Correction to Theorem 12.1.1

In [BCN], Theorem 12.1.1 the existence of a certain association scheme is claimed, and details are given for \(n = 3 \). As Frédéric Vanhove (pers.comm., Sept. 2013) observed, things are slightly different for odd \(n \geq 5 \).

Let \(q \) be a power of 2, and \(n \geq 3 \). Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_q \) provided with a nondegenerate quadratic form \(Q \). If \(n \) is odd, there will be a nucleus \(N = V^\perp \).

We construct an association scheme with point set \(X \), where \(X \) is the set of projective points not on the quadric \(Q \) and (for odd \(n \)) distinct from \(N \). For \(n = 3 \) and for even \(n \), the relations will be \(R_0, R_1, R_2, R_3 \) where

\[
R_0 = \{(x, x) \mid x \in X\}, \text{ the identity relation;}
R_1 = \{(x, y) \mid x + y \text{ is a hyperbolic line (secant)}\};
R_2 = \{(x, y) \mid x + y \text{ is an elliptic line (exterior line)}\};
R_3 = \{(x, y) \mid x + y \text{ is a tangent}\}.
\]

For odd \(n \), \(n \geq 5 \), it is necessary to distinguish \(R_{3a} \) and \(R_{3n} \), defined by

\[
R_{3a} = \{(x, y) \mid x + y \text{ is a tangent not on } N\};
R_{3n} = \{(x, y) \mid x + y \text{ is a tangent on } N\}.
\]

For \(q = 2 \) a hyperbolic line contains only one nonisotropic point, so that \(R_1 \) is empty.

Theorem 12.1.1 (corrected)

(i) \((X, \{R_0, R_1, R_2, R_3\})\) is an association scheme for even \(n = 2m \geq 4 \). It has eigenmatrix

\[
P = \begin{pmatrix}
1 & \frac{1}{2}q^{m-1}(q^{m-1} + \varepsilon)(q-2) & \frac{1}{2}q^m(q^{m-1} - \varepsilon) & q^{2m-2} - 1 \\
1 & \frac{1}{2}q^{m-2}(q + 1)(q-2) & -\frac{1}{2}q^{m-1}(q-1) & \varepsilon q^{m-2} - 1 \\
1 & \varepsilon q^{m-1} & 0 & \varepsilon q^{m-1} - 1 \\
1 & -\varepsilon q^{m-1} & 0 & \varepsilon q^{m-1} - 1
\end{pmatrix}
\]

and multiplicities \(1, q^2(q^{n-2} - 1)/(q^2 - 1), \frac{1}{2}q(q^{m-1} - \varepsilon)(q^m - \varepsilon)/(q + 1), \frac{1}{2}(q - 2)(q^{m-1} + \varepsilon)(q^m - \varepsilon)/(q - 1) \).

(ii) \((X, \{R_0, R_1, R_2, R_{3a}, R_{3n}\})\) is an association scheme for odd \(n = 2m+1 \geq 3 \). It has eigenmatrix

\[
P = \begin{pmatrix}
1 & \frac{1}{2}q^{2m-1}(q - 2) & \frac{1}{2}q^{2m} & q(q^{2m-2} - 1) & q - 2 \\
1 & \frac{1}{2}q^{m-1}(q - 2) & \frac{1}{2}q^m & -(q^{m-1} + 1)(q - 1) & q - 2 \\
1 & -\frac{1}{2}q^{m-1}(q - 2) & -\frac{1}{2}q^m & (q^{m-1} - 1)(q - 1) & q - 2 \\
1 & \frac{1}{2}q^m & -\frac{1}{2}q^m & 0 & -1 \\
1 & -\frac{1}{2}q^m & \frac{1}{2}q^m & 0 & -1
\end{pmatrix}
\]

and multiplicities \(1, \frac{1}{2}q(q^{m+1})(q^{m-1} - 1)/(q - 1), \frac{1}{2}q(q^m - 1)(q^{m-1} + 1)/(q - 1), \frac{1}{2}(q - 2)(q^{2m} - 1)/(q - 1) \) (twice).

When \(n = 3 \), the relation \(R_{3a} \) is empty, and the second eigenspace is absent.