Prev Up Next

  v k λ μ rf sgcomments
- 201 100 49 50 6.589100 –7.589100 Conf
? 204 28 2 4 4119 –684  
    175 150 150 584 –5119  
? 204 63 22 18 968 –5135  
    140 94 100 4135 –1068 S(2,10,136)?
? 205 68 15 26 3164 –1440  
    136 93 84 1340 –4164  
? 205 96 50 40 1440 –4164  
    108 51 63 3164 –1540  
? 205 102 50 51 6.659102 –7.659102 2-graph\*?
? 208 45 8 10 5117 –790  
    162 126 126 690 –6117  
+ 208 75 30 25 1064 –5143 S(2,5,65); NU(3,4)
    132 81 88 4143 –1164 pg(12,10,8)?
? 208 81 24 36 3168 –1539  
    126 80 70 1439 –4168  
- 209 16 3 1 576 –3132 mu=1
    192 176 180 2132 –676  
? 209 52 15 12 876 –5132  
    156 115 120 4132 –976  
+ 209 100 45 50 5132 –1076 pg(10,9,5)?; 2-graph\*
    108 57 54 976 –6132 2-graph\*
- 209 104 51 52 6.728104 –7.728104 Conf
? 210 33 0 6 3154 –955  
    176 148 144 855 –4154  
! 210 38 19 4 1720 –2189 Triangular graph T(21)
    171 136 153 1189 –1820  
? 210 76 26 28 6114 –895  
    133 84 84 795 –7114  
? 210 77 28 28 799 –7110  
    132 82 84 6110 –899  
? 210 95 40 45 5133 –1076 2-graph?
    114 63 60 976 –6133 2-graph?
+ 210 99 48 45 977 –6132 Sym(7) - Klin; 2-graph
    110 55 60 5132 –1077 pg(11,9,6)?; 2-graph
- 213 106 52 53 6.797106 –7.797106 Conf
+ 216 40 4 8 4140 –875 O(6,2) Crnkovic_et_al
    175 142 140 775 –5140  
? 216 43 10 8 786 –5129  
    172 136 140 4129 –886  
- 216 70 40 14 2812 –2203 Absolute bound
    145 88 116 1203 –2912 Absolute bound
? 216 75 18 30 3175 –1540 pg(5,14,2)?
    140 94 84 1440 –4175  
? 216 86 40 30 1443 –4172  
    129 72 84 3172 –1543  
? 216 90 39 36 980 –6135 S(2,6,81)?
    125 70 75 5135 –1080  
? 217 66 15 22 4154 –1162 pg(6,10,2)?
    150 105 100 1062 –5154  
? 217 88 39 33 1162 –5154  
    128 72 80 4154 –1262  
- 217 108 53 54 6.865108 –7.865108 Conf
? 220 72 22 24 6120 –899 pg(9,7,3)?
    147 98 98 799 –7120  
+ 220 84 38 28 1444 –4175 Tonchev: intersection-3 graph of a quasisymmetric 2-(45,9,8) design with intersection numbers 1, 3
    135 78 90 3175 –1544 pg(9,14,6)?
+ 221 64 24 16 1251 –4169 S(2,4,52)
    156 107 117 3169 –1351 pg(12,12,9)
? 221 110 54 55 6.933110 –7.933110 2-graph\*?
+ 222 51 20 9 1436 –3185 S(2,3,37)
    170 127 140 2185 –1536  
! 225 28 13 2 1328 –2196 152
    196 169 182 1196 –1428 OA(15,14)?
+ 225 42 15 6 1242 –3182 OA(15,3)
    182 145 156 2182 –1342 OA(15,13)?
? 225 48 3 12 3176 –1248  
    176 139 132 1148 –4176  
- 225 56 1 18 2200 –1924 Krein2
    168 129 114 1824 –3200 Krein1
+ 225 56 19 12 1156 –4168 OA(15,4)
    168 123 132 3168 –1256 OA(15,12)?
? 225 64 13 20 4160 –1164  
    160 115 110 1064 –5160  
+ 225 70 25 20 1070 –5154 OA(15,5)
    154 103 110 4154 –1170 OA(15,11)?
? 225 80 25 30 5144 –1080 pg(8,9,3)?
    144 93 90 980 –6144  
+ 225 84 33 30 984 –6140 OA(15,6)
    140 85 90 5140 –1084 OA(15,10)?
- 225 96 19 57 1216 –398 Krein2; Absolute bound
    128 88 52 388 –2216 Krein1; Absolute bound
? 225 96 39 42 6128 –996  
    128 73 72 896 –7128  
? 225 96 51 33 2124 –3200  
    128 64 84 2200 –2224  
+ 225 98 43 42 898 –7126 OA(15,7)?; Pasechnik(15)
    126 69 72 6126 –998 OA(15,9)?
+ 225 112 55 56 7112 –8112 skewhad$^2$; OA(15,8)?; 2-graph\*
+ 226 105 48 49 7113 –8112 switch skewhad2+*; 2-graph
    120 63 64 7112 –8113 S(2,8,113)?; 2-graph
+ 229 114 56 57 7.066114 –8.066114 Paley(229); 2-graph\*
+ 231 30 9 3 955 –3175 M22 - Cameron
    200 172 180 2175 –1055  
! 231 40 20 4 1821 –2209 Triangular graph T(22)
    190 153 171 1209 –1921 pg(10,18,9)?
? 231 70 21 21 7110 –7120 pg(10,6,3)?
    160 110 112 6120 –8110  
? 231 90 33 36 6132 –998 pg(10,8,4)?
    140 85 84 898 –7132  
? 232 33 2 5 4144 –787  
    198 169 168 687 –5144  
? 232 63 14 18 5144 –987 pg(7,8,2)?
    168 122 120 887 –6144  
? 232 77 36 20 1928 –3203  
    154 96 114 2203 –2028  
? 232 81 30 27 987 –6144  
    150 95 100 5144 –1087 S(2,10,145)?
+ 233 116 57 58 7.132116 –8.132116 Paley(233); 2-graph\*
? 235 42 9 7 794 –5140  
    192 156 160 4140 –894  
? 235 52 9 12 5140 –894  
    182 141 140 794 –6140  
? 236 55 18 11 1159 –4176  
    180 135 144 3176 –1259 S(2,12,177)?
- 237 118 58 59 7.197118 –8.197118 Conf
? 238 75 20 25 5153 –1084  
    162 111 108 984 –6153  
+ 241 120 59 60 7.262120 –8.262120 Paley(241); 2-graph\*
+ 243 22 1 2 4132 –5110 35.2.M11 (rk 3) - Berlekamp-vanLint-Seidel; Golay code: projective ternary [11,5] code with weights 6, 9
    220 199 200 4110 –5132  
? 243 66 9 21 3198 –1544  
    176 130 120 1444 –4198  
- 243 88 52 20 3411 –2231 Absolute bound
    154 85 119 1231 –3511 Absolute bound
+ 243 110 37 60 2220 –2522 35.2.M11 (rk 3) - Delsarte; projective ternary [55,5] code with weights 36, 45
    132 81 60 2422 –3220  
? 243 112 46 56 4182 –1460 pg(8,13,4)?; 2-graph\*?
    130 73 65 1360 –5182 2-graph\*?
? 244 108 42 52 4183 –1460 2-graph?
    135 78 70 1360 –5183 2-graph?
? 244 117 60 52 1361 –5182 2-graph?
    126 60 70 4182 –1461 2-graph?
? 245 52 3 13 3195 –1349  
    192 152 144 1249 –4195  
? 245 64 18 16 8100 –6144  
    180 131 135 5144 –9100  
? 245 108 39 54 3204 –1840 pg(6,17,3)?; 2-graph\*?
    136 81 68 1740 –4204 2-graph\*?
? 245 122 60 61 7.326122 –8.326122 2-graph\*?
? 246 85 20 34 3204 –1741 pg(5,16,2)?
    160 108 96 1641 –4204  
? 246 105 36 51 3205 –1840 2-graph?
    140 85 72 1740 –4205 2-graph?
? 246 119 64 51 1741 –4204 2-graph?
    126 57 72 3204 –1841 2-graph?
+ 247 54 21 9 1538 –3208 S(2,3,39)
    192 146 160 2208 –1638 pg(12,15,10)?
? 249 88 27 33 5165 –1183  
    160 104 100 1083 –6165  
- 249 124 61 62 7.390124 –8.390124 Conf
? 250 81 24 27 6144 –9105 pg(9,8,3)?
    168 113 112 8105 –7144  
? 250 96 44 32 1645 –4204  
    153 88 102 3204 –1745 pg(9,16,6)?

Prev Up Next