Prev Up Next

  v k λ μ rf sgcomments
+ 101 50 24 25 4.52550 –5.52550 Paley(101); 2-graph\*
! 105 26 13 4 1114 –290 Triangular graph T(15)
    78 55 66 190 –1214  
! 105 32 4 12 284 –1020 Aut L(3,4) on flags (rk 4) - Goethals & Seidel, unique by Coolsaet
    72 51 45 920 –384  
? 105 40 15 15 548 –556  
    64 38 40 456 –648  
? 105 52 21 30 284 –1120  
    52 29 22 1020 –384  
- 105 52 25 26 4.62352 –5.62352 Conf
+ 109 54 26 27 4.72054 –5.72054 Paley(109); 2-graph\*
? 111 30 5 9 374 –736  
    80 58 56 636 –474  
+ 111 44 19 16 736 –474 S(2,4,37)
    66 37 42 374 –836  
! 112 30 2 10 290 –1021 unique by Cameron, Goethals & Seidel; subconstituent of McLaughlin graph; q222=0; O(6,3) polar graph; GQ(3,9)
    81 60 54 921 –390 q111=0
? 112 36 10 12 463 –648 pg(6,5,2)?
    75 50 50 548 –563  
+ 113 56 27 28 4.81556 –5.81556 Paley(113); 2-graph\*
? 115 18 1 3 369 –545  
    96 80 80 445 –469  
+ 117 36 15 9 926 –390 Wallis; S(2,3,27); NO+(6,3); Lines in AG(3,3) (rk 4)
    80 52 60 290 –1026 pg(8,9,6)?
? 117 58 28 29 4.90858 –5.90858 2-graph\*?
+ 119 54 21 27 384 –934 O(8,2) polar graph; pg(6,8,3)?; 2-graph\*
    64 36 32 834 –484 2-graph\*
! 120 28 14 4 1215 –2104 Triangular graph T(16)
    91 66 78 1104 –1315 pg(7,12,6)?
? 120 34 8 10 468 –651  
    85 60 60 551 –568  
? 120 35 10 10 556 –563 pg(7,4,2) does not exist (Azarija-Marc for line graph)
    84 58 60 463 –656  
! 120 42 8 18 299 –1220 L(3,4) on Baer subplanes (rk 5), unique by Degraer & Coolsaet
    77 52 44 1120 –399 Witt: intersection-3 graph of a quasisymmetric 2-(21,7,12) design with intersection numbers 1, 3
+ 120 51 18 24 385 –934 NO(5,4); 2-graph
    68 40 36 834 –485 from 2-(15,3,1) with 1-factor Fickus et al.; 2-graph
+ 120 56 28 24 835 –484 2-graph
    63 30 36 384 –935 dist. 2 in J(10,3) - Mathon; NO+(8,2); Goethals-Seidel(3,7); pg(7,8,4) - Cohen; see also De Clerck & Delanote; 2-graph
! 121 20 9 2 920 –2100 112
    100 81 90 1100 –1020 OA(11,10)
+ 121 30 11 6 830 –390 OA(11,3)
    90 65 72 290 –930 OA(11,9)
? 121 36 7 12 384 –836  
    84 59 56 736 –484  
+ 121 40 15 12 740 –480 OA(11,4)
    80 51 56 380 –840 OA(11,8)
? 121 48 17 20 472 –748  
    72 43 42 648 –572  
+ 121 50 21 20 650 –570 OA(11,5); Pasechnik(11)
    70 39 42 470 –750 OA(11,7)
- 121 56 15 35 1112 –218 Absolute bound
    64 42 24 208 –2112 Absolute bound
+ 121 60 29 30 560 –660 Paley(121); OA(11,6); 2-graph\*
+ 122 55 24 25 561 –660 switch OA(11,6)+*; switch skewhad2+*; 2-graph
    66 35 36 560 –661 S(2,6,61)?; 2-graph
+ 125 28 3 7 384 –740 Godsil(q=5,r=3); GQ(4,6)
    96 74 72 640 –484  
- 125 48 28 12 1810 –2114 Absolute bound
    76 39 57 1114 –1910 Absolute bound
+ 125 52 15 26 2104 –1320 Godsil(q=5,r=2); pg(4,12,2)?; 2-graph\*
    72 45 36 1220 –3104 2-graph\*
+ 125 62 30 31 5.09062 –6.09062 Paley(125); 2-graph\*
+ 126 25 8 4 735 –390 dist. 1 or 4 in J(9,4) - Mathon, Buekenhout \& Hubaut
    100 78 84 290 –835  
+ 126 45 12 18 390 –935 NO(6,3); pg(5,8,2)?
    80 52 48 835 –490  
+ 126 50 13 24 2105 –1320 Goethals - unique by Coolsaet & Degraer; 2-graph
    75 48 39 1220 –3105 2-graph
+ 126 60 33 24 1221 –3104 2-graph
    65 28 39 2104 –1321 pg(5,12,3)?; Taylor 2-graph for U3(5)
- 129 64 31 32 5.17964 –6.17964 Conf
+ 130 48 20 16 839 –490 S(2,4,40); lines in PG(3,3); O+(6,3)
    81 48 54 390 –939 pg(9,8,6)?
? 133 24 5 4 556 –476 GQ(6,3) does not exist (Dixmier & Zara)
    108 87 90 376 –656  
? 133 32 6 8 476 –656  
    100 75 75 556 –576  
? 133 44 15 14 656 –576  
    88 57 60 476 –756  
- 133 66 32 33 5.26666 –6.26666 Conf
+ 135 64 28 32 484 –850 pg(8,7,4) - Cohen; see also De Clerck & Delanote; 2-graph\*
    70 37 35 750 –584 O+(8,2); from ETF Fickus et al.; 2-graph\*
? 136 30 8 6 651 –484  
    105 80 84 384 –751  
! 136 30 15 4 1316 –2119 Triangular graph T(17)
    105 78 91 1119 –1416  
+ 136 60 24 28 485 –850 2-graph
    75 42 40 750 –585 NO+(5,4); from ETF Fickus et al.; 2-graph
+ 136 63 30 28 751 –584 NO(8,2); 2-graph
    72 36 40 484 –851 2-graph
+ 137 68 33 34 5.35268 –6.35268 Paley(137); 2-graph\*
- 141 70 34 35 5.43770 –6.43770 Conf
+ 143 70 33 35 577 –765 intersection-18 graph of a quasisymmetric 2-(78,36,30) design with intersection numbers 15, 18; pg(10,6,5)?; 2-graph\*
    72 36 36 665 –677 S(2,6,66); intersection-15 graph of a quasisymmetric 2-(66,30,29) design with intersection numbers 12, 15; 2-graph\*
! 144 22 10 2 1022 –2121 122
    121 100 110 1121 –1122 OA(12,11)?
+ 144 33 12 6 933 –3110 OA(12,3)
    110 82 90 2110 –1033 OA(12,10)?
+ 144 39 6 12 3104 –939 L3(3) (rk 8)
    104 76 72 839 –4104  
+ 144 44 16 12 844 –499 OA(12,4)
    99 66 72 399 –944 OA(12,9)?
? 144 52 16 20 491 –852  
    91 58 56 752 –591  
+ 144 55 22 20 755 –588 OA(12,5)
    88 52 56 488 –855 OA(12,8)?
- 144 65 16 40 1135 –258 Krein2; Absolute bound
    78 52 30 248 –2135 Krein1; Absolute bound
+ 144 65 28 30 578 –765 RSHCD; 2-graph
    78 42 42 665 –678 from 2-(12,2,1) with 1-factor Fickus et al.; 2-graph
+ 144 66 30 30 666 –677 OA(12,6); RSHCD+; 2-graph
    77 40 42 577 –766 OA(12,7); Goethals-Seidel(2,11); 2-graph
? 145 72 35 36 5.52172 –6.52172 2-graph\*?
? 147 66 25 33 3110 –1136 pg(6,10,3)?; 2-graph\*?
    80 46 40 1036 –4110 2-graph\*?
? 148 63 22 30 3111 –1136 2-graph?
    84 50 44 1036 –4111 2-graph?
? 148 70 36 30 1037 –4110 2-graph?
    77 36 44 3110 –1137 2-graph?
+ 149 74 36 37 5.60374 –6.60374 Paley(149); 2-graph\*

Prev Up Next