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Definition 1. An (f,m)-minihyper in PG(t, q) is an m-fold blocking multiset of size f , i.e.
a multiset F of f points in PG(t, q) s. t. every hyperplane contains at least m of these points.

A natural question here would be: for given m, what is the least number f such that there

exists an (f,m)-minihyper? For proper multisets, one has f ≥ vt
vt−1

m, with vi = qi−1
q−1 .

Definition 2. In PG(t, q), an optimal blocking multiset is an (xvt, xvt−1)-minihyper, for
some x ∈ N.

Hence, these parameters are a very particular choice of minihypers, and many examples of
them are known. The study on minihypers was originally started by Hamada in the context
of linear codes meeting the Griesmer bound [2], and coincidently, it turns out that such codes
are most highly divisible when it minihyper’s parameters are of the form (xvt, xvt−1).

When two different problems point to the same structure, it is no surprise that they
have been studied before [1, 4, 5]. This study was however always performed from a purely
combinatorial point of view.

Starting from a theorem of Landjev and Storme [5], I will present a simple natural problem
in linear algebra, which turns out to have exactly these optimal blocking multisets as its set of
solutions. So we now have 3 different natural problems pointing to this very same structure.

Using this new characterization, we could greatly extend and improve upon most known
results on this structure [3, 4, 5]. In this talk, I will attempt to give some insight in this char-
acterization and its strengths, to convince the audience that these optimal blocking multisets
are very special combinatorial structures and that they are also an example of structures
where purely combinatorial methods are really not the proper tool for the job.

References

[1] S. Ball, R. Hill, I. Landjev and H. Ward, On (q2 + q + 2, q + 2)-arcs in the projective
plane PG(2, q), Des. Codes Cryptogr. 24 (2001), 205–224.

[2] N. Hamada, Characterization of minihypers in a finite projective geometry and its ap-
plications to error-correcting codes, Bull. Osaka Women’s Univ. 24, 1–24 (1987).

[3] P. Herdt, [n, k, d]q-Codes mit k ≥ 3, d = rqk−2 und n = dr/qe + r + rq + . . . + rqk−2,
r ∈ N, Msc. Thesis at Justus-Liebig-Universität Gießen.

[4] R. Hill and H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes
Cryptogr. 44 (2007), 169–196.

[5] I.N. Landjev and L. Storme, A study of (x(q + 1), x; 2, q)-minihypers, Des. Codes Cryp-
togr. 54 (2010), 135–147.


