Prev Up Next

  v k λ μ rf sgcomments
! 5 2 0 1 0.6182 –1.6182 pentagon; Paley(5); Seidel 2-graph\*
! 9 4 1 2 14 –24 Paley(9); 32; 2-graph\*
! 10 3 0 1 15 –24 Petersen graph; NO(4,2); NO–,orth(3,5); switch OA(3,2)+*; 2-graph
    6 3 4 14 –25 Triangular graph T(5); 2-graph
! 13 6 2 3 1.3036 –2.3036 Paley(13); 2-graph\*
! 15 6 1 3 19 –35 O(5,2) Sp(4,2); NO(4,3); GQ(2,2); 2-graph\*
    8 4 4 25 –29 Triangular graph T(6); 2-graph\*
! 16 5 0 2 110 –35 q222=0; vanLint-Schrijver(1); VO(4,2) affine polar graph; projective binary [5,4] code with weights 2, 4; RSHCD; 2-graph
    10 6 6 25 –210 Clebsch graph; q111=0; vanLint-Schrijver(2); 2-graph
2! 16 6 2 2 26 –29 Shrikhande graph; 42; from a partial spread: projective binary [6,4] code with weights 2, 4; RSHCD+; 2-graph
    9 4 6 19 –36 OA(4,3); Bilin2x2(2); Goethals-Seidel(2,3); VO+(4,2) affine polar graph; 2-graph
! 17 8 3 4 1.5628 –2.5628 Paley(17); 2-graph\*
! 21 10 3 6 114 –46  
    10 5 4 36 –214 Triangular graph T(7)
- 21 10 4 5 1.79110 –2.79110 Conf
! 25 8 3 2 38 –216 52
    16 9 12 116 –48 OA(5,4)
15! 25 12 5 6 212 –312 complete enumeration by Paulus; Paley(25); OA(5,3); 2-graph\*
10! 26 10 3 4 213 –312 complete enumeration by Paulus; switch OA(5,3)+*; 2-graph
    15 8 9 212 –313 S(2,3,13); 2-graph
! 27 10 1 5 120 –56 q222=0; O(6,2) polar graph; Godsil(q=3,r=2); GQ(2,4); 2-graph\*
    16 10 8 46 –220 Schläfli graph; unique by Seidel; q111=0; 2-graph\*
- 28 9 0 4 121 –56 Krein2; Absolute bound
    18 12 10 46 –221 Krein1; Absolute bound
4! 28 12 6 4 47 –220 Chang graphs; Triangular graph T(8); 2-graph
    15 6 10 120 –57 NO+(6,2); Goethals-Seidel(3,3); pg(3,4,2) does not exist (De Clerck); Taylor 2-graph for U3(3)
41! 29 14 6 7 2.19314 –3.19314 complete enumeration by Bussemaker & Spence; Paley(29); 2-graph\*
- 33 16 7 8 2.37216 –3.37216 Conf
3854! 35 16 6 8 220 –414 complete enumeration by McKay & Spence; pg(4,3,2) does not exist (De Clerck); 2-graph\*
    18 9 9 314 –320 S(2,3,15); lines in PG(3,2); O+(6,2); 2-graph\*
! 36 10 4 2 410 –225 62
    25 16 20 125 –510 OA(6,5) does not exist (Tarry)
180! 36 14 4 6 221 –414 U3(3).2 / L2(7).2 - subconstituent of Hall-Janko graph; complete enumeration by McKay & Spence; RSHCD; 2-graph
    21 12 12 314 –321 2-graph
! 36 14 7 4 58 –227 Triangular graph T(9)
    21 10 15 127 –68  
32548! 36 15 6 6 315 –320 complete enumeration by McKay & Spence; OA(6,3); NO(6,2); RSHCD+; 2-graph
    20 10 12 220 –415 NO(5,3); OA(6,4) does not exist (Tarry); 2-graph
+ 37 18 8 9 2.54118 –3.54118 Paley(37); 2-graph\*
28! 40 12 2 4 224 –415 complete enumeration by Spence; O(5,3) Sp(4,3); GQ(3,3)
    27 18 18 315 –324 NU(4,2)
+ 41 20 9 10 2.70220 –3.70220 Paley(41); 2-graph\*
78! 45 12 3 3 320 –324 complete enumeration by Coolsaet, Degraer & Spence; U(4,2) polar graph; GQ(4,2)
    32 22 24 224 –420 NO+(5,3)
! 45 16 8 4 69 –235 Triangular graph T(10)
    28 15 21 135 –79 pg(4,6,3)
+ 45 22 10 11 2.85422 –3.85422 Mathon; 2-graph\*
! 49 12 5 2 512 –236 72
    36 25 30 136 –612 OA(7,6)
- 49 16 3 6 232 –516 Bussemaker-Haemers-Mathon-Wilbrink
    32 21 20 416 –332  
+ 49 18 7 6 418 –330 Behbahani-Lam; OA(7,3); Pasechnik(7)
    30 17 20 230 –518 OA(7,5)
+ 49 24 11 12 324 –424 Paley(49); OA(7,4); 2-graph\*
! 50 7 0 1 228 –321 U3(52).2 / Sym(7) - Hoffman-Singleton
    42 35 36 221 –328  
- 50 21 4 12 142 –97 Absolute bound
    28 18 12 87 –242 Absolute bound
+ 50 21 8 9 325 –424 switch OA(7,4)+*; switch skewhad2+*; 2-graph
    28 15 16 324 –425 S(2,4,25); 2-graph

Prev Up Next