Prev Up Next

  v k λ μ rf sgcomments
+ 401 200 99 100 9.512200 –10.512200 Paley(401); 2-graph\*
- 405 84 3 21 3350 –2154 Krein2
    320 256 240 2054 –4350 Krein1
? 405 96 18 24 6264 –12140 pg(8,11,2)?
    308 235 231 11140 –7264  
? 405 132 63 33 3330 –3374  
    272 172 204 2374 –3430 pg(8,33,6)?
? 405 196 91 98 7260 –14144 pg(14,13,7)?; 2-graph\*?
    208 109 104 13144 –8260 2-graph\*?
? 405 202 100 101 9.562202 –10.562202 2-graph\*?
! 406 54 27 4 2528 –2377 Triangular graph T(29)
    351 300 325 1377 –2628  
? 406 108 30 28 10174 –8231  
    297 216 220 7231 –11174  
? 406 165 68 66 11174 –9231  
    240 140 144 8231 –12174 S(2,12,232)?
? 406 189 84 91 7261 –14144 2-graph?
    216 117 112 13144 –8261 2-graph?
? 406 195 96 91 13145 –8260 2-graph?
    210 105 112 7260 –14145 2-graph?
+ 407 126 45 36 15110 –6296 S(2,6,111)
    280 189 200 5296 –16110  
? 408 110 28 30 8220 –10187 pg(11,9,3)?
    297 216 216 9187 –9220  
? 408 176 70 80 6288 –16119 pg(11,15,5)?
    231 134 126 15119 –7288  
+ 409 204 101 102 9.612204 –10.612204 Paley(409); 2-graph\*
? 411 130 45 39 13137 –7273  
    280 188 196 6273 –14137 S(2,14,274)?
? 413 112 36 28 14118 –6294  
    300 215 225 5294 –15118 S(2,15,295)?
- 413 206 102 103 9.661206 –10.661206 Conf
? 414 63 12 9 9161 –6252  
    350 295 300 5252 –10161  
- 414 140 22 60 2390 –4023 Krein2; Absolute bound
    273 192 156 3923 –3390 Krein1; Absolute bound
+ 416 100 36 20 2065 –4350 G2(4).2 / J2.2; subconstituent of Suz graph
    315 234 252 3350 –2165 pg(15,20,12)?
? 416 165 64 66 9220 –11195 pg(15,10,6)?
    250 150 150 10195 –10220  
- 417 208 103 104 9.710208 –10.710208 Conf
? 418 147 56 49 14132 –7285 S(2,7,133)?
    270 171 180 6285 –15132 pg(18,14,12)?
+ 421 210 104 105 9.759210 –10.759210 Paley(421); 2-graph\*
? 424 99 26 22 11159 –7264  
    324 246 252 6264 –12159  
+ 425 72 27 9 2150 –3374 S(2,3,51)
    352 288 308 2374 –2250 pg(16,21,14)?
? 425 160 60 60 10204 –10220 pg(16,9,6)?
    264 163 165 9220 –11204  
? 425 212 105 106 9.808212 –10.808212 2-graph\*?
? 428 112 21 32 5320 –16107 pg(7,15,2)?
    315 234 225 15107 –6320  
? 429 108 27 27 9208 –9220 pg(12,8,3)?
    320 238 240 8220 –10208  
- 429 214 106 107 9.856214 –10.856214 Conf
? 430 39 8 3 9129 –4300  
    390 353 360 3300 –10129  
? 430 135 36 45 6300 –15129 pg(9,14,3)?
    294 203 196 14129 –7300  
? 430 165 68 60 15129 –7300  
    264 158 168 6300 –16129  
+ 433 216 107 108 9.904216 –10.904216 Paley(433); 2-graph\*
! 435 56 28 4 2629 –2405 Triangular graph T(30)
    378 325 351 1405 –2729 pg(14,26,13)?
? 435 154 53 55 9231 –11203 pg(14,10,5)?
    280 180 180 10203 –10231  
? 435 182 73 78 8260 –13174 pg(14,12,6)?
    252 147 144 12174 –9260  
? 437 100 15 25 5322 –15114  
    336 260 252 14114 –6322  
- 437 218 108 109 9.952218 –10.952218 Conf
+ 438 92 31 16 1972 –4365 S(2,4,73)
    345 268 285 3365 –2072  
! 441 40 19 2 1940 –2400 212
    400 361 380 1400 –2040 OA(21,20)?
+ 441 56 7 7 7216 –7224 GQ(8,6)
    384 334 336 6224 –8216  
+ 441 60 21 6 1860 –3380 OA(21,3)
    380 325 342 2380 –1960 OA(21,19)?
+ 441 80 25 12 1780 –4360 OA(21,4)
    360 291 306 3360 –1880 OA(21,18)?
? 441 88 7 20 4352 –1788  
    352 283 272 1688 –5352  
? 441 88 35 13 2544 –3396  
    352 276 300 2396 –2644  
+ 441 100 31 20 16100 –5340 OA(21,5)
    340 259 272 4340 –17100 OA(21,17)?
? 441 110 19 30 5330 –16110  
    330 249 240 15110 –6330  
- 441 120 15 39 3392 –2748 Krein2
    320 238 216 2648 –4392 Krein1
+ 441 120 39 30 15120 –6320 OA(21,6)
    320 229 240 5320 –16120 OA(21,16)?
- 441 128 10 48 2416 –4024 Krein2; Absolute bound
    312 231 195 3924 –3416 Krein1; Absolute bound
? 441 132 33 42 6308 –15132  
    308 217 210 14132 –7308  
+ 441 140 49 42 14140 –7300 OA(21,7)
    300 201 210 6300 –15140 OA(21,15)?
? 441 152 43 57 5342 –1998 pg(8,18,3)?
    288 192 180 1898 –6342  
? 441 154 49 56 7286 –14154  
    286 187 182 13154 –8286  
? 441 160 61 56 13160 –8280 OA(21,8)?
    280 175 182 7280 –14160 OA(21,14)?
- 441 176 25 100 1432 –768 Krein2; Absolute bound
    264 187 114 758 –2432 Krein1; Absolute bound
? 441 176 67 72 8264 –13176  
    264 159 156 12176 –9264  
? 441 176 85 60 2948 –4392  
    264 147 174 3392 –3048  
? 441 180 75 72 12180 –9260 OA(21,9)?
    260 151 156 8260 –13180 OA(21,13)?
? 441 184 87 69 2372 –5368  
    256 140 160 4368 –2472  
? 441 190 89 76 1998 –6342  
    250 135 150 5342 –2098  
? 441 198 87 90 9242 –12198  
    242 133 132 11198 –10242  
? 441 200 91 90 11200 –10240 OA(21,10)?
    240 129 132 9240 –12200 OA(21,12)?
? 441 220 95 124 3396 –3244  
    220 123 96 3144 –4396  
+ 441 220 109 110 10220 –11220 Mathon; OA(21,11)?; 2-graph\*
- 442 105 8 30 3390 –2551 Krein2
    336 260 240 2451 –4390 Krein1
? 442 210 99 100 10221 –11220 2-graph?
    231 120 121 10220 –11221 S(2,11,221)?; 2-graph?
? 445 222 110 111 10.048222 –11.048222 2-graph\*?
? 448 150 50 50 10216 –10231 pg(15,9,5)?
    297 196 198 9231 –11216  
? 448 162 66 54 18105 –6342  
    285 176 190 5342 –19105 pg(15,18,10)?
+ 449 224 111 112 10.095224 –11.095224 Paley(449); 2-graph\*

Prev Up Next