Prev Up Next

  v k λ μ rf sgcomments
+ 301 60 23 9 1742 –3258 S(2,3,43)
    240 188 204 2258 –1842  
? 301 108 27 45 3258 –2142  
    192 128 112 2042 –4258  
? 301 150 65 84 3258 –2242  
    150 83 66 2142 –4258  
- 301 150 74 75 8.175150 –9.175150 Conf
+ 304 108 42 36 1295 –6208 S(2,6,96)
    195 122 130 5208 –1395 pg(15,12,10)?
+ 305 76 27 16 1560 –4244 S(2,4,61)
    228 167 180 3244 –1660  
? 305 152 75 76 8.232152 –9.232152 2-graph\*?
? 306 55 4 11 4220 –1185  
    250 205 200 1085 –5220  
? 306 60 10 12 6170 –8135  
    245 196 196 7135 –7170  
- 309 154 76 77 8.289154 –9.289154 Conf
+ 313 156 77 78 8.346156 –9.346156 Paley(313); 2-graph\*
+ 317 158 78 79 8.402158 –9.402158 Paley(317); 2-graph\*
? 319 150 65 75 5231 –1587 pg(10,14,5)?; 2-graph\*?
    168 92 84 1487 –6231 2-graph\*?
? 320 87 22 24 7174 –9145  
    232 168 168 8145 –8174  
? 320 88 24 24 8154 –8165  
    231 166 168 7165 –9154  
? 320 99 18 36 3275 –2144  
    220 156 140 2044 –4275  
? 320 132 46 60 4255 –1864  
    187 114 102 1764 –5255  
? 320 145 60 70 5232 –1587 2-graph?
    174 98 90 1487 –6232 2-graph?
? 320 154 78 70 1488 –6231 2-graph?
    165 80 90 5231 –1588 pg(11,14,6)?; 2-graph?
- 321 160 79 80 8.458160 –9.458160 Conf
? 322 96 20 32 4252 –1669 pg(6,15,2)?
    225 160 150 1569 –5252  
+ 323 160 78 80 8170 –10152 pg(16,9,8)?; 2-graph\*
    162 81 81 9152 –9170 S(2,9,153)?; 2-graph\*
! 324 34 16 2 1634 –2289 182
    289 256 272 1289 –1734 OA(18,17)?
+ 324 51 18 6 1551 –3272 OA(18,3)
    272 226 240 2272 –1651 OA(18,16)?
- 324 57 0 12 3266 –1557 Gavrilyuk & Makhnev and Kaski & Östergård
    266 220 210 1457 –4266  
? 324 68 7 16 4243 –1380  
    255 202 195 1280 –5243  
+ 324 68 22 12 1468 –4255 OA(18,4)
    255 198 210 3255 –1568 OA(18,15)?
? 324 76 10 20 4247 –1476  
    247 190 182 1376 –5247  
+ 324 85 28 20 1385 –5238 OA(18,5)
    238 172 182 4238 –1485 OA(18,14)?
? 324 95 22 30 5228 –1395  
    228 162 156 1295 –6228  
+ 324 95 34 25 1480 –5243 S(2,5,81)
    228 157 168 4243 –1580  
+ 324 102 36 30 12102 –6221 OA(18,6)
    221 148 156 5221 –13102 OA(18,13)?
? 324 114 36 42 6209 –12114  
    209 136 132 11114 –7209  
+ 324 119 46 42 11119 –7204 OA(18,7)
    204 126 132 6204 –12119 OA(18,12)?
- 324 133 22 77 1315 –568 Krein2; Absolute bound
    190 133 80 558 –2315 Krein1; Absolute bound
? 324 133 52 56 7190 –11133  
    190 112 110 10133 –8190  
? 324 136 58 56 10136 –8187 OA(18,8)?
    187 106 110 7187 –11136 OA(18,11)?
+ 324 152 70 72 8171 –10152 RSHCD; 2-graph
    171 90 90 9152 –9171 2-graph
+ 324 153 72 72 9153 –9170 OA(18,9)?; RSHCD+; 2-graph
    170 88 90 8170 –10153 OA(18,10)?; 2-graph
! 325 48 24 4 2225 –2299 Triangular graph T(26)
    276 231 253 1299 –2325 pg(12,22,11)?
? 325 54 3 10 4234 –1190  
    270 225 220 1090 –5234  
+ 325 60 15 10 10104 –5220 NO+,orth(5,5); pg(12,4,2)?
    264 213 220 4220 –11104  
+ 325 68 3 17 3272 –1752 q222=0; O(6,4) polar graph; GQ(4,16)
    256 204 192 1652 –4272 q111=0
? 325 72 15 16 7168 –8156 pg(9,7,2)?
    252 195 196 7156 –8168  
- 325 108 63 22 4312 –2312 Absolute bound
    216 129 172 1312 –4412 Absolute bound
+ 325 144 68 60 1490 –6234 NO+(5,5)
    180 95 105 5234 –1590 pg(12,14,7)?
? 325 162 80 81 8.514162 –9.514162 2-graph\*?
? 329 40 3 5 5188 –7140  
    288 252 252 6140 –6188  
- 329 164 81 82 8.569164 –9.569164 Conf
+ 330 63 24 9 1844 –3285 dist. 1 or 4 in J(11,4) - Mathon; S(2,3,45)
    266 211 228 2285 –1944 pg(14,18,12)?
? 330 105 40 30 1577 –5252  
    224 148 160 4252 –1677 pg(14,15,10)?
? 330 140 58 60 8175 –10154 pg(14,9,6)?
    189 108 108 9154 –9175  
? 333 166 82 83 8.624166 –9.624166 2-graph\*?
+ 336 80 28 16 1663 –4272 Jenrich; S(2,4,64); intersection-12 graph of a quasisymmetric 2-(64,24,46) design with intersection numbers 8, 12; Lines in AG(3,4) (rk 4)
    255 190 204 3272 –1763 pg(15,16,12)?
? 336 125 40 50 5245 –1590  
    210 134 126 1490 –6245  
? 336 135 54 54 9160 –9175 pg(15,8,6)?
    200 118 120 8175 –10160  
+ 337 168 83 84 8.679168 –9.679168 Paley(337); 2-graph\*
? 340 108 30 36 6220 –12119 pg(9,11,3)?
    231 158 154 11119 –7220  
? 341 70 15 14 8154 –7186 pg(10,6,2)?
    270 213 216 6186 –9154  
? 341 84 19 21 7186 –9154  
    256 192 192 8154 –8186  
? 341 102 31 30 9154 –8186  
    238 165 168 7186 –10154  
- 341 170 84 85 8.733170 –9.733170 Conf
? 342 33 4 3 6152 –5189  
    308 277 280 4189 –7152  
? 342 66 15 12 9132 –6209 pg(11,5,2)?
    275 220 225 5209 –10132  
+ 343 54 5 9 5216 –9126 Godsil(q=7,r=4); GQ(6,8)
    288 242 240 8126 –6216  
- 343 96 54 16 4014 –2328 Absolute bound
    246 165 205 1328 –4114 Absolute bound
? 343 102 21 34 4272 –1770 pg(6,16,2)?
    240 171 160 1670 –5272  
? 343 114 45 34 1676 –5266  
    228 147 160 4266 –1776  
+ 343 150 53 75 3300 –2542 Godsil(q=7,r=2); pg(6,24,3)?; 2-graph\*
    192 116 96 2442 –4300 2-graph\*
? 343 162 81 72 1590 –6252  
    180 89 100 5252 –1690  
? 344 147 50 72 3301 –2542 2-graph?
    196 120 100 2442 –4301 2-graph?
+ 344 168 92 72 2443 –4300 2-graph
    175 78 100 3300 –2543 pg(7,24,4)?; Taylor 2-graph for U3(7)
? 345 120 35 45 5252 –1592 pg(8,14,3)?
    224 148 140 1492 –6252  
? 345 128 46 48 8184 –10160  
    216 135 135 9160 –9184  
- 345 172 85 86 8.787172 –9.787172 Conf
+ 349 174 86 87 8.841174 –9.841174 Paley(349); 2-graph\*

Prev Up Next