Prev Up Next

  v k λ μ rf sgcomments
! 253 42 21 4 1922 –2230 Triangular graph T(23)
    210 171 190 1230 –2022  
- 253 90 17 40 2230 –2522 Krein2
    162 111 90 2422 –3230 Krein1
+ 253 112 36 60 2230 –2622 S(4,7,23) - M23
    140 87 65 2522 –3230 Witt 4-(23,7,1): intersection-3 graph of a quasisymmetric 2-(23,7,21) design with intersection numbers 1, 3
- 253 126 62 63 7.453126 –8.453126 Conf
+ 255 126 61 63 7135 –9119 O(9,2) Sp(8,2); pg(14,8,7); 2-graph\*
    128 64 64 8119 –8135 S(2,8,120); 2-graph\*
! 256 30 14 2 1430 –2225 162; from a partial spread: projective 4-ary [10,4] code with weights 4, 8; from a partial spread of 4-spaces: projective binary [30,8] code with weights 8, 16
    225 196 210 1225 –1530 OA(16,15)
+ 256 45 16 6 1345 –3210 OA(16,3); Bilin2x4(2); Brouwer(q=4,d=2,e=2,+); from a partial spread: projective 4-ary [15,4] code with weights 8, 12; from a partial spread of 4-spaces: projective binary [45,8] code with weights 16, 24
    210 170 182 2210 –1445 OA(16,14)
+ 256 51 2 12 3204 –1351 vanLint-Schrijver(1); VO(4,4) affine polar graph; projective 4-ary [17,4] code with weights 12, 16
    204 164 156 1251 –4204 vanLint-Schrijver(4)
+ 256 60 20 12 1260 –4195 Jenrich (rk 4); OA(16,4); from a partial spread: projective 4-ary [20,4] code with weights 12, 16; Brouwer(q=2,d=4,e=2,+); from a partial spread of 4-spaces: projective binary [60,8] code with weights 24, 32
    195 146 156 3195 –1360 OA(16,13)
- 256 66 2 22 2231 –2224 Krein2
    189 144 126 2124 –3231 Krein1
+ 256 68 12 20 4187 –1268 Brouwer(q=2,d=4,e=2,-); projective binary [68,8] code with weights 32, 40
    187 138 132 1168 –5187  
+ 256 75 26 20 1175 –5180 OA(16,5); Bilin2x2(4); VO+(4,4) affine polar graph; from a partial spread: projective 4-ary [25,4] code with weights 16, 20; from a partial spread of 4-spaces: projective binary [75,8] code with weights 32, 40
    180 124 132 4180 –1275 OA(16,12)
+ 256 85 24 30 5170 –1185 vanLint-Schrijver(1); CK - CY1: projective binary [85,8] code with weights 40, 48
    170 114 110 1085 –6170 vanLint-Schrijver(2)
+ 256 90 34 30 1090 –6165 OA(16,6); from a partial spread: projective 4-ary [30,4] code with weights 20, 24; from a partial spread of 4-spaces: projective binary [90,8] code with weights 40, 48
    165 104 110 5165 –1190 OA(16,11)
+ 256 102 38 42 6153 –10102 28.L2(17) (rk 3) - Liebeck; vanLint-Schrijver(2); CK - CY1: projective 4-ary [34,4] code with weights 24, 28
    153 92 90 9102 –7153 vanLint-Schrijver(3)
+ 256 105 44 42 9105 –7150 OA(16,7); from a partial spread: projective 4-ary [35,4] code with weights 24, 28; Brouwer(q=2,d=2,e=4,+); from a partial spread of 4-spaces: projective binary [105,8] code with weights 48, 56
    150 86 90 6150 –10105 OA(16,10)
+ 256 119 54 56 7136 –9119 VO(8,2) affine polar graph; projective binary [119,8] code with weights 56, 64; RSHCD; 2-graph
    136 72 72 8119 –8136 from 2-(16,2,1) with 1-factor Fickus et al.; 2-graph
+ 256 120 56 56 8120 –8135 OA(16,8); from a partial spread: projective 4-ary [40,4] code with weights 28, 32; from a partial spread of 4-spaces: projective binary [120,8] code with weights 56, 64; RSHCD+; 2-graph
    135 70 72 7135 –9120 OA(16,9); Goethals-Seidel(2,15); VO+(8,2) affine polar graph; 2-graph
+ 257 128 63 64 7.516128 –8.516128 Paley(257); 2-graph\*
? 259 42 5 7 5147 –7111  
    216 180 180 6111 –6147  
? 260 70 15 20 5168 –1091 pg(7,9,2)?
    189 138 135 991 –6168  
? 261 52 11 10 7116 –6144  
    208 165 168 5144 –8116  
? 261 64 14 16 6144 –8116 pg(8,7,2)?
    196 147 147 7116 –7144  
? 261 80 25 24 8116 –7144  
    180 123 126 6144 –9116  
? 261 84 39 21 2129 –3231  
    176 112 132 2231 –2229 pg(8,21,6)?
? 261 130 64 65 7.578130 –8.578130 2-graph\*?
? 265 96 32 36 6159 –10105  
    168 107 105 9105 –7159  
? 265 132 65 66 7.639132 –8.639132 2-graph\*?
? 266 45 0 9 3209 –1256  
    220 183 176 1156 –4209  
+ 269 134 66 67 7.701134 –8.701134 Paley(269); 2-graph\*
? 273 72 21 18 9104 –6168 pg(12,5,3)?
    200 145 150 5168 –10104  
? 273 80 19 25 5182 –1190  
    192 136 132 1090 –6182  
+ 273 102 41 36 1190 –6182 S(2,6,91)
    170 103 110 5182 –1290  
? 273 136 65 70 6168 –11104  
    136 69 66 10104 –7168  
- 273 136 67 68 7.761136 –8.761136 Conf
! 275 112 30 56 2252 –2822 q222=0; pg(4,27,2) does not exist by Soicher-Östergård; 2-graph\*
    162 105 81 2722 –3252 McLaughlin graph McL.2 / U4(3).2; unique by Goethals & Seidel; q111=0; 2-graph\*
! 276 44 22 4 2023 –2252 Triangular graph T(24)
    231 190 210 1252 –2123 pg(11,20,10)?
? 276 75 10 24 3230 –1745  
    200 148 136 1645 –4230  
? 276 75 18 21 6160 –9115  
    200 145 144 8115 –7160  
- 276 110 28 54 2253 –2822 Krein2; Absolute bound
    165 108 84 2722 –3253 Krein1; Absolute bound
? 276 110 52 38 1845 –4230  
    165 92 108 3230 –1945  
+ 276 135 78 54 2723 –3252 Conway-Goethals&Seidel; 2-graph
    140 58 84 2252 –2823 pg(5,27,3)?; 2-graph
+ 277 138 68 69 7.822138 –8.822138 Paley(277); 2-graph\*
+ 279 128 52 64 4216 –1662 pg(8,15,4)?; 2-graph\*
    150 85 75 1562 –5216 2-graph\*
+ 280 36 8 4 890 –4189 J2 / 3PGL2(9) (rk 4); U(4,3) polar graph; GQ(9,3)
    243 210 216 3189 –990  
? 280 62 12 14 6155 –8124  
    217 168 168 7124 –7155  
? 280 63 14 14 7135 –7144 pg(9,6,2)?
    216 166 168 6144 –8135  
+ 280 117 44 52 5195 –1384 pg(9,12,4)?
    162 96 90 1284 –6195 Sym(9) (rk 5) - Mathon & Rosa
? 280 124 48 60 4217 –1662 2-graph?
    155 90 80 1562 –5217 2-graph?
+ 280 135 70 60 1563 –5216 J2 / 3PGL2(9) (rk 4); 2-graph
    144 68 80 4216 –1663 pg(9,15,5)?; 2-graph
+ 281 140 69 70 7.882140 –8.882140 Paley(281); 2-graph\*
? 285 64 8 16 4209 –1275  
    220 171 165 1175 –5209  
- 285 142 70 71 7.941142 –8.941142 Conf
? 286 95 24 35 4220 –1565  
    190 129 120 1465 –5220  
? 286 125 60 50 1565 –5220  
    160 84 96 4220 –1665 pg(10,15,6)?
? 287 126 45 63 3245 –2141 pg(6,20,3)?; 2-graph\*?
    160 96 80 2041 –4245 2-graph\*?
? 288 41 4 6 5164 –7123  
    246 210 210 6123 –6164  
? 288 42 6 6 6140 –6147  
    245 208 210 5147 –7140  
? 288 105 52 30 2527 –3260  
    182 106 130 2260 –2627 pg(7,25,5)?
? 288 112 36 48 4224 –1663 pg(7,15,3)?
    175 110 100 1563 –5224  
? 288 123 42 60 3246 –2141 2-graph?
    164 100 84 2041 –4246 2-graph?
? 288 140 76 60 2042 –4245 2-graph?
    147 66 84 3245 –2142 pg(7,20,4)?; 2-graph?
! 289 32 15 2 1532 –2256 172
    256 225 240 1256 –1632 OA(17,16)
+ 289 48 17 6 1448 –3240 OA(17,3)
    240 197 210 2240 –1548 OA(17,15)
- 289 54 1 12 3234 –1454 Bondarenko-Radchenko
    234 191 182 1354 –4234  
+ 289 64 21 12 1364 –4224 OA(17,4)
    224 171 182 3224 –1464 OA(17,14)
? 289 72 11 20 4216 –1372  
    216 163 156 1272 –5216  
+ 289 80 27 20 1280 –5208 OA(17,5)
    208 147 156 4208 –1380 OA(17,13)
? 289 90 23 30 5198 –1290  
    198 137 132 1190 –6198  
+ 289 96 35 30 1196 –6192 OA(17,6)
    192 125 132 5192 –1296 OA(17,12)
? 289 108 37 42 6180 –11108  
    180 113 110 10108 –7180  
+ 289 112 45 42 10112 –7176 OA(17,7)
    176 105 110 6176 –11112 OA(17,11)
- 289 120 21 70 1280 –508 Krein2; Absolute bound
    168 117 70 498 –2280 Krein1; Absolute bound
? 289 126 53 56 7162 –10126  
    162 91 90 9126 –8162  
+ 289 128 57 56 9128 –8160 OA(17,8)
    160 87 90 7160 –10128 OA(17,10)
+ 289 144 71 72 8144 –9144 Paley(289); OA(17,9); 2-graph\*
+ 290 136 63 64 8145 –9144 switch OA(17,9)+*; 2-graph
    153 80 81 8144 –9145 S(2,9,145)?; 2-graph
+ 293 146 72 73 8.059146 –9.059146 Paley(293); 2-graph\*
+ 297 40 7 5 7120 –5176 dual polar graph of lines in U5(2); GQ(8,4)
    256 220 224 4176 –8120  
? 297 104 31 39 5208 –1388 pg(8,12,3)?
    192 126 120 1288 –6208  
? 297 128 64 48 2044 –4252  
    168 87 105 3252 –2144 pg(8,20,5)?
- 297 148 73 74 8.117148 –9.117148 Conf
? 300 26 4 2 6117 –4182  
    273 248 252 3182 –7117  
! 300 46 23 4 2124 –2275 Triangular graph T(25)
    253 210 231 1275 –2224  
+ 300 65 10 15 5195 –10104 NO–,orth(5,5)
    234 183 180 9104 –6195  
? 300 69 18 15 9115 –6184  
    230 175 180 5184 –10115  
- 300 92 10 36 2276 –2823 Krein2; Absolute bound
    207 150 126 2723 –3276 Krein1; Absolute bound
+ 300 104 28 40 4234 –1665 NO(5,5)
    195 130 120 1565 –5234  
? 300 115 50 40 1569 –5230  
    184 108 120 4230 –1669  
? 300 117 60 36 2726 –3273  
    182 100 126 2273 –2826  

Prev Up Next