manage the consistency amongst
nodes. The overhead of these mechanisms limits the scalability to large-scale networks.

There are other examples of distributing shared data spaces, but in all cases the
succes of these schemes has also been fairly limited. The main reason is that shared data
spaces, like relational databases, essentially require content-based searching in order to
read data. This type of searching is inherently expensive in large-scale settings, as has
again recently been illustrated by the research on unstructured overlay networks [5, 6].

The approach we take, is that by dynamically differentiating how tuples should be
distributed in a shared data space, we can achieve significant performance gains in com-
parison to any static, systemwide distribution scheme. The best scheme highly depends
on the applications that access the shared data space. For this reason the supporting
middleware should be able to support a myriad of schemes.

Our solution is called GSpace. A GSpace system consists of severalGSpace kernels
running on different nodes. Each kernel stores a part of the overall data space (called
a slice), as shown in Figure 2. The kernels communicate with each other to present
applications with a view of a logically unified data space, thus preserving its simple
programming model.

Each kernel contains severaldistribution managersthat are responsible for distri-
bution of tuples. These modules each employ a different distribution policy for differ-
ent tuple types, and are completely separated from application components. In other
words: data distribution is carried out without specifing any details in the application
code. Moreover, the set of policies is extensible such that new distribution policies can
be defined. Distribution policies can be inserted in the middleware either at design or at
run-time. Further details on GSpace internals can be found in [14].

3 Experiment Setup

To investigate the effect of using different distribution policies for different applications,
we set up the following experiments.

We defined a number of patterns that characterize how distributed applications use
the data space. Such a usage pattern consists of (1) the ratio ofread, put andtake oper-
ations, (2) the ordering in which these operations are executed, and (3) the distribution
of the execution of these actions across different nodes. To avoid randomization anoma-
lies, we generate a set ofruns that comply with specific usage patterns. We execute the
set of runs for different distribution policies. During execution of a run, we measure
system parameters that are indicators of costs produced by a distribution policy.

We examined the following application usage patterns, which we considered to be
representative for a wide range of applications.



Application

Layer


Middleware

Layer


Low Level

Layer


System Boot


Policy

Descriptor


Loader


Connection

Manager


Controller


GSpace

 API


GSpace

Kernel


Controller
Distribution

Manger


Data Space

Slice


Communication

Module


Dynamic

Invocation

Handler


Operating System - Network Interface


Application Component


put

read

take


Distribution

Policy


Descriptor
download


Fig. 2.The internal organization of a GSpace kernel.

Local Usage Pattern (LUP): In this case, tuples are retrieved from the slice on the
same node where they have been inserted. This could be the case if components
store some information for their own use or if producer and consumer of a tuple
type are deployed on the same node.

Write-many Usage Pattern (WUP): In this usage pattern applications on different
nodes need to frequently and concurrently update the same tuple instance. This is
problematic for the consistency of distributed shared-memory systems, since extra
mechanisms are needed for mutual exclusion.

Read-mostly Usage Pattern (RUP):In this usage pattern, application components ex-
ecute mostlyread operations on remote tuples. We distinguish two variants of this
pattern: 1) RUP(i), where applications might execute tuple updates between se-
quences ofread operations. An example could be of a tuple type representing a
list-of-content. 2) RUP(ii), between the insertion of a tuple and its removal only
read operations are executed. This could be the case of tuple type representing
intermediate-result data in a process-farm parallel application.

As we mentioned, we are interested in examining how differentiating distribution poli-
cies can improve performance. To this end, we designed and implemented four different
policies, which we subsequently applied to each of the three application usage patterns.
The four different policies are the following:

Store locally (SL): A tuple is always stored on the slice that excutes itsput operation.
Likewise,read or take operations are performed locally as well. If the tuple is not
found locally then a request is forwarded to other nodes.



Full replication (FR): Tuples are inserted at all nodes. Theread and take operations
are performed locally. However, atake has to be forwarded to all nodes by means
of a totally-ordered broadcast, in order to remove all copies.

Cache with invalidation (CI): A tuple is stored locally. When a remote location per-
forms aread operation, a copy of the tuple is subsequently cached at the requester’s
location. When a cached tuple is removed through atake operation then an invali-
dation message is sent to invalidate all other cached copies of that tuple.

Cache with verification (CV): This policy is similar to CI, except that invalidations
are not sent when performing atake. On reading a cached tuple, the reader verifies
whether the cached copy is still valid, that is the original has not been removed.

To compare the distribution policies we follow the approach described in [12]. We
define acost function (CF) as a linear combination of metrics that represent differ-
ent aspects of the cost incurred by a policy. We used the following metrics in the cost
function:rl andtl represent the average latency for the execution ofread andtake oper-
ations;bu represents the total network bandwidth usage; andmurepresents the memory
consumption for storing the tuples in each local data slice. For these parameters, the
cost function for a policyp becomes:

CFp = w1∗ rl p +w2∗ tlp +w3∗bup +w4∗mup (1)

Becauseput operations are non-blocking, application components do not perceive any
difference in latency for different distribution policies. Therefore, theput latency is not
used as a parameter for the cost function.

Thewi ’s control the relative contribution of an individual cost metric to the overall
cost. The conclusions of our experiments do not depend on a specific setting of these
factors. For the experiments in this paper, we takewi = 0.25 for all i.

In our experiments, we simulated all application usage patterns with the policies
described previously. The best policy for an application usage pattern is the one that
produces the lowest cost value.

4 Results

All experiments were executed on 10 nodes of the DAS-2 [1]. Each usage pattern was
simulated using runs of 500, 1000, 2000, 3000, and 5000 operations. For brevity rea-
sons, the histograms in Figure 3 only illustrate the results obtained using runs of 5000
operations. In each histogram, theX-axis shows the distribution policies and theY-axis
represents the respectiveCF values. The results of shorter sequences of operations fol-
low the same trend. The complete results of these other experiments can be found in the
extended version of this paper [15].

Figure 3-(a) shows thatSL is the best policy for the local usage pattern. Store-
Locally guarantees low cost for the execution of space operations on local tuples. Fig-
ure 3-(b) shows thatFR produces the lowest cost for the write-many usage pattern. This
is because the extra resources spent on replicating tuples, reduce the time required for
finding a matching tuple. Figure 3-(c) and (d) show the results for RUP(i) and RUP(ii),
respectively. Note that a logarithmic scale is used. In both cases, theCI policy produces



(a)
 (b)


(c)
 (d)


LUP


0


500000


1000000


1500000


2000000


2500000


3000000


3500000


SL
 FR
 CI
 CV


WUP


3200000


3300000


3400000


3500000


3600000


3700000


3800000


3900000


4000000


4100000


SL
 FR
 CI
 CV


RUP(i)


1


10


100


1000


10000


100000


1000000


10000000


SL
 FR
 CI
 CV


RUP(ii)


1


10


100


1000


10000


100000


1000000


10000000


SL
 FR
 CI
 CV


Fig. 3. For each application usage pattern, a histogram shows the cost incurred by different dis-
tribution policies.

the lowest cost. This is because caching allows to execute most of theread operations
locally. However, the CV policy performs considerably worse than CI policy because
the former sends a validation message for eachread executed on the local cache.

Figure 4 shows some unanticipated results collected for a set of experiments with
the Read mostly usage pattern RUP(i). Here, the ratio ofnumber ofread operationsto
number oftake operationsdiffers from the experiment in 3-(c). TheX-axis shows the
length of the run; i.e. number of operations. TheY-axis shows -on a logarithmic scale-
the cost incurred by the distribution policies. The experiments described before suggest
that the best policy for RUP(i) is CI. Instead, the graph shows that only for shorter runs,
cost is minimized by the CI policy. As the number of the operations increases policy
FR outperforms policy CI.

The reason for this changing of policy performances is due to the increased number
of take operations executed for each run. This fact has two effects that jeopardize the
performance of policy CI. Firstly, the execution of moretake operations reduces the
benefits introduced with caching since cached tuples are more often invalidated. Thus,
read operations have to search for a matching tuple, increasing latency time and band-
width use. On the other hand, policy FR replicates tuples at every insertion thus replicas
are already available locally. Secondly, for eachtake operation policy CI uses point-to-
point messages for cache invalidation. Instead, policy FR exploits the more effective
atomic multicast technique for removing replicas, that reduces resource usage.



What we see is that even given the behaviour of an application, it is difficult to
predict which policy it fits best. One solution is to make more accurate models for pre-
dicting the cost of policies from behaviour. Building these models is quite intricate. For
one thing, it is quite complex to determine all the parameters needed for such a model.
An alternative approach is to let the system itself figure out which policy works best. In
[12] an approach is reported in which a system automatically selects the best strategy
for caching Web pages. This approach works by internally replaying and simulating the
recent behaviour of the systems for a set of available strategies. Based on this these
simulations, the system can decide which policy works best for the current behaviour
of the system. We are extending GSpace to include such a such a mechanism that can
dynamically select the best available distribution strategy.

1


10


100


1000


10000


500
 1000
 2000
 3000
 5000


SL


FR


CI


CV


Fig. 4.Results of the simulation for the RUP(i) with different operation lengths.

5 Conclusion and Future Work

In this paper we discussed the use of a flexible architecture for distributed shared data
space systems in which the strategy for distributing data amongst nodes can be config-
ured without affecting application functionality. This flexibility enables the tailoring of
distribution policies to balance the different extra-functional needs of applications. The
separation of extra-functional concerns from application functionality enhances code
reuse. Both application code and distribution policies are unit of reuse ready to be de-
ployed in several enviroments

The need for this flexibility is motivated by a series of experiments. These experi-
ments show that there is no distribution policy that is best for different types of appli-
cation behaviour.



Another important result of our experiments is the urge to have in the system a
mechanism able to monitor at run-time the application behavior. In this way, the system
is aware when the actual distribution policy is no more the most efficient one. When
this happens, the system can adapt dynamically to the new needs of the application by
switching distribution policy.

For future work we are currently optimizing migration strategies needed to dynam-
ically change from one distribution policy to another, and are concentrating on devel-
oping accompanying mechanisms. At the same time, we are working on supporting
real-time constraints in the same fashion as we are doing with distribution requirements.

References

1. H. Bal et al. “The Distributed ASCI Supercomputer Project.”Oper. Syst. Rev., 34(4):76–96,
Oct. 2000.

2. H. Bal and M. Kaashoek. “Object Distribution in Orca using Compile-Time and Run-Time
Techniques.” InProc. Eighth OOPSLA, pp. 162–177, Sept. 1993. Washington, DC.

3. G. Cabri, L. Leonardi, and F. Zambonelli. “Mobile-Agent Cooordination Models for Internet
Applications.” IEEE Computer, 33(2):82–89, Feb. 2000.

4. J. Carter, J. Bennett, and W. Zwaenepoel. “Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory Systems.”ACM Trans. Comp. Syst.,
13(3):205–244, Aug. 1995.

5. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. “Making Gnutella-like
P2P Systems Scalable.” InProc. SIGCOMM, Aug. 2003. ACM Press, New York, NY.

6. E. Cohen, A. Fiat, and H. Kaplan. “Associative Search in Peer-to-Peer Networks: Harnessing
Latent Semantics.” InProc. 22nd INFOCOM Conf., Apr. 2003. IEEE Computer Society
Press, Los Alamitos, CA.

7. A. Corradi, L. Leonardi, and F. Zambonelli. “Strategies and Protocols for Highly Parallel
Linda Servers.”Software – Practice & Experience, 28(14):1493 – 1517, Dec. 1998.

8. E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces, Principles, Patterns and Practice.
Addison-Wesley, Reading, MA, 1999.

9. D. Gelernter. “Generative Communication in Linda.”ACM Trans. Prog. Lang. Syst., 7(1):80–
112, 1985.

10. S. Microsystems.JavaSpaces Service Specification, Oct. 2000.
11. G. Papadopoulos and F. Arbab. “Coordination Models and Languages.” In M. Zelkowitz,

(ed.),Advances in Computers, volume 46, pp. 329–400. Academic Press, New York, NY,
Sept. 1998.

12. G. Pierre, M. van Steen, and A. Tanenbaum. “Dynamically Selecting Optimal Distribution
Strategies for Web Documents.”IEEE Trans. Comp., 51(6):637–651, June 2002.

13. A. Rowstron. “Run-time Systems for Coordination.” In A. Omicini, F. Zambonelli,
M. Klusch, and R. Tolksdorf, (eds.),Coordination of Internet Agents: Models, Technologies
and Applications, pp. 78–96. Springer-Verlag, Berlin, 2001.

14. G. Russello, M. Chaudron, and M. van Steen. “Customizable Data Distribution for Shared
Data Spaces.” InProc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications, June 2003.

15. G. Russello, M. Chaudron, and M. van Steen. “GSpace: Tailorable Data Distribution in
Shared Data Space System.” Technical report Technical Report 04/06, Technische Univer-
siteit Eindhoven, Department of Mathematics and Computer Science, Jan. 2004.

16. P. Wyckoff et al. “T Spaces.”IBM Systems J., 37(3):454–474, Aug. 1998.


