Prev Up Next

  v k λ μ rf sgcomments
- 501 250 124 125 10.692250 –11.692250 Conf
? 505 84 3 16 4404 –17100  
    420 351 340 16100 –5404  
+ 505 120 39 25 19100 –5404 S(2,5,101)
    384 288 304 4404 –20100  
? 505 180 53 70 5404 –22100  
    324 213 198 21100 –6404  
? 505 224 108 92 22100 –6404  
    280 147 165 5404 –23100  
? 505 252 125 126 10.736252 –11.736252 2-graph\*?
? 506 100 18 20 8275 –10230 pg(10,9,2)?
    405 324 324 9230 –9275  
? 507 44 1 4 5308 –8198  
    462 421 420 7198 –6308  
? 507 46 5 4 7230 –6276  
    460 417 420 5276 –8230  
? 507 138 49 33 2192 –5414  
    368 262 280 4414 –2292  
? 507 154 41 49 7338 –15168  
    352 246 240 14168 –8338  
? 507 176 70 56 20110 –6396  
    330 209 225 5396 –21110  
- 507 184 36 84 2483 –5023 Krein2; Absolute bound
    322 221 175 4923 –3483 Krein1; Absolute bound
? 507 184 71 64 15168 –8338 S(2,8,169)?
    322 201 210 7338 –16168  
? 507 198 57 90 3462 –3644  
    308 199 168 3544 –4462  
? 507 230 121 90 3546 –4460  
    276 135 168 3460 –3646  
? 507 240 106 120 6380 –20126 pg(12,19,6)?; 2-graph\*?
    266 145 133 19126 –7380 2-graph\*?
? 508 234 100 114 6381 –20126 2-graph?
    273 152 140 19126 –7381 2-graph?
? 508 247 126 114 19127 –7380 2-graph?
    260 126 140 6380 –20127 2-graph?
+ 509 254 126 127 10.781254 –11.781254 Paley(509); 2-graph\*
? 511 68 15 8 12146 –5364  
    442 381 390 4364 –13146  
? 511 78 5 13 5364 –13146  
    432 366 360 12146 –6364  
+ 512 70 6 10 6315 –10196 GQ(7,9); from a hyperoval: projective 8-ary [10,3] code with weights 8, 10
    441 380 378 9196 –7315  
+ 512 73 12 10 9219 –7292 Fiedler-Klin; Kohnert: projective binary [73,9] code with weights 32, 40
    438 374 378 6292 –10219  
- 512 126 70 18 5416 –2495 Absolute bound
    385 276 330 1495 –5516 Absolute bound
+ 512 133 24 38 5399 –19112 Godsil(q=8,r=3); pg(7,18,2)?
    378 282 270 18112 –6399  
- 512 189 96 54 4528 –3483 Absolute bound
    322 186 230 2483 –4628 Absolute bound
+ 512 196 60 84 4441 –2870 pg(7,27,3); projective 8-ary [28,3] code with weights 24, 28
    315 202 180 2770 –5441  
+ 512 219 106 84 2773 –5438 Fiedler-Klin; projective binary [219,9] code with weights 96, 112
    292 156 180 4438 –2873  
? 513 120 21 30 6360 –15152 pg(8,14,2)?
    392 301 294 14152 –7360  
- 513 256 127 128 10.825256 –11.825256 Conf
- 517 258 128 129 10.869258 –11.869258 Conf
? 518 132 26 36 6370 –16147  
    385 288 280 15147 –7370  
+ 521 260 129 130 10.913260 –11.913260 Paley(521); 2-graph\*
- 525 108 3 27 3468 –2756 Krein2
    416 334 312 2656 –4468 Krein1
? 525 128 28 32 8308 –12216  
    396 299 297 11216 –9308  
+ 525 144 48 36 18125 –6399 S(2,6,126); NU(3,5)
    380 271 285 5399 –19125 pg(20,18,15)?
- 525 262 130 131 10.956262 –11.956262 Conf
+ 527 256 120 128 8340 –16186 pg(16,15,8)?; 2-graph\*
    270 141 135 15186 –9340 O+(10,2); from ETF Fickus et al.; 2-graph\*
! 528 62 31 4 2932 –2495 Triangular graph T(33)
    465 406 435 1495 –3032  
? 528 102 26 18 14153 –6374 pg(17,5,3)?
    425 340 350 5374 –15153  
? 528 186 64 66 10279 –12248  
    341 220 220 11248 –11279  
? 528 187 66 66 11255 –11272  
    340 218 220 10272 –12255  
? 528 248 112 120 8341 –16186 2-graph?
    279 150 144 15186 –9341 2-graph?
+ 528 255 126 120 15187 –9340 NO(10,2); Muzychuk S2 (r=4); 2-graph
    272 136 144 8340 –16187 2-graph
! 529 44 21 2 2144 –2484 232
    484 441 462 1484 –2244 OA(23,22)
+ 529 66 23 6 2066 –3462 OA(23,3)
    462 401 420 2462 –2166 OA(23,21)
+ 529 88 27 12 1988 –4440 OA(23,4)
    440 363 380 3440 –2088 OA(23,20)
? 529 96 5 20 4432 –1996  
    432 355 342 1896 –5432  
+ 529 110 33 20 18110 –5418 OA(23,5)
    418 327 342 4418 –19110 OA(23,19)
? 529 120 17 30 5408 –18120  
    408 317 306 17120 –6408  
+ 529 132 41 30 17132 –6396 OA(23,6)
    396 293 306 5396 –18132 OA(23,18)
? 529 144 31 42 6384 –17144  
    384 281 272 16144 –7384  
+ 529 154 51 42 16154 –7374 OA(23,7)
    374 261 272 6374 –17154 OA(23,17)
? 529 168 47 56 7360 –16168  
    360 247 240 15168 –8360  
+ 529 176 63 56 15176 –8352 OA(23,8)
    352 231 240 7352 –16176 OA(23,16)
? 529 192 65 72 8336 –15192  
    336 215 210 14192 –9336  
+ 529 198 77 72 14198 –9330 OA(23,9)
    330 203 210 8330 –15198 OA(23,15)
- 529 208 27 117 1520 –918 Krein2; Absolute bound
    320 228 140 908 –2520 Krein1; Absolute bound
? 529 216 85 90 9312 –14216  
    312 185 182 13216 –10312  
+ 529 220 93 90 13220 –10308 OA(23,10)
    308 177 182 9308 –14220 OA(23,14)
? 529 240 107 110 10288 –13240  
    288 157 156 12240 –11288  
+ 529 242 111 110 12242 –11286 OA(23,11); Pasechnik(23)
    286 153 156 10286 –13242 OA(23,13)
+ 529 264 131 132 11264 –12264 Paley(529); OA(23,12); 2-graph\*
+ 530 253 120 121 11265 –12264 switch OA(23,12)+*; switch skewhad2+*; 2-graph
    276 143 144 11264 –12265 S(2,12,265)?; 2-graph
+ 532 81 30 9 2456 –3475 S(2,3,57)
    450 377 400 2475 –2556 pg(18,24,16)?
? 532 126 35 28 14171 –7360 pg(18,6,4)?
    405 306 315 6360 –15171  
? 532 156 30 52 4455 –2676 pg(6,25,2)?
    375 270 250 2576 –5455  
? 532 243 114 108 15189 –9342  
    288 152 160 8342 –16189 pg(18,15,10)?
? 533 114 25 24 10246 –9286  
    418 327 330 8286 –11246  
? 533 132 31 33 9286 –11246 pg(12,10,3)?
    400 300 300 10246 –10286  
? 533 154 45 44 11246 –10286  
    378 267 270 9286 –12246  
? 533 266 132 133 11.043266 –12.043266 2-graph\*?
? 536 130 48 26 2667 –4468  
    405 300 324 3468 –2767  
- 537 268 133 134 11.087268 –12.087268 Conf
? 539 234 81 117 3494 –3944 pg(6,38,3)?; 2-graph\*?
    304 186 152 3844 –4494 2-graph\*?
+ 539 250 105 125 5440 –2598 pg(10,24,5)?; 2-graph\*
    288 162 144 2498 –6440 2-graph\*
? 540 49 8 4 9189 –5350  
    490 444 450 4350 –10189  
? 540 55 10 5 10176 –5363  
    484 433 440 4363 –11176  
? 540 77 4 12 5385 –13154  
    462 396 390 12154 –6385  
? 540 77 22 9 1799 –4440  
    462 393 408 3440 –1899  
? 540 84 18 12 12175 –6364 pg(14,5,2)?
    455 382 390 5364 –13175  
? 540 98 16 18 8294 –10245  
    441 360 360 9245 –9294  
? 540 99 18 18 9264 –9275 pg(11,8,2)?
    440 358 360 8275 –10264  
- 540 147 18 48 3490 –3349 Krein2
    392 292 264 3249 –4490 Krein1
? 540 147 42 39 12224 –9315  
    392 283 288 8315 –13224  
? 540 147 66 30 3935 –3504  
    392 274 312 2504 –4035  
? 540 154 28 50 4462 –2677  
    385 280 260 2577 –5462  
? 540 154 43 44 10275 –11264 pg(14,10,4)?
    385 274 275 10264 –11275  
? 540 154 48 42 14189 –8350  
    385 272 280 7350 –15189  
- 540 154 88 26 6414 –2525 Absolute bound
    385 256 320 1525 –6514 Absolute bound
? 540 175 70 50 2584 –5455  
    364 238 260 4455 –2684 pg(14,25,10)?
? 540 176 76 48 3255 –4484  
    363 234 264 3484 –3355 pg(11,32,8)?
+ 540 187 58 68 7374 –17165 O(6,2) Crnkovic_et_al; pg(11,16,4)?
    352 232 224 16165 –8374  
? 540 220 103 80 2875 –5464  
    319 178 203 4464 –2975 pg(11,28,7)?
+ 540 224 88 96 8350 –16189 NU(4,3); pg(14,15,6)?
    315 186 180 15189 –9350  
? 540 231 78 114 3495 –3944 2-graph?
    308 190 156 3844 –4495 2-graph?
+ 540 245 100 120 5441 –2598 2-graph
    294 168 150 2498 –6441 from 2-(45,5,1) with 1-factor Fickus et al.; 2-graph
+ 540 264 138 120 2499 –6440 2-graph
    275 130 150 5440 –2599 Goethals-Seidel(5,11); pg(11,24,6)?; 2-graph
? 540 266 148 114 3845 –4494 2-graph?
    273 120 156 3494 –3945 2-graph?
+ 541 270 134 135 11.130270 –12.130270 Paley(541); 2-graph\*
? 544 180 58 60 10288 –12255 pg(15,11,5)?
    363 242 242 11255 –11288  
? 545 272 135 136 11.173272 –12.173272 2-graph\*?
+ 546 125 40 25 20104 –5441 S(2,5,105)
    420 319 336 4441 –21104 pg(20,20,16)?
? 546 225 96 90 15195 –9350  
    320 184 192 8350 –16195 pg(20,15,12)?
? 549 274 136 137 11.215274 –12.215274 2-graph\*?
? 550 63 8 7 8252 –7297  
    486 429 432 6297 –9252  
? 550 117 20 26 7351 –13198 pg(9,12,2)?
    432 340 336 12198 –8351  
? 550 162 75 36 4233 –3516  
    387 260 301 2516 –4333 pg(9,42,7)?
? 550 192 72 64 16175 –8374 S(2,8,176)?
    357 228 238 7374 –17175 pg(21,16,14)?
? 550 225 80 100 5450 –2599 pg(9,24,4)?
    324 198 180 2499 –6450  

Prev Up Next