Uniqueness of the Leech lattice

Abstract

We give Conway’s proof for the uniqueness of the Leech lattice.

1 Uniqueness of the Leech lattice

Theorem 1.1 There is a unique even unimodular lattice \(\Lambda \) in \(\mathbb{R}^{24} \) without vectors of squared length 2. It is known as the Leech lattice. The group \(\Gamma \) of automorphisms fixing the origin has order \(831553613086720000 \).

Let \(\Lambda \) be an even unimodular lattice in \(\mathbb{R}^n \) where \(n < 32 \).

('Unimodular' is the same as 'self-dual', and says that the volume of the fundamental domain is 1. In other words, the lattice has one point per unit volume. 'Even' means that the squared length \(|x|^2 = (x, x) \) is an even integer for each \(x \in \Lambda \). It follows that all inner products \((x, y) \) with \(x, y \in \Lambda \) are integers: \((x, y) = \frac{1}{2}(|x + y|^2 - |x|^2 - |y|^2) \).

The theta function \(\theta_\Gamma \) of a lattice \(\Gamma \) is defined by \(\theta_\Gamma(z) = \sum_{x \in \Gamma} q^{\frac{1}{2}(x, x)} \), where \(q = e^{2\pi i z} \).

A code has a weight enumerator, and the MacWilliams relation describes the relation between a weight enumerator of a linear code and its dual. If the code is self-dual, this yields an invariance property for the weight enumerator. For lattices similar things are true: there is a relation between the theta function of a lattice and the theta function of its dual, and if the lattice is self-dual its theta function has an invariance property. We quote Hecke's theorem.

Theorem 1.2 Let \(\Gamma \) be an even unimodular lattice in \(\mathbb{R}^n \). Then

(i) \(n \equiv 0 \pmod{8} \), and

(ii) \(\theta_\Gamma \) is a modular form of weight \(\frac{1}{2}n \).
Let M_k be the vector space of modular forms of weight $2k$, and let M^0_k be the subspace consisting of cusp forms, that is, of modular forms that vanish at $i\infty$. The following theorem says that there are not too many modular forms, so that one has very strong information when something is a modular form of low weight.

Theorem 1.3

(i) $M_k = 0$ for $k < 0$ and $k = 1$.

(ii) For $k = 0, 2, 3, 4, 5$ we have $\dim M_k = 1$ and $\dim M^0_k = 0$.

(iii) $M_{k-6} \simeq M^0_k$.

(iv) For $k \geq 2$ we have $\dim M_k = \dim M^0_k + 1$.

(The proof is easy, but belongs elsewhere.)

Look at our even unimodular lattice Λ in \mathbb{R}^n with $n < 32$. We have $8|n$ and $\theta_\Gamma \in M_{n/4}$. Let N_m be the number of vectors of squared length m, so that $N_0 = 1$ and $N_2 = 0$, and $\theta_\Gamma(z) = \sum_m N_m q^{m/2}$.

If $n = 8$ then θ_Γ is uniquely determined by $N_0 = 1$, since $\dim M_2 = 1$. We already know an even unimodular lattice in \mathbb{R}^8, namely E_8. It is a root lattice, that is, is generated by vectors of squared length 2, so certainly $N_2 \neq 0$. (In fact $N_2 = 240$.)

If $n = 16$ then again θ_Γ is uniquely determined by $N_0 = 1$, since $\dim M_4 = 1$. And the lattice $E_8 \oplus E_8$ shows that $N_2 \neq 0$ also here.

So $n = 24$. Here $\dim M_6 = 2$, and the two conditions $N_0 = 1, N_2 = 0$ determine the function uniquely. Computing the coefficients one finds $N_1 = 196560, N_6 = 16773120, N_8 = 398034000$.

(In fact, $N_{2m} = \frac{65520}{691}(\sigma_{11}(m) - \tau(m))$ for $m > 0$, where $\sigma_h(m) = \sum d | m d^h$ and $\tau(m)$ is Ramanujan’s function, defined by $q \prod_{m=1}^{\infty} (1 - q^m)^{24} = \sum_{m=1}^{\infty} \tau(m) q^m$.)

Call $x \in \Lambda$ short if $(x, x) \leq 8$.

Claim Each coset of 2Λ inside Λ contains a short vector. The classes that contain more than a single pair $\pm x$ of short vectors are precisely the classes that contain vectors of length $\sqrt{8}$, and these contain 48 short vectors, namely 24 mutually orthogonal pairs $\pm x$ of vectors of length $\sqrt{8}$.

Indeed, let x, y be short vectors with $y \neq \pm x$ and $y - x \in 2\Lambda$. We may suppose $(x, y) \geq 0$. (Otherwise, replace y by $-y$.) Now $|y - x|^2 \leq |y|^2 + |x|^2 \leq 16$, but for nonzero vectors $u \in 2\Lambda$ we know $|u|^2 \geq 16$, so equality must hold everywhere, and x and y are orthogonal. In \mathbb{R}^{24} we can have at most 24 mutually orthogonal pairs of vectors $\pm x$. The number of cosets that contain short vectors is at least $\frac{N_0}{2} + \frac{N_1}{2} + \frac{N_6}{2} + \frac{N_8}{16} = 2^{24}$, but
since this is the total number of cosets, we must have equality everywhere. This proves the claim.

Fix one set of 24 mutually orthogonal pairs of vectors of length $\sqrt{8}$ to define a basis of \mathbb{R}^{24}. Then Λ contains the vectors $\frac{1}{\sqrt{8}}((\pm 4)^2, 0^{22})$ (where this notation means that there are 2 places with ± 4 and 22 places with 0, in any order). These vectors generate a sublattice Λ_0 of Λ, and $\Lambda_0 = \left\{ \frac{1}{\sqrt{8}}(x_1, \ldots, x_{24}) \mid 4|x_i \text{ for all } i \text{ and } 8|\sum x_i \right\}$.

Consider an arbitrary vector $x = \frac{1}{\sqrt{8}}(x_1, \ldots, x_{24}) \in \Lambda$. Since the inner products with vectors in Λ_0 must be integers, it follows that the x_i must be integers, all of the same parity (all even or all odd). If there is such a vector with all x_i odd, then pick one and make sure that for that one $x_i \equiv 1 \pmod{4}$ for all i, by changing the sign of some coordinates, if necessary.

The next step identifies the extended binary Golay code inside the lattice. Consider the sublattice Λ_1 of Λ consisting of the vectors for which all x_i are even, and let C be the image of Λ_1 in $\{0, 1\}^{24}$ under the map defined coordinatewise by sending 0 (mod 4) to 0 and 2 (mod 4) to 1. Note that if $x \mapsto c$ then also $x + x_0 \mapsto c$ for any $x_0 \in \Lambda_0$ (since such x_0 has all coordinates divisible by 4).

Claim C is the extended binary Golay code.

There is a unique linear code with word length 24, dimension 12 and minimum distance 8. Clearly, C is a linear code with word length 24. Suppose $c \in C$, $c \neq 0$. Then c is the image of some $x \in \Lambda$, and by subtracting a vector in Λ_0 we may assume that $x_i \in \{0, 2\}$ for all i except one, and $x_i \in \{-2, 2\}$ for the last i. Now $4 \leq (x, x) = \frac{1}{8}\text{wt}(c)$, so that $\text{wt}(c) \geq 8$. This shows that C has minimum distance at least 8.

Look at the supports of code words of weight 8. No 5-set can be covered twice, otherwise the minimum distance would be smaller than 8. Since each 8-set covers $\binom{8}{5}$ 5-sets, and there are $\binom{24}{8}$ 5-sets altogether, there cannot be more than $\frac{\binom{24}{8}}{\binom{8}{5}} = 759$ words of weight 8 in C.

The balls of radius 4 around code words cover the words at distance less than 4 to C precisely once, and the words at distance 4 to C at most six times: if a word w has distance 4 to distinct code words c_1 and c_2, then $c_1 - w$ and $c_2 - w$ are vectors of weight 4 with disjoint supports (since c_1 and c_2 have distance 8), and there are at most six disjoint 4-sets in a 24-set. Since $1 + 24 + \binom{24}{2} + \binom{24}{3} + \frac{1}{6}\binom{24}{4} = 2^{12}$, there can be at most $2^{24}/2^{12} = 2^{12}$ code words, i.e. C has dimension at most 12.
Now count vectors of length 2. If \((x, x) = 4\), then \(\sum x_i^2 = 32\), and \(x\) must have one of the shapes \(\frac{1}{\sqrt{8}}((\pm 4)^2, 0^{22})\) or \(\frac{1}{\sqrt{8}}((\pm 2)^8, 0^{16})\) or \(\frac{1}{\sqrt{8}}((\mp 3, (\pm 1)^{23})\).

The number of vectors of these shapes is at most \(\binom{24}{2}.2^2 + 759.2^7 + 24.2^{12} = 196560\). But this is \(N_4\), so we must have equality everywhere.

(For the vectors of shape \(\frac{1}{\sqrt{8}}((\pm 2)^8, 0^{16})\) there are \(2^8\) choices for the signs, but we can use only half of these, since two choices that differ in only one place would differ by a vector of squared length 2.

For the vectors of shape \(\frac{1}{\sqrt{8}}((\mp 3, (\pm 1)^{23})\), subtract a vector with all coordinates 1 (mod 4) to get a vector with all \(x_i\) even. The fact that \(C\) has dimension at most 12 means that at most \(2^{12}\) choices for the signs are possible.)

This shows that \(C\) has dimension 12, and therefore is the extended binary Golay code.

Now we can describe the Leech lattice.

Theorem 1.4 \(x = \frac{1}{\sqrt{8}}(x_1, ..., x_{24}) \in \Lambda\) if and only if

(i) \(x_i \in \mathbb{Z}\), all \(x_i\) have the same parity; and

(ii) if all \(x_i\) are even, then \(\sum x_i \equiv 0 \pmod{8}\); if all \(x_i\) are odd, then then \(\sum x_i \equiv 4 \pmod{8}\); and

(iii) \(\{i \mid x_i \equiv a \pmod{4}\} \in S\) for \(a = 0, 1, 2, 3\), where \(S\) is the collection of supports of vectors in \(C\).

Proof: Exercise. \(\square\)

About the group of automorphisms: starting from any of the \(N_8/48\) sets of 24 mutually orthogonal pairs of vectors \(\pm x\) of length \(\sqrt{8}\), we arrived at a unique description of \(\Lambda\). That means that its group of automorphisms is transitive on these \(N_8/48\) coordinate frames. If we fix a frame, then the possible automorphisms consist of sign changes and permutations of the coordinates, and correspond to automorphisms of the extended binary Golay code, which has group \(2^{12}.M_{24}\). Altogether we find a group of order \((N_8/48).2^{12}.|M_{24}| = 8292375.4096.24.23.22.21.20.48 = 831553613086720000 = 2^{22}.3^9.5^4.7^2.11.13.23.\)

2 **Related sporadic simple groups**

Co.1 The group of the Leech lattice stabilizing the origin 0 is called .0 and was found above to have order 831553613086720000. It has a center
of order 2 (the map \(x \mapsto -x \)) and the quotient is a simple group called \(.1 \) or \(Co_1 \) of order \(\frac{1}{2} |.| = 2^{21}.3^9.5^4.7^2.11.13.23 \).

Co.2 The subgroup of \(.0 \) fixing a vector of squared length 4 is \(Co_2 \) of order \(|.0|/N_4 = 2^{18}.3^6.5^3.7.11.23 \). This is the group of automorphisms of a strongly regular graph on 2300 points.

Co.3 The subgroup of \(.0 \) fixing a vector of squared length 6 is \(Co_3 \) of order \(|.0|/N_6 = 2^{10}.3^7.5^3.7.11.23 \). This is the group of automorphisms of a regular 2-graph on 276 points.

McL The subgroup of \(.0 \) fixing a triangle with sides of squared lengths 4, 4, 6 is \(McL \) of order \(2^{7}.3^6.5^3.7.11 \). The group \(McL.2 \) is the point stabilizer of \(Co_3 \) in its action on 276 points. It is the group of automorphisms of a strongly regular graph on 275 points.

HS The subgroup of \(.0 \) fixing a triangle with sides of squared lengths 4, 6, 6 is \(HS \) of order \(2^{9}.3^2.5^3.7.11 \). The group \(HS.2 \) is the group of automorphisms of a strongly regular graph on 100 points.

M\(_{24}\) The group \(M_{24} \) of order \(2^{10}.3^4.5.7.11.23 \) is 5-transitive on 24 points (and the subgroup fixing 5 points has order 48, so \(|M_{24}| = 24.23.22.21.20.48 \)). It is the automorphism group of the Steiner system \(S(5,8,24) \). The automorphism group of the extended binary Golay code (both translations and coordinate permutations) is \(2^{12}.M_{24} \).

M\(_{23}\) A point stabilizer in \(M_{24} \) is \(M_{23} \) of order \(\frac{1}{27}|M_{24}| = 2^{7}.3^2.5.7.11.23 \). It is the automorphism group of the Steiner system \(S(4,7,23) \). The automorphism group of the perfect binary Golay code is \(2^{12}.M_{23} \).

M\(_{22}\) A point stabilizer in \(M_{23} \) is \(M_{22} \) of order \(\frac{1}{27}|M_{23}| = 2^{7}.3^2.5.7.11 \). It is the automorphism group of the Steiner system \(S(3,6,22) \). It is the group of automorphisms of a strongly regular graph on 77 points.

M\(_{12}\) The group \(M_{12} \) of order \(12.11.10.9.8 = 2^6.3^3.5.11 \) is sharply 5-transitive on 12 points. It is the stabilizer of a word of weight 12 in the action of \(M_{24} \) on the extended binary Golay code. It is the automorphism group of the Steiner system \(S(5,6,12) \). The automorphism group of the extended ternary Golay code is \(3^6.2.M_{12} \).

M\(_{11}\) A point stabilizer in \(M_{12} \) is \(M_{11} \) of order \(\frac{1}{12}|M_{12}| = 2^4.3^2.5.11 \). It is the automorphism group of the Steiner system \(S(4,5,11) \).

The letters here abbreviate Co: Conway, McL: McLaughlin, HS or HiS: Higman-Sims, M: Mathieu.
3 Theta functions

Let us give some more detail for the sentence above that said ‘Computing the coefficients one finds $N_4 = 196560$, $N_6 = 16773120$, $N_8 = 398034000$’.

The theta function for the E_8 lattice is

$$1 + 240 \sum_{m=1}^{\infty} \sigma_3(m)q^m = 1 + 240(q + 9q^2 + 28q^3 + 73q^4 + \cdots).$$

The theta function for the two nonisomorphic even unimodular lattices in \mathbb{R}^{16} is

$$1 + 480 \sum_{m=1}^{\infty} \sigma_7(m)q^m = 1 + 480(q + 129q^2 + 2188q^3 + 16513q^4 + \cdots).$$

Since one of these lattices is $E_8 \oplus E_8$ with theta function $(1 + 240 \sum_{m=1}^{\infty} \sigma_3(m)q^m)^2$, we find the identity $1 + 480 \sum_{m=1}^{\infty} \sigma_7(m)q^m = (1 + 240 \sum_{m=1}^{\infty} \sigma_3(m)q^m)^2$.

A basis for the 2-dimensional space M_6 of modular forms of weight 12 is given by $f = 1 + \frac{65520}{691} \sum_{m=1}^{\infty} \sigma_{11}(m)q^m$ and $g = q \prod_{m=1}^{\infty} (1 - q^m)^{24} = \sum_{m=1}^{\infty} \tau(m)q^m$. Since

$$f = 1 + \frac{65520}{691} (q + 2049q^2 + 177148q^3 + 4196353q^4 + \cdots)$$

and

$$g = q - 24q^2 + 252q^3 - 1472q^4 + \cdots,$$

a linear combination $af + bg = 1 + 0q + \cdots$ must have $a = 1$ and $b = -\frac{65520}{691}$. Therefore, the theta function of the Leech lattice is

$$\theta_\Lambda(z) = 1 + \frac{65520}{691} \sum_{m=1}^{\infty} (\sigma_{11}(m) - \tau(m))q^m$$

$$= 1 + \frac{65520}{691} (2073q^2 + 176896q^3 + 4197825q^4 + \cdots)$$

$$= 1 + 196560q^2 + 16773120q^3 + 398034000q^4 + \cdots$$

as desired.