Mordell’s theorem

1 Mordell’s theorem

Theorem 1.1 [Mordell] Let C be a nonsingular cubic curve with rational coefficients. Then the group Γ of rational points on C is finitely generated.

That is, there are rational points $P_1, ..., P_t$ on C such that every rational point on C is of the form $n_1P_1 + ... + n_tP_t$ with $n_i \in \mathbb{Z}$.

Viewing Γ as direct product of r copies of \mathbb{Z} ($r \geq 0$) and some cyclic groups of prime power order, we can find generators $P_1, ..., P_r$ of infinite order and $Q_1, ..., Q_s$ of finite order, where Q_i has order $p_i^{e_i}$ for some prime p_i, such that the representation $P = n_1P_1 + ... + n_rP_r + m_1Q_1 + ... + m_sQ_s$ is unique ($n_i \in \mathbb{Z}$, $m_i \in \mathbb{Z}/p_i^{e_i}\mathbb{Z}$).

The number r is called the rank of C.

The group Γ is finite if and only if $r = 0$.

It is easy to find the points of finite order.

Theorem 1.2 [Nagell-Lutz] Let C be a nonsingular cubic curve with integral coefficients and equation $y^2 = x^3 + ax^2 + bx + c$, provided with the zero point $O = (0, 1, 0)$. Then the points of finite order on C have integral coordinates. If (x, y) has finite order, then either $y = 0$, or $y|D$, where $D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$ is the discriminant of the curve.

In the general case where C has rational coefficients, one can use a coordinate transformation $x' = d^2x$, $y' = d^3y$ to make the coefficients integral.

Note that there may well be points (x, y) with $y|D$ that do not have finite order. (But the points (x, y) with $y = 0$ have order 2.)

The torsion group (subgroup of Γ consisting of the elements of finite order) has restricted shape: there are only 15 possibilities.

Theorem 1.3 [Mazur] The torsion group is one of $\mathbb{Z}/n\mathbb{Z}$ ($1 \leq n \leq 10$ or $n = 12$) or $\mathbb{Z}/2m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ($1 \leq m \leq 4$).

So it is easy to find the Q_i. There is no known algorithm to find the P_i, but there are results for very many special cases.

It is unknown whether the rank r is bounded. Examples with larger r are being found every year. The current champion is the curve

$$y^2 + xy + y = x^3 - x^2 - 200677624155755265850332082093338542750930230312178956502x + 348161179503055646703298569039720374855944955319180361266608296291939448732243429$$

with rank 28 found by Elkies (2006). For the record ranks for given torsion, see http://web.math.hr/~duje/tors/tors.html.
\section{Proof of Mordell’s theorem}

After a change of coordinates we may assume the curve has the equation \(y^2 = x^3 + ax^2 + bx + c \) with integral \(a, b, c \).

Define the \textit{height} of a rational number \(r = \frac{m}{n} \) (with \(\gcd(m, n) = 1 \)) by

\[H(r) = H\left(\frac{m}{n}\right) = \max(|m|, |n|) \]

and the height of a rational point \(P = (x, y) \) on \(C \) by

\[H(P) = H(x). \]

Also define \(H(O) = 1 \). Let the logarithmic height of \(P \) be \(h(P) := \log H(P) \).

The theorem is an easy consequence of four lemmas, the first three of which use the height function to describe the growth of coordinates under addition.

\textbf{Lemma 2.1} For any constant \(M \), the set \(\{ P \in \Gamma \mid h(P) \leq M \} \) is finite.

\textbf{Lemma 2.2} Let \(P_0 \in \Gamma \) be fixed. There is a constant \(\kappa_0 = \kappa_0(a, b, c, P_0) \) such that \(h(P + P_0) \leq 2h(P) + \kappa_0 \) for all \(P \in \Gamma \).

\textbf{Lemma 2.3} There is a constant \(\kappa = \kappa(a, b, c) \) such that \(h(2P) \geq 4h(P) - \kappa \) for all \(P \in \Gamma \).

The fourth lemma is the difficult part.

\textbf{Lemma 2.4} The subgroup \(2\Gamma \) has finite index in \(\Gamma \).

Now the proof of Mordell’s theorem is straightforward from these lemmas. Pick representatives \(Q_1, ..., Q_n \) of the cosets of \(2\Gamma \) in \(\Gamma \). Then for arbitrary \(P \in \Gamma \) we can write

\[P = 2P_1 + Q_{i_1}, \]

and then

\[P_1 = 2P_2 + Q_{i_2}, \]

\[... \]

\[P_{m-1} = 2P_m + Q_{i_m}. \]

Let \(\kappa' = \kappa'(a, b, c) \) be the largest of the constants \(\kappa_0(a, b, c, -Q_i) \). Then

\[h(P - Q_i) \leq 2h(P) + \kappa' \]

for all \(P, Q_i \)

and

\[4h(P_j) \leq h(2P_j) + \kappa = h(P_{j-1} - Q_{i_j}) + \kappa \leq 2h(P_{j-1}) + \kappa + \kappa' \]

so that \(h(P_m) \leq \kappa + \kappa' \) for \(m \) sufficiently large. Now

\[\{Q_1, ..., Q_m\} \cup \{P \mid h(P) \leq \kappa + \kappa'\} \]

is a finite generating set for \(\Gamma \). \hfill \Box
3 Proof of Lemmas 1-3

Lemma 1 is clear.

Lemma 2

For Lemma 2, first observe that the denominator of \(x^3 + ax^2 + bx + c \) is that of \(x^3 \) and equals that of \(y^2 \), so that a point \(P = (x, y) \) of the curve satisfies \(x = \frac{m}{e} \) and \(y = \frac{n}{e} \) where \(m, n, e \) are integers with \(\gcd(m, e) = \gcd(n, e) = 1 \). It follows that

\[
m \leq H(P), \quad e \leq H(P)^{1/2}, \quad n \leq KH(P)^{3/2},
\]

where that last inequality is from substitution of \(x = \frac{m}{e} \) and \(y = \frac{n}{e} \) in \(y^2 = x^3 + ax^2 + bx + c \) to get \(n^2 = m^3 + am^2e^2 + bme^4 + ce^6 \leq (1 + |a| + |b| + |c|)H(P)^3 \).

Now let \(P = (x, y) \) and \(P_0 = (x_0, y_0) \) and \(P + P_0 = (\xi, \eta) \). We want to bound \(h(P + P_0) \) in terms of \(h(P) \). (W.l.o.g. \(P \neq O, P_0, -P_0 \), those finitely many points are handled by increasing \(\kappa_0 \) later. Now all points are finite and distinct.) The line \(y = \lambda x + \mu \) hits the curve \(y^2 = x^3 + ax^2 + bx + c \) in three points with \(x \)-coordinates satisfying \((\lambda x + \mu)^2 = x^3 + ax^2 + bx + c \) and their sum is minus the coefficient of \(x^2 \). It follows that \(x + x_0 + \xi = \lambda^2 - a \), where \(\lambda = \frac{y - y_0}{x - x_0} \). Now

\[
\xi = \left(\frac{y - y_0}{x - x_0} \right)^2 - a - x_0 - x = \frac{Ag + Bx^2 + Cx + D}{Ex^4 + Fx + G}
\]

for certain integers \(A, B, C, D, E, F, G \) independent of \(x \) (where \(y^2 \) was replaced by \(x^3 + ax^2 + bx + c \), cancelling the \(x^3 \) term). Thus,

\[
H(P + P_0) = H(\xi) \leq \max(|Am + Bn^2 + Cme^2 + De^4|, |Em^2 + Fme^2 + Ge^4|)
\]

\[
\leq \max(|AK| + |B| + |C| + |D|, |E| + |F| + |G|)H(P)^2
\]

and after taking logarithms

\[
h(P + P_0) \leq 2h(P) + \kappa_0.
\]

\[\square \]

Lemma 3

For Lemma 3, put \(P = (x, y) \) and \(2P = (\xi, \eta) \). W.l.o.g. \(2P \neq O \). As before we get \(2x + \xi = \lambda^2 - a \), where \(\lambda = \frac{dy}{dx}(P) = \frac{3x^2 + 2ax + b}{2y} \), so that

\[
\xi = \lambda^2 - a - 2x = \frac{x^4 + \ldots}{4x^3 + \ldots}
\]

and numerator and denominator here have no common roots since the curve is nonsingular.

It suffices to prove the lower bound in
Lemma 3.1 Let \(f(x), g(x) \in \mathbb{Z}[x] \) be two polynomials without common roots (in \(\mathbb{C} \)). Let \(d \) be the maximum of their degrees. Then, if \(r \in \mathbb{Q}, \ g(r) \neq 0 \) then

\[
dh(r) - \kappa \leq h\left(\frac{f(r)}{g(r)}\right) \leq dh(r) + \kappa
\]

for some constant \(\kappa \) depending on \(f, g \).

Proof Since \(\gcd(f, g) = 1 \) there are \(u, v \in \mathbb{Q}(x) \) with \(u(x)f(x) + v(x)g(x) = 1 \).

For \(r = \frac{m}{n} \) (with \(\gcd(m, n) = 1 \)) let \(F(r) = n^df(r) \) and \(G(r) = n^dg(r) \) so that \(F(r) \) and \(G(r) \) are integers. Now \(u(r)F(r) + v(r)G(r) = n^d \).

Let \(A \) be the l.c.m. of the denominators of the coefficients of \(u, v \) and let \(e \) be the maximum of their degrees. Then \(\gcd(F(r), G(r)) | Aa_0^{d+e} \). On the other hand, if say \(f(x) = a_0x^d + \ldots + a_d \) has degree \(d \), then \(F(r) = a_0m^d + \ldots + a_dn^d \) and \(\gcd(n, F(r)) | a_0 \) and \(\gcd(F(r), G(r)) | Aa_0^{d+e} \).

Put \(R := Aa_0^{d+e} \). Now

\[
H\left(\frac{f(r)}{g(r)}\right) = H\left(\frac{F(r)}{G(r)}\right) \geq \frac{1}{R} \max(|F(r)|, |G(r)|)
\]

gives

\[
\frac{H\left(\frac{f(r)}{g(r)}\right)}{H(r)^e} \geq \frac{\max(|F(r)|, |G(r)|)}{R \max(|m|^d, |n|^d)} = \frac{\max(|f(r)|, |g(r)|)}{R \max(|r|^d, 1)}.
\]

The right hand side is bounded below by a positive constant \(C \) (since there is a finite nonzero limit when \(r \) tends to infinity, and a nonzero minimum on a compact piece since \(f \) and \(g \) do not vanish simultaneously. So

\[
H\left(\frac{f(r)}{g(r)}\right) \geq C.H(r)^d
\]

and

\[
h\left(\frac{f(r)}{g(r)}\right) \geq dh(r) - \kappa
\]

as desired. The other inequality is easier (and not needed). \(\square \)

4 \(2\Gamma \) has finite index in \(\Gamma \)

Remains to prove Lemma 4. Since that is difficult, we only do a special case, namely that where \(x^3 + ax^2 + bx + c \) has a rational root \(x_0 \), that is, where there is a rational point \((x_0, 0)\) of order 2. Change coordinates so that this point becomes \((0, 0)\). Now the equation is \(y^2 = x^3 + ax^2 + bx \), that is, \(c = 0 \).

The discriminant becomes \(D = b^2(a^2 - 4b) \), and since the curve is nonsingular, this is nonzero.

Play with two curves: \(C \) defined by \(y^2 = x^3 + ax^2 + bx \) and \(\tilde{C} \) defined by \(y^2 = x^3 + \tilde{a}x^2 + bx \), where \(\tilde{a} = -2a \) and \(\tilde{b} = a^2 - 4b \).

Now \(\tilde{a} = 4a \) and \(\tilde{b} = a^2 - 4b = 16b \) so that \(\tilde{C} \) becomes the curve \(y^2 = x^3 + 4ax^2 + 16bx \), and \((x, y) \in \tilde{C} \) iff \((\frac{1}{8}x, \frac{1}{8}y) \in C \).
Define $\phi : C \to \tilde{C}$ by $(x,y) \mapsto (\tilde{x}, \tilde{y})$ with $\tilde{x} = x + \frac{a}{2} = \frac{x}{2}$ and $\tilde{y} = y(1 - \frac{a}{2})$ for $x \neq 0$, and map both $(0,0)$ and \mathcal{O} to \mathcal{O}. Then ϕ is a group homomorphism with kernel $\{(0,0), \mathcal{O}\}$.

Define $\psi : C \to C$ as the composition of ϕ and $(x,y) \mapsto (\frac{1}{4}x, \frac{1}{8}y)$. Then ψ is a group homomorphism with kernel $\{(0,0), \mathcal{O}\}$.

The composition of ϕ and ψ is the map $P \mapsto 2P$ on C.

All these statements follow by straightforward computation.

The desired result that 2Γ has finite index in Γ will follow from the two facts that $\phi \Gamma$ has finite index in Γ, and $\psi \Gamma$ has finite index in Γ. By symmetry it suffices to show one of these, say the latter.

We need a description of $\phi \Gamma$. We have

(i) $\mathcal{O} \in \phi \Gamma$.
(ii) $(0,0) \in \phi \Gamma$ iff $b = a^2 - 4b$ is a square.
(iii) $(\tilde{x}, \tilde{y}) \in \phi \Gamma$ for $\tilde{x} \neq 0$ iff \tilde{x} is a square in \mathbb{Q}.

(Indeed, (i) is clear. We have $\tilde{x} = \frac{x^2}{2}$, so \tilde{x} is a square, and $\tilde{x} = 0$ iff $y = 0$, that is, $x(x^2 + ax + b) = 0$ for some rational point (x,y) with $x \neq 0$ on C. That is, if $a^2 - 4b$ is a square. Finally, if $\tilde{x} = r^2$, then the point (x,y) with $x = \frac{1}{2}(r^2 - a + \frac{a}{2})$ and $y = xr$ lies on C and maps to (\tilde{x}, \tilde{y}).)

Let \mathbb{Q}^* be the multiplicative group of the nonzero rationals, and \mathbb{Q}^{*2} the subgroup of squares. Define a map $\alpha : \Gamma \to \mathbb{Q}^*/\mathbb{Q}^{*2}$ by $P = (x,y) \mapsto x$ for $x \neq 0$, $(0,0) \mapsto b$, $\mathcal{O} \mapsto 1$.

Now α is a group homomorphism: First of all, it maps the unit element \mathcal{O} to the unit element 1. Suppose $P_1 + P_2 + P_3 = \mathcal{O}$. We show that $\alpha(P_1)\alpha(P_2)\alpha(P_3) = 1$. (And that suffices to prove that α is a homomorphism.) The points P_1, P_2, P_3 lie on a line $y = \lambda x + \mu$ and x_1, x_2, x_3 are roots of $(\lambda x + \mu)^2 = x^3 + ax^2 + bx$. The product of the roots is minus the constant term, that is, is μ^2, so that $\alpha(P_1)\alpha(P_2)\alpha(P_3) = x_1x_2x_3 = \mu^2 = 1$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$. If $P_1 = (0,0)$ then $\mu = 0$ and x_2, x_3 are roots of $\lambda^2 x = x^3 + ax^2 + bx$ and $\alpha(P_1)\alpha(P_2)\alpha(P_3) = bx_2x_3 = b^2 = 1$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$. If $P_1 = \mathcal{O}$ then $P_2 = -P_3$ and $x_2 = x_3$ and $\alpha(P_1)\alpha(P_2)\alpha(P_3) = 1x_2x_3 = 1$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$.

Next, the image of α is finite (and is contained in the set of divisors of b): Let $P = (x,y) = (\frac{m^2}{n^2}, \frac{m}{n})$ be a point of C. Then $\alpha(P) = \frac{m}{n} = m$ in $\mathbb{Q}^*/\mathbb{Q}^{*2}$. From $n^2 = m(m^2 + am^2 + b^2)$ we see that each prime divisor p of m occurs to some even power in m, unless it also occurs (to an odd power) in $m^2 + am^2 + b^2$ and hence in b^2, and hence in b, since $\gcd(m,e) = 1$.

Next, from the description of the image of ϕ (applied to ψ) it is clear that the kernel of α is precisely the image of ψ. Consequently, α induces an isomorphism from $\Gamma/\psi(\Gamma)$ to a subgroup of $\mathbb{Q}^*/\mathbb{Q}^{*2}$ contained in the subgroup of divisors of b. In particular, $\Gamma/\psi(\Gamma)$ is finite.

\qed