
GSpace: Tailorable Data Distribution in Shared Data
Space Systems

Giovanni Russello1, Michel Chaudron1, Maarten van Steen2

1 Eindhoven University of Technology
2 Vrije Universiteit Amsterdam

Abstract. The shared data space model has proven to be an effective paradigm
for building distributed applications. However, building an efficient distributed
implementation remains a challenge. A plethora of different implementations ex-
ists. Each of them has a specific policy for distributing data across nodes. Often,
these policies are tailored to a specific application domain. Thus, those systems
may often perform poorly with applications extraneous to their domain. In this
paper, we propose that implementations of a distributed shared data space system
should provide mechanisms for tailoring data distribution policies. Through this
flexibility the shared data space system can cope with a wide spectrum of appli-
cation classes. The need for this flexibility is illustrated by experiments which
show that there is no single distribution policy that works well in all cases.

1 Introduction

Motivation As distributed systems scale in the number of components and in their dis-
persion across large networks, the need for loose coupling between those components
increases. This decoupling can take place in two dimensions: time and space [4]. De-
coupling in time means that communicating parties need not be active simultaneously,
this decoupling is present in message-queuing systems. Decoupling in space means that
communicating parties need not explicitly have to refer to each other, this decoupling
is in publish/subscribe systems.

Generative communication [12], also referred to as data-oriented coordination [15],
provides both types of decoupling. In the literature several implementaions generative
communication using shared data space systems exist.

A drawback of those systems is their use of a single fixed strategy for distributing
data. To meet extra-functional system goals, such as scalability and timeliness, these
distribution strategies are often optimized for a specific application domain or technical
infrastructure. For instance, [13] proposes a specific distribution strategy to obtain scal-
ability of a distributed shared data space across a large number of components in a wide
area network. As a result, those systems are not very flexible. Their reuse to different
classes of applications requires intricate modification of the application code.

In this paper, our point of departure is that the trade-off between different extra-
functional quality properties can be addressed by a flexible architecture. The flexibility
of this architecture consist of the possibility of adapting the distribution policies to
application-level characteristics of access to the shared data space. In this way, it be-
comes possible to provide efficient implementation for a large classes of applications.



Moreover, the distribution and replication of data items is such that an efficient dis-
tributed shared data space can be realized. To this end, we have built a system that
realizes distributed shared data spaces in which each data type is distributed and repli-
cated according to a dedicated strategy.

Another important innovation introduced in our system is that the tailorability of
distribution needs of an application is carried out transparently to the application itself.
This is in line with the principle of Separation of Concerns (SoC), where functional
requirements of an application are separated from its non-functional requirements. In
this way, it is possible to reuse the same application code in several environments where
different distribution strategies are required.

Contributions We make two contributions. First, we demonstrate how this differentia-
tion of strategies outperforms fixed strategies. We note that differentiating strategies by
itself is not new and that it has been applied to distributed shared memory systems [3,
6], and to some extend proposed also for shared data space systems [19]. However, this
work is the first to demonstrate also the need for differentiation in shared data spaces.
Second, we show that continuous adaptation of strategies may be needed, which in turn
requires a monitoring and feedback system to adjust previously chosen strategies.

RoadmapThe paper is organized as follows. In section 2 we briefly introduce the shared
data space model. Section 3 describes some common distribution strategies, together
with a method to measure their performance. Section 4 explains our implementation of
a distributed shared data space. Subsequently, in section 5 we discuss the results of the
experiments. We conclude with some final remarks and future work.

2 System Model

We consider a distributed system in which nodes are connected by a communication
subsystem that provides efficient multicasting facilities. Typically, such facilities are
offered in local-area networks. However, efficient implementations are also offered for
wide-area systems, either following traditional approaches as in PGM [20], or exploit-
ing novel peer-to-peer networks [7, 1].

A shared data space is capable of storingtuples. A tuple is an indivisible, ordered
collection of named values, bearing resemblance with records in databases and pro-
gramming languages. Each node stores a part of the content of the shared data space.
Access to this part is controlled locally. These local data spaces are hidden from ap-
plications. Instead, applications are offered a simple interface to access a shared data
space, consisting of the three operations presented in Figure 1.
In this paper, we simplify matters by adopting the semantics of the corresponding oper-
ators as specified for JavaSpace [14].

3 Data Space Distribution

BackgroundWe are interested in distributing and replicating tuples such that we obtain
an efficient implementation of the shared data space. In the past, researchers have sought



Operation Description
put(tuple) Stores a given tuple in the data space.
read(template) Reads an arbitrary tuple that matchestemplatefrom the data space.

If no match can be found, the caller is blocked.
take(template) Removes an arbitrary tuple that matchestemplatefrom the data space.

If no match could be found, the caller is blocked.

Fig. 1.The three data space operations.

a solution to the efficiency problem by providing an implementation that was tailored
to a specific application domain. Proposed implementations differ in the distribution of
tuples. Examples include:

Statically centralized: Only a single, fixed node has a local data space whereall tuples
are stored. This is the common implementation of a nondistributed, but remote
accessible shared data space. Examples of systems following this approach include
both JavaSpaces [11] and TSpaces [21]. This approach has the drawbacks common
to all centralized designs. The single node where the data space resides may become
a bottleneck under a high load of requests; and it represents a single point of failure.

Dynamically centralized: A system that follows this approach is Lime [16]. In Lime
each process stores tuples in its local data space. The data space is permanently
bound to the process. Processes join and leave the computational environment, to-
gether with their local data space. The local data spaces collaborate with each other
to give to processes a logical view of a single shared data space. This means that
the content of the space dynamically changes when local data spaces join or leave
the system. In Lime both processes and data spaces have unique identifiers. If a
process has to leave and wants that its tuples are still available, it has to declare the
identifier of the destination data space where the tuples should be moved. This pe-
culiarity contrasts the basic principle of the data space model of space decoupling.
In fact, to transfer the tuples, the sender has to know the receiver.

Statically distributed: In this case, each tuple is stored at a single node, but different
tuples may be stored at different nodes. The noden responsible for storing a tuple
t is determined by a hash functionH: n = H(t). This approach, with some modifi-
cations, has been adopted in the run-time environment developed at York [10]. An
advantage of using a hashing function for rooting tuple requests is the reduction of
searching time. On the other hand, it does not support changes in the environment
configuration. A reconfiguration of the system requires a costly re-mapping of the
entire data space content.

Fully replicated: Each tuple is replicated to every node. This strategy has been ap-
plied in [9]. Since tuples can be found locally, the searching time is null. However,
this strategy needs sophisticated mechanisms to control the consistency of the data
space in the presence of removal operations. Generally, these mechanisms perform
poorly when the number of nodes increases.

Structurally replicated: Tuples are replicated according to a structural schema. In [5],
the schema is based on a grid of nodes formed by logical intersecting busses. Each



node belongs to oneoutbusand oneinbus. A tuple is replicated in all nodes that
form the outbus. Whereas, retrieve operations are executed on the nodes of the
inbus. Since an inbus intersects all outbusses, the search is extended to the entire
data space. Another schema, used in [8] follows a tree structure. The leaves of the
tree represent the nodes where the processes reside. In the internal nodes of the tree
the data space is distributed. A tuple is replicated along the path that starts from the
leaf node where the tuple was generated, and goes up to the root node. A search
follows a path that starts from a leaf node and may go up till the root node. Also
in this case a search is extended to the entire set of tuples stored in the data space,
because eventually a searching path will get to the root node where all tuples are
stored. Both these approaches scale down the problem of consistency to a part of
the data space. However, as the number of nodes increases they incurs in the same
problem of the previous strategy.

We make two observations. Firstly, a shared data space system that offers just one
global distribution policy is not flexible enough, as it can satisfy the distribution require-
ments of only a single class of applications. Secondly, in case that several distribution
policies are available, it is important to determine which policy matches an application’s
needs. It is unclear whether application developers are always capable of making such
a decision.

Another issue that needs to be addressed is the data granularity at which a policy is
applied. In virtually all shared data space systems, a single distribution policy is applied
to the entire data space. In our own research on Web hosting services, we observed that
associating a distribution policy for each Web document separately allows to obtain
close-to-optimal performance. In other words, differentiating distribution policies at a
finer granularity than an entire data space may be beneficial.

We hypothesize that ideally, a shared data space system supports multiple distribu-
tion policies, and that it can automatically determine which policy should be applied to
a given application. Moreover, policies should be differentiated at a much finer granu-
larity than the entire data space. If a policy change is needed, a shared data space system
should be able to detect such a need and automatically adapt to a better policy.

Policy evaluationA distribution policy incurs various costs. For example, full replica-
tion may makeread operations cheap in terms of latency, but update operations such as
put andtake may be expensive. Likewise, a higher price needs to be paid for storage us-
age when comparing full replication to hash-based distribution of tuples, or centralized
solutions.

We need a means to compare the performance of policies. To this end, where perfor-
mance is expressed in terms of different metrics such a client-perceived latency, band-
width usage, storage usage, etc. Following the approach described in [17], we adopt
the use acost function CF which is a linear combination ofn metricsm1,p, . . . ,mn,p

produces by a policyp:

CF(p) = w1∗m1,p +w2∗m2,p + . . .+wn∗mn,p (1)



Here,w1, . . . ,wn are weights that determin the relative influence of each metric, that is,
∑wi = 1 with wi ≥ 0. Given a set of weights, the policyp that minimizesCF(p) is
considered the best. We return to the use of this cost function below.

4 GSpace: A System for Distributed Shared Data Spaces

For this paper, we are interested in two questions: (1) what can we gain from tailoring
tuple distribution to applications characteristics, and (2) to what extent do we need to
dynamically adapt policies while executing an application?

To answer these questions, we have built a prototype of a distributed shared data
space that supports a variety of distribution policies. We have used this prototype to
emulate different applications on a real local-area network. In other words, rather than
conducting simulations, we decided to measure the effect of different policies on actual
resource usage. In this section we briefly describe our prototype, which we have named
GSpace.

4.1 GSpace’s Features

GSpace presents some distinct and novel qualities with respect to previous work:

– GSpace is a distributed shared data space. This means that a typical GSpace set-
up consists of severalGSpace kernelsrunning on different nodes. Yet, from the
application point of view GSpace is a single data space, preserving its simple pro-
gramming model.

– GSpace’s design allows applications to separate the functionality from its extra-
functional concerns, such as data distribution. In GSpace, tuple distribution require-
ments are declared separate from the application code. This separation facilitates
the reuse of the same application code in different environments that require differ-
ent data distribution.

– GSpace embeds a suite of distribution policies that can be used to tailor the behavior
of different applications.

– GSpace’s suite of distribution policies can easily be extended. Users can develop
their own distribution policy and download it in the middleware, without having to
change application code.

4.2 Architectural View

Figure 2 shows the internal structure of a GSpace kernel and the modules where the
sensors for measuring resource usage are placed. A more detailed description of the
kernel modules can be found in [18]. Here, we just provide a concise description of the
modules relevant to the discussion of this paper.

– Controller and Latency Sensor. The Controller provides the API of GSpace to
application components. This API consists of three operations:put, read, andtake.
In this module the sensor for timing the latency of operation execution is placed.



Application

Layer


Middleware

Layer


Low Level

Layer


System

Boot


Policy Descriptor

Loader


Connection

Manager


Controller


GSpace

 API


GSpace

Kernel


Controller
Distribution

Manger


Data Space

Slice


Communication

Module


Dynamic Policy

Selector


Operating System - Network Interface


Application Component


put

read

take


Distribution

Policy


Descriptor


download


Latency

Sensor


Bandwidth

Sensor


Memory

Sensor


Fig. 2. Internal view of a GSpace kernel and sensor placement.

– Data Space Slice and Memory Sensor. Each GSpace kernel is supplied with a lo-
cal tuple storage called Data Space Slice. The Memory Sensor measures the amount
of memory that is used for storing tuples on each kernel.

– Communication Module and Bandwidth Sensor. The Communication Module
supplies the support for exchanging tuple between the kernels using different forms
of communication, such as point-to-point and multicast messages. In this module
the Bandwidth Sensor is installed. The task of this sensor is to measure the amount
of bandwidth that is used for sending tuples and synchronization messages on the
network.

GSpace provides a suite of distribution policies that supports several strategies for
distributing tuples across GSpace kernels. In this way, GSpace can differentiate distri-
bution strategies per tuple type. In fact, we assume that in GSpace tuples aretyped, and
for each tuple type within an application it is possible to apply a different distribution
policy.

A distribution policy is implemented by a dedicatedDistribution Manager (DM),
installed in each GSpace kernel (see Figure 2). A DM carries out the execution of the
data space operations according to the policy implemented. Every time an operation is
executed theDynamic Policy Selector(DPS) inspects the type of the tuple or template
and retrieves the associated distribution policy. After that, the DPS passes the control
of execution to the corresponding DM.

The association between tuple types and distribution policies is obtained from a
Distribution Policy Descriptor . This is a file that is made available to all locations in



which a GSpace kernel is instantiated. At kernel start-up time, thePolicy Descriptor
Loader downloads the information in the internal data structure of GSpace to make
the information available at run-time to the DPS. Currently, the foolowing distribution
policies are supported by GSpace:

Store locally (SL): A tuple is always stored on the slice that excutes itsput operation.
Likewise,read or take operations are performed locally as well. If the tuple is not
found locally then a request is forwarded to other nodes.

Full replication (FR): Tuples are inserted at all nodes. Theread and take operations
are performed locally. However, atake has to be forwarded to all nodes by means
of a totally-ordered broadcast, in order to remove all copies.

Cache with invalidation (CI): A tuple is stored locally. When a remote location per-
forms aread operation, a copy of the tuple is subsequently cached at the requester’s
location. When a cached tuple is removed through atake operation then an invali-
dation message is sent to invalidate all other cached copies of that tuple.

Cache with verification (CV): This policy is similar to CI, except that invalidations
are not sent when performing atake. On reading a cached tuple, the reader verifies
whether the cached copy is still valid, that is the original has not been removed.

5 Experimental Results

In this section we discuss the experiments that we set up for investigating the effect of
using different distribution policies for several application behavior.

5.1 Application Model Description

To validate our research we conducted a series of experiments. The experiments consist
of executing an application composed from several components that exchange data via
GSpace. The application is designed to simulate several application usage patterns. A
usage pattern of an application is characterized by the order and the ratio in which the
application’s components execute data space operations.

Figure 3 shows the experiment setup. On each of several node one GSpace kernel
was instantiated together with one application component. All application components
are equal, except for the component calledcoordinator. The coordinator is a special
component that acts as a director in an orchestra, directing and coordinating the actions
of each application components. The coordinator resides in one of the nodes used for the
experiment. It is connected directly with each component, thus communication between
coordinator and application components is external to GSpace.

During an experiment run, the coordinator executes the following steps:

1. generate a sequence of data space operations in a certain ratio
2. generate the schedule in which components have to execute the operation sequence
3. execute the schedule, dispatching each operation in the sequence to the components
4. when all the operations of the sequence have been executed, change the distribution

policy associated with tuples, reset the data space content, and repeat step 3. If no
more distribution policy is available, then stop.



kernel

GSpace


Component


node

1


kernel

GSpace


Component


node

2


kernel

GSpace


Component


node

n


Coordinator


Application

Model


Shared Data

Space


Fig. 3.The setup used for the experiments.

During the experiments, we measured the actual values of costs that each distribu-
tion policy produced. The same sequence and the same schedule are repeated for all
distribution policies. This ensures that the comparison between the distribution policy
is unbiased by randomization effects.

5.2 Application Usage Patterns

In this section we list several application usage patterns that were simulated in our ap-
plication model. This does not pretend to be an exhaustive collection of usage patterns.

Local Usage Pattern (LUP): In this case, tuples are retrieved from the slice on the
same node where they have been inserted. This could be the case if components
store some information for their own use or if producer and consumer of a tuple
type are deployed on the same node.

Write-many Usage Pattern (WUP): In this usage pattern applications on different
nodes need to frequently and concurrently update the same tuple instance. This is
problematic for the consistency of distributed shared-memory systems, since extra
mechanisms are needed for mutual exclusion.

Read-mostly Usage Pattern (RUP):In this usage pattern, application components ex-
ecute mostlyread operations on remote tuples. We distinguish two variants of this
pattern: 1) RUP(i), where applications might execute tuple updates between se-
quences ofread operations. An example could be of a tuple type representing a
list-of-content. 2) RUP(ii), between the insertion of a tuple and its removal only
read operations are executed. This could be the case of tuple type representing
intermediate-result data in a process-farm parallel application.

5.3 Results

In our experiments, we tested each application usage patterns with the currently avail-
able distribution policies in GSpace, described in section 4.2. During runtime, the sen-
sors placed in the system measure the following cost parameters:



– The latency for the execution of a read operation (rl )
– The latency for the execution of a take operation (tl )
– The network bandwidth usage (bu)
– The memory consumption for storing the tuples in each local data space (mu)

For this specific set of parameters, the cost function (for policyp) becomes:

CF(p) = w1∗ rl p +w2∗ tlp +w3∗bup +w4∗mup (2)

Since put operations are executed without blocking the application components, we
decided not to use the latency of put operations as a parameter for the CF. For the
calculation of the CF values we use the same value for all weightswi , that is 0.25.

The optimal policy for the application usage pattern is represented by the policy
that produces the lowestCF value. It should be noticed that the proposed approach
implies that the optimal policy is identified through a comparison of their execution
performance, rather than via a prediction. Once the performance profile for a distribu-
tion policy is known, it can be used in future cases to match it to a given application
profile.

All experiments were executed on 10 nodes of the DAS-2 cluster [2] allocated ex-
clusively for a GSpace kernel and an Application Component. Each DAS-2 node is a
Dual Pentium-III workstation interconnected by Myrinet, a multi-Gigabit LAN. Since
this is a multi-user environment each experiment was executed several times and at dif-
ferent times of the day to avoid that the execution of other user tasks could influence
our measurements.

Each usage pattern was simulated using sequences of 500, 1000, 2000, 3000, 5000
operations.

For brevity reasons, the histograms in Figure 4 only illustrate the results obtained
during the experiments of 5000 operations. The rest of the experiment results can be
found in the Appendix of this paper. The results collected with sequences of operations
with shorter lengths follow the same trend. The only differences are in the relativeCF
values. For each histogram, theX-axis shows the distribution policies and theY-axis
represents the respectiveCF values.

Figure 4-(a) shows the results collected when the LUP was simulated. Under these
conditions, the policySL produces the lowestCF value. In fact, SL guarantees low
cost for the execution of space operations that take place on local tuples. Instead, other
policies provide more sophisticate strategies to distributed tuples at the cost of using
more resources.

Figure 4-(b) shows the results obtained when the WUP was simulated. In this sce-
nario, several components need to access and modify the same instance of a tuple.
The lowestCF value was output by policyFR In fact, the extra resources needed for
replicating tuples lower the access time, since no search time is required for finding a
matching tuple. The other policies perform equally bad, since for all of themread and
take operations require a global search, when the tuple is not stored locally.

The results in Figure 4-(c) and (d) are obtained when the RUP(i) and RUP(ii) were
simulated. The values in the histograms are reported in logarithmic scale. In both sce-
narios, application components execute multiplereads on the same tuple instance and



(a)
 (b)


(c)
 (d)


LUP


0


500000


1000000


1500000


2000000


2500000


3000000


3500000


SL
 FR
 CI
 CV


WUP


3200000


3300000


3400000


3500000


3600000


3700000


3800000


3900000


4000000


4100000


SL
 FR
 CI
 CV


RUP(i)


1


10


100


1000


10000


100000


1000000


10000000


SL
 FR
 CI
 CV


RUP(ii)


1


10


100


1000


10000


100000


1000000


10000000


SL
 FR
 CI
 CV


Fig. 4. For each application usage pattern, a histogram shows the cost incurred by different dis-
tribution policies.

few take operations. In both cases, the lowestCF values were produced by theCI
strategy, since caching allows to execute most of theread operations locally. However,
policy CV performs always considerable worst than policy CI due to the validation
message that the reader has to send for each operation executed on the cache. Thus,
both latency time and bandwidth usage forread operations result higher than in CI. The
performances of the FR policy are close to the one of CI. However, the FR strategy uses
more memory for storing replicas in all node; whether CI stores the cached tuples only
in those nodes where it was requested.

5.4 A Case for Dynamic Adaptation

Figure 5 shows some unanticipated results collected for a set of experiments with the
Read mostly usage pattern RUP(i). Here, the ratio ofnumber ofread operationsto
number oftake operationsdiffers from the experiment in 4-(c). TheX-axis shows the
length of the run; i.e. number of operations. TheY-axis shows -on a logarithmic scale-
the cost incurred by the distribution policies. The experiments described before suggest
that the best policy for RUP(i) is CI. Instead, the graph shows that only for shorter runs,
cost is minimized by the CI policy. As the number of the operations increases policy
FR outperforms policy CI.

The reason for this changing of policy performances is due to the increased number
of take operations executed for each run. This fact has two effects that jeopardize the



performance of policy CI. Firstly, the execution of moretake operations reduces the
benefits introduced with caching since cached tuples are more often invalidated. Thus,
read operations have to search for a matching tuple, increasing latency time and band-
width use. On the other hand, policy FR replicates tuples at every insertion thus replicas
are already available locally. Secondly, for eachtake operation policy CI uses point-to-
point messages for cache invalidation. Instead, policy FR exploits the more effective
atomic multicast technique for removing replicas, that reduces resource usage.

What we see is that even given the behaviour of an application, it is difficult to
predict which policy it fits best. One solution is to make more accurate models for pre-
dicting the cost of policies from behaviour. Building these models is quite intricate. For
one thing, it is quite complex to determine all the parameters needed for such a model.
An alternative approach is to let the system itself figure out which policy works best. In
[17] an approach is reported in which a system automatically selects the best strategy
for caching Web pages. This approach works by internally replaying and simulating the
recent behaviour of the systems for a set of available strategies. Based on this these
simulations, the system can decide which policy works best for the current behaviour
of the system. We are extending GSpace to include such a such a mechanism that can
dynamically select the best available distribution strategy.

1


10


100


1000


10000


500
 1000
 2000
 3000
 5000


SL


FR


CI


CV


Fig. 5.Results of the simulation for the RUP(i) with different operation lengths.

5.5 Discussion

The experiments presented here show that there is a benefit in having different distribu-
tion policies. This characteristic makes the system flexible enough to cater efficiently
for different application usage patterns. Thus, it is possible to minimize the resource
usage for tuple distribution when the distributed policy that fits the needs of the ap-
plication is used. Secondly, the unpredicted behavior discussed in section 5.4 stresses



the importance of the impact that GSpace’s flexibility has at application level. In de-
signing GSpace we adopted SoC principles to keep extra-functional concerns (such as
data distribution) separated from application functionality. This allows us to change
distribution strategy without the need to modify one single line of application code.
As consequence, the system could switch from one distribution strategy to another at
run-time, without interrupting the application execution.

6 Conclusion and Future Work

In this paper we presented GSpace, a distributed shared data space system. The architec-
ture of GSpace provides option of tailoring distribution policies to needs of applications
with different usage patterns. We also described a method that allows us to measure the
performance of distribution policies during the execution of applications. Finally, we
discussed a series of experiments, where we measured the performances of several dis-
tribution policies used by applications with different distribution needs.

The results show how dramatically the performance of a distribution policy changes
when the application behavior changes. There is no single distribution strategy optimal
for all application usage patterns. Instead, having several distribution strategies allows
the system to efficiently cater for the requirements of several applications.

Another important result of our experiments is the urge to have in the system a
mechanism able to monitor at run-time the application behavior. In this way, the system
is aware when the actual distribution policy is no more the most efficient one. When
this happens, the system can adapt dynamically to the new needs of the application by
switching distribution policy. Moreover, since the data distribution concerns are defined
outside the code of the application, switching to a different policy does not require any
changes in the application code.

Indeed, GSpace can be considered a flexible distributed shared memory system.
However, GSpace differs from other systems because its flexibility is extendable. In
other words, GSpace is designed in such a way that new distribution policies can be
downloaded in system at any time.

As future work, we are currently implementing the mechanism that allows GSpace
to dynamically change distribution policy. Another future development aims to extend
the extra-functional concerns that GSpace supports, such as exception handling and
timing behavior of an application.

References

1. L. O. Alima, A. Ghodsi, P. Brand, and S. Haridi. “Multicast in DKS(N,k,f) Overlay Net-
works.” In Proc. 7th International Conference on Principles of Distributed Systems, Lecture
Notes on Computer Science, pp. 80–91, Dec. 2003. Springer-Verlag, Berlin.

2. H. Bal et al. “The Distributed ASCI Supercomputer Project.”Oper. Syst. Rev., 34(4):76–96,
Oct. 2000.

3. H. Bal and M. Kaashoek. “Object Distribution in Orca using Compile-Time and Run-Time
Techniques.” InProc. 8th Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 162–177, Sept. 1993. Washington, DC.



4. G. Cabri, L. Leonardi, and F. Zambonelli. “Mobile-Agent Coordination Models for Internet
Applications.” Computer, 33(2):82–89, Feb. 2000.

5. N. Carriero,and D. Gelernter. “The snet’s linda kernel.”ACM Transaction on Computer
System, 4(2):110-129, 1986.

6. J. Carter, J. Bennett, and W. Zwaenepoel. “Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory Systems.”ACM Transactions on Computer
Systems, 13(3):205–244, Aug. 1995.

7. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. “Scribe: A Large-Scale and
Decentralized Application-Level Multicast Infrastructure.”IEEE Journal on Selected Areas
in Communication, 20(8):100–110, Oct. 2002.

8. A. Corradi,F. Zambonelli, and L. Leonardi. “A Scalable Tuple Space Model for Structured
Parallel Programming.”Pro. Conference on Massively Parallel Programming Models, IEEE
CS Press, Pages 25-32, Oct. 1995. Berlin.

9. A. Corradi, L. Leonardi, and F. Zambonelli “Strategies and protocols for highly parallel linda
servers.”Software: Practice and Experience, 28(14), 1998.

10. A. Douglas, A. Wood, and A. Rowstron “Linda implementation revisited” InTransputer
and occam developments, pp. 125-138. ISO Press, 1995.

11. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and practice.
Addison-Wesley, Reading, MA, USA, 1999.

12. D. Gelernter. “Generative Communication in Linda.”ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

13. R. Menezes, R. Tolksdorf, and A. Wood. “Scalability in Linda-like Coordination Systems.”
In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, (eds.),Coordination of Internet
Agents. Springer-Verlag, Berlin, 2001.

14. S. Microsystems.JavaSpaces Service Specification, Oct. 2000.
15. G. Papadopoulos and F. Arbab. “Coordination Models and Languages.” In M. Zelkowitz,

(ed.),Advances in Computers, volume 46, pp. 329–400. Academic Press, New York, NY,
Sept. 1998.

16. G. P. Picco, A. L. Murphy, and G.-C. Roman. “Lime: Linda Meets Mobility.” InProc. 21st
International Conference on Software Engineering (ICSE’99), ACM Press, ISBN 1-58113-
074-0, pp. 368-377, Los Angeles (USA), D. Garlan and J. Kramer, eds., May 1999.

17. G. Pierre, M. van Steen, and A. Tanenbaum. “Dynamically Selecting Optimal Distribution
Strategies for Web Documents.”IEEE Transactions on Computers, 51(6):637–651, June
2002.

18. G. Russello, M. Chaudron, and M. van Steen. “Customizable Data Distribution for Shared
Data Spaces.” InProc. International Conference on Parallel and Distributed Processing
Techniques and Applications, June 2003.

19. J. G. Silva, J. Carreira, and L. Silva. “On the design of Eilean: A Linda-like library for
MPI.” In Proc. 2nd Scalable Parallel Libraries Conference, IEEE, October 1994.

20. T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby,
T. Montgomery, L. Rizzo, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, and
L. Vicisano. “PGM Reliable Transport Protocol Specification.” RFC 3208, Dec. 2001.

21. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. “T Spaces.”IBM System Journal,
37(3):454-474, 1998.

A More Results

The complete set of results is shown in the table of Figure 6. Each row represents the
execution of an experiment run. The first column specifies the usage pattern and the



number of operations executed for a run. The rest of the columns show the cost values
for each distribution policy. The cost values displyed in bold font represent the lowest
cost per run.

To make things clear, let us consider as an example the first row of values. This row
represents the execution of the usage pattern LUP for 500 operations. The lowest cost
value is located in the second column, meaning that is output by policy SL. Thus, policy
SL is the optimal policy for this scenario.

Usage PatternSL CF value FR CF value CI CF value CV CF value

LUP 500 151032 331335 324324 163060
WUP 500 4015551 362997 531881 392769
RUP(i) 500 180623 23744 11095 79318
RUP(ii) 500 212878 30211 17067 87033

LUP 1000 299019 638544 642107 322832
WUP 1000 802147 695475 1047568 772172
RUP(i) 1000 815637 27379 23774 171240
RUP(ii) 1000 509192 28872 14524 161038

LUP 2000 616917 1301450 1324753 666047
WUP 2000 1552213 1384384 2087047 1522862
RUP(i) 2000 1577363 695518 78588 348454
RUP(ii) 2000 636314 50532 42407 328539

LUP 3000 930552 1958648 2012760 1012300
WUP 3000 2327112 2026492 3086643 2261594
RUP(i) 3000 1909641 22064 6681 466869
RUP(ii) 3000 2145815 20648 3670 463654

LUP 5000 1523109 3182077 3270685 1644407
WUP 5000 3924117 3483025 5278553 3837958
RUP(i) 5000 3565590 23438 9907 767482
RUP(ii) 5000 4782720 25042 10601 76787

Fig. 6. The complete set of values produced during the execution of each usage pattern with all
distribution policies.


