Prev Up Next

  v k λ μ rf sgcomments
? 1251 270 73 54 27278 –8972  
    980 763 784 7972 –28278 S(2,28,973)?
- 1253 626 312 313 17.199626 –18.199626 Conf
? 1254 203 52 29 29209 –61044  
    1050 875 900 51044 –30209 S(2,30,1045)?
? 1254 560 262 240 32285 –10968  
    693 372 396 9968 –33285 pg(21,32,12)?
- 1257 628 313 314 17.227628 –18.227628 Conf
? 1258 432 156 144 24407 –12850 S(2,12,408)?
    825 536 550 11850 –25407 pg(33,24,22)?
? 1261 492 171 205 71066 –41194 pg(12,40,5)?
    768 480 448 40194 –81066  
? 1261 574 279 246 41194 –81066  
    686 357 392 71066 –42194  
? 1261 630 314 315 17.255630 –18.255630 2-graph\*?
? 1265 480 185 180 20528 –15736 pg(32,14,12)?
    784 483 490 14736 –21528  
- 1265 632 315 316 17.283632 –18.283632 Conf
? 1266 385 96 126 71055 –37210  
    880 620 592 36210 –81055  
? 1266 460 186 156 38210 –81055  
    805 500 532 71055 –39210  
? 1267 186 5 31 51085 –31181  
    1080 924 900 30181 –61085  
? 1269 288 42 72 61080 –36188 pg(8,35,2)?
    980 763 735 35188 –71080  
- 1269 634 316 317 17.312634 –18.312634 Conf
? 1270 261 36 58 71015 –29254 pg(9,28,2)?
    1008 804 784 28254 –81015  
+ 1271 160 48 16 36123 –41147 S(2,4,124)
    1110 965 999 31147 –37123 pg(30,36,27)?
- 1273 636 317 318 17.340636 –18.340636 Conf
? 1274 201 40 30 19402 –9871  
    1072 900 912 8871 –20402  
+ 1274 228 62 36 32195 –61078 S(2,6,196)
    1045 852 880 51078 –33195  
? 1274 475 180 175 20532 –15741  
    798 497 504 14741 –21532  
? 1274 513 192 216 9988 –33285  
    760 462 440 32285 –10988  
? 1275 98 13 7 13441 –7833  
    1176 1084 1092 6833 –14441  
! 1275 98 49 4 4750 –21224 Triangular graph T(51)
    1176 1081 1128 11224 –4850  
? 1275 234 33 45 9884 –21390  
    1040 850 840 20390 –10884  
? 1275 266 49 57 11798 –19476 pg(14,18,3)?
    1008 798 792 18476 –12798  
? 1275 336 134 72 6668 –41206  
    938 673 737 31206 –6768 pg(14,66,11)?
? 1275 350 85 100 10900 –25374 pg(14,24,4)?
    924 673 660 24374 –11900  
- 1275 364 63 120 41190 –6184 Krein2
    910 665 610 6084 –51190 Krein1
? 1275 364 113 100 24390 –11884  
    910 645 660 10884 –25390  
- 1275 378 57 135 31224 –8150 Krein2
    896 652 576 8050 –41224 Krein1
? 1275 442 153 153 17624 –17650  
    832 542 544 16650 –18624  
? 1275 490 185 190 15714 –20560  
    784 483 480 19560 –16714  
? 1275 490 225 165 6584 –51190  
    784 458 520 41190 –6684  
? 1275 504 228 180 54119 –61155  
    770 445 495 51155 –55119 pg(14,54,9)?
? 1275 518 193 222 81036 –37238 pg(14,36,6)?
    756 459 432 36238 –91036  
? 1275 546 281 198 8750 –41224  
    728 379 464 31224 –8850  
? 1275 572 247 264 11900 –28374  
    702 393 378 27374 –12900  
? 1276 50 0 2 6725 –8550  
    1225 1176 1176 7550 –7725  
? 1276 204 14 36 61044 –28231  
    1071 902 882 27231 –71044  
? 1276 315 58 84 71044 –33231  
    960 728 704 32231 –81044  
? 1276 330 77 88 11840 –22435  
    945 702 693 21435 –12840  
? 1276 425 144 140 19550 –15725  
    850 564 570 14725 –20550  
? 1276 459 202 144 6387 –51188  
    816 500 560 41188 –6487  
? 1276 600 284 280 20550 –16725  
    675 354 360 15725 –21550  
+ 1277 638 318 319 17.368638 –18.368638 Paley(1277); 2-graph\*
? 1281 440 145 154 13792 –22488 pg(20,21,7)?
    840 553 546 21488 –14792  
? 1281 540 243 216 36244 –91036  
    740 415 444 81036 –37244 pg(20,36,12)?
- 1281 640 319 320 17.396640 –18.396640 Conf
? 1285 528 212 220 14770 –22514  
    756 447 441 21514 –15770  
? 1285 642 320 321 17.423642 –18.423642 2-graph\*?
? 1288 162 36 18 24252 –61035 pg(27,5,3)?
    1125 980 1000 51035 –25252  
? 1288 195 26 30 11735 –15552 pg(13,14,2)?
    1092 926 924 14552 –12735  
+ 1288 195 54 25 34160 –51127 S(2,5,161)
    1092 921 952 41127 –35160  
? 1288 234 80 34 5091 –41196  
    1053 852 900 31196 –5191  
- 1288 312 36 88 41196 –5691 Krein2
    975 750 700 5591 –51196 Krein1
? 1288 315 98 70 35207 –71080  
    972 726 756 61080 –36207 pg(27,35,21)?
? 1288 429 180 124 6191 –51196  
    858 552 610 41196 –6291  
? 1288 462 161 168 14759 –21528 pg(22,20,8)?
    825 530 525 20528 –15759  
+ 1288 495 206 180 35252 –91035  
    792 476 504 81035 –36252 M24 / 2.M12; pairs of dodecads; pg(22,35,14)?
? 1288 567 246 252 15735 –21552 pg(27,20,12)?
    720 404 400 20552 –16735  
+ 1289 644 321 322 17.451644 –18.451644 Paley(1289); 2-graph\*
- 1293 646 322 323 17.479646 –18.479646 Conf
+ 1295 646 321 323 17665 –19629 pg(34,18,17)?; 2-graph\*
    648 324 324 18629 –18665 S(2,18,630)?; 2-graph\*
! 1296 70 34 2 3470 –21225 362
    1225 1156 1190 11225 –3570 OA(36,35)?
+ 1296 105 36 6 33105 –31190 OA(36,3)
    1190 1090 1122 21190 –34105 OA(36,34)?
+ 1296 140 40 12 32140 –41155 OA(36,4)
    1155 1026 1056 31155 –33140 OA(36,33)?
+ 1296 175 46 20 31175 –51120 OA(36,5)
    1120 964 992 41120 –32175 OA(36,32)?
? 1296 185 4 30 51110 –31185  
    1110 954 930 30185 –61110  
? 1296 185 40 24 23296 –7999  
    1110 948 966 6999 –24296  
? 1296 185 58 21 41111 –41184  
    1110 945 984 31184 –42111  
+ 1296 210 54 30 30210 –61085 OA(36,6)
    1085 904 930 51085 –31210 OA(36,31)?
? 1296 222 18 42 61073 –30222  
    1073 892 870 29222 –71073  
+ 1296 245 64 42 29245 –71050 OA(36,7)
    1050 846 870 61050 –30245 OA(36,30)?
? 1296 250 40 50 10855 –20440  
    1045 844 836 19440 –11855  
? 1296 259 34 56 71036 –29259  
    1036 832 812 28259 –81036  
+ 1296 280 76 56 28280 –81015 OA(36,8)
    1015 790 812 71015 –29280 OA(36,29)?
? 1296 296 52 72 8999 –28296  
    999 774 756 27296 –9999  
+ 1296 315 90 72 27315 –9980 OA(36,9)
    980 736 756 8980 –28315 OA(36,28)?
? 1296 333 72 90 9962 –27333  
    962 718 702 26333 –10962  
? 1296 343 70 98 71071 –35224  
    952 706 680 34224 –81071  
+ 1296 350 106 90 26350 –10945 OA(36,10)
    945 684 702 9945 –27350 OA(36,27)?
? 1296 370 94 110 10925 –26370  
    925 664 650 25370 –11925  
? 1296 385 124 110 25385 –11910 OA(36,11)?
    910 634 650 10910 –26385 OA(36,26)?
? 1296 407 118 132 11888 –25407  
    888 612 600 24407 –12888  
- 1296 420 94 156 41215 –6680 Krein2
    875 610 550 6580 –51215 Krein1
? 1296 420 144 132 24420 –12875 OA(36,12)?
    875 586 600 11875 –25420 OA(36,25)?
- 1296 434 64 186 21271 –12424 Krein2; Absolute bound
    861 612 492 12324 –31271 Krein1; Absolute bound
- 1296 435 90 174 31247 –8748 Krein2; Absolute bound
    860 598 516 8648 –41247 Krein1; Absolute bound
? 1296 444 144 156 12851 –24444  
    851 562 552 23444 –13851  
? 1296 455 166 156 23455 –13840 OA(36,13)?
    840 540 552 12840 –24455 OA(36,24)?
- 1296 481 40 260 11287 –2218 Krein2; Absolute bound
    814 592 374 2208 –21287 Krein1; Absolute bound
? 1296 481 172 182 13814 –23481  
    814 514 506 22481 –14814  
? 1296 490 190 182 22490 –14805 OA(36,14)?
    805 496 506 13805 –23490 OA(36,23)?
? 1296 518 175 228 51184 –58111  
    777 486 435 57111 –61184  
? 1296 518 202 210 14777 –22518  
    777 468 462 21518 –15777  
? 1296 518 220 198 32296 –10999  
    777 456 480 9999 –33296  
? 1296 525 216 210 21525 –15770 OA(36,15)?
    770 454 462 14770 –22525 OA(36,22)?
? 1296 555 234 240 15740 –21555  
    740 424 420 20555 –16740  
? 1296 555 274 210 6980 –51215  
    740 394 460 41215 –7080  
? 1296 560 244 240 20560 –16735 OA(36,16)?
    735 414 420 15735 –21560 OA(36,21)?
? 1296 592 268 272 16703 –20592  
    703 382 380 19592 –17703  
? 1296 595 274 272 19595 –17700 OA(36,17)?
    700 376 380 16700 –20595 OA(36,20)?
+ 1296 629 304 306 17666 –19629 RSHCD; 2-graph
    666 342 342 18629 –18666 from 2-(36,2,1) with 1-factor Fickus et al.; 2-graph
+ 1296 630 306 306 18630 –18665 OA(36,18)?; RSHCD+; 2-graph
    665 340 342 17665 –19630 OA(36,19)?; Goethals-Seidel(2,35); 2-graph
+ 1297 648 323 324 17.507648 –18.507648 Paley(1297); 2-graph\*
? 1300 432 142 144 16675 –18624 pg(24,17,8)?
    867 578 578 17624 –17675  
? 1300 441 154 147 21507 –14792  
    858 563 572 13792 –22507  
? 1300 516 254 172 8652 –41247  
    783 438 522 31247 –8752 pg(9,86,6)?

Prev Up Next