On linear subspaces of the Hilbert nullcone and polarization in invariant theory

Matthias Bürgin
University of Basel

14/06/2006
EIDMA SEMINAR COMBINATORIAL THEORY

Consider the usual representation of SL_n on the symmetric bilinear forms Sym_n by means of $g \cdot A \mapsto (g^{-1})^t A g^{-1}$. Let $H \subset \text{Sym}_5$ be a subspace on which the determinant vanishes identically.

Question: Is H equivalent to a subspace of either

\[
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

under the above operation of SL_5?

This question has the following background in classical invariant theory: For a reductive group G and a complex representation V we denote by $\mathcal{O}(V)^G$ the ring of invariant polynomial functions. The Hilbert nullcone $\mathcal{N}_V \subset V$ is the zero set of all non-constant homogeneous elements of $\mathcal{O}(V)^G$. Even when V is irreducible, finding the generators of $\mathcal{O}(V)^G$ is usually very difficult. Even more so, if we are looking for the generators of $\mathcal{O}(V^\oplus k)^G$, where the operation of G on $V^\oplus k$ is given by $g(v_1, \ldots, v_k) = (gv_1, \ldots, gv_k)$. In this talk I will explain an interesting connection between the structure of the linear subspaces of the nullcone \mathcal{N}_V on one hand, and the question, whether
A certain set of invariants of $O(V^\oplus k)^G$ (obtained by the classically known *polarization process*) defines the nullcone $N_{V^\oplus k} \subset V^\oplus k$ on the other hand.

By a result of HILBERT, finding invariants that define the nullcone $N_{V^\oplus k} \subset V^\oplus k$ is an important step in finding a complete set of generators for $O(V^\oplus k)^G$.

For the representation of SL_n on Sym_n the invariant ring is generated by the determinant and hence the nullcone N_{Sym_n} is the set of all forms on which the determinant vanishes. For $n = 5$ the above mentioned connection leads exactly to the question posed above. Its answer is ‘no’, however.