Prev Up Next

  v k λ μ rf sgcomments
+ 601 300 149 150 11.758300 –12.758300 Paley(601); 2-graph\*
? 605 156 43 39 13240 –9364  
    448 330 336 8364 –14240  
? 605 280 117 140 5504 –28100 pg(10,27,5)?; 2-graph\*?
    324 183 162 27100 –6504 2-graph\*?
? 605 302 150 151 11.798302 –12.798302 2-graph\*?
? 606 105 4 21 4504 –21101  
    500 415 400 20101 –5504  
? 606 275 112 135 5505 –28100 2-graph?
    330 189 168 27100 –6505 2-graph?
? 606 297 156 135 27101 –6504 2-graph?
    308 145 168 5504 –28101 pg(11,27,6)?; 2-graph?
? 609 224 91 77 21144 –7464  
    384 236 252 6464 –22144  
- 609 228 117 66 5428 –3580 Absolute bound
    380 217 270 2580 –5528 Absolute bound
- 609 304 151 152 11.839304 –12.839304 Conf
+ 610 87 32 9 2660 –3549 S(2,3,61)
    522 443 468 2549 –2760  
? 611 250 105 100 15234 –10376 S(2,10,235)?
    360 209 216 9376 –16234  
- 612 156 15 48 3560 –3651 Krein2
    455 346 315 3551 –4560 Krein1
+ 612 156 50 36 20135 –6476 S(2,6,136)
    455 334 350 5476 –21135  
? 612 195 66 60 15221 –9390  
    416 280 288 8390 –16221  
+ 613 306 152 153 11.879306 –12.879306 Paley(613); 2-graph\*
? 615 294 133 147 7450 –21164 pg(14,20,7)?; 2-graph\*?
    320 172 160 20164 –8450 2-graph\*?
? 616 75 2 10 5440 –13175  
    540 474 468 12175 –6440  
? 616 120 20 24 8363 –12252 pg(10,11,2)?
    495 398 396 11252 –9363  
- 616 135 6 36 3560 –3355 Krein2
    480 380 352 3255 –4560 Krein1
? 616 164 42 44 10328 –12287  
    451 330 330 11287 –11328  
? 616 165 44 44 11300 –11315  
    450 328 330 10315 –12300  
? 616 205 90 57 3755 –4560  
    410 261 296 3560 –3855  
? 616 240 89 96 9384 –16231 pg(15,15,6)?
    375 230 225 15231 –10384  
? 616 270 108 126 6483 –24132  
    345 200 184 23132 –7483  
? 616 287 126 140 7451 –21164 2-graph?
    328 180 168 20164 –8451 2-graph?
? 616 300 152 140 20165 –8450 2-graph?
    315 154 168 7450 –21165 2-graph?
+ 617 308 153 154 11.920308 –12.920308 Paley(617); 2-graph\*
? 621 60 3 6 6368 –9252  
    560 505 504 8252 –7368  
? 621 130 31 26 13230 –8390  
    490 385 392 7390 –14230  
? 621 144 24 36 6459 –18161 pg(8,17,2)?
    476 367 357 17161 –7459  
- 621 210 45 84 3574 –4246 Krein2
    410 283 246 4146 –4574 Krein1
? 621 220 79 77 13275 –11345  
    400 256 260 10345 –14275  
? 621 300 123 165 3575 –4545  
    320 184 144 4445 –4575  
- 621 310 154 155 11.960310 –12.960310 Conf
? 624 98 22 14 14182 –6441  
    525 440 450 5441 –15182  
? 624 161 28 46 5506 –23117 pg(7,22,2)?
    462 346 330 22117 –6506  
? 624 280 132 120 20168 –8455  
    343 182 196 7455 –21168  
! 625 48 23 2 2348 –2576 252; from a partial spread: projective 5-ary [12,4] code with weights 5, 10
    576 529 552 1576 –2448 OA(25,24)
+ 625 72 25 6 2272 –3552 OA(25,3); from a partial spread: projective 5-ary [18,4] code with weights 10, 15
    552 485 506 2552 –2372 OA(25,23)
+ 625 96 29 12 2196 –4528 OA(25,4); Brouwer(q=5,d=2,e=2,+); from a partial spread: projective 5-ary [24,4] code with weights 15, 20
    528 443 462 3528 –2296 OA(25,22)
+ 625 104 3 20 4520 –21104 VO(4,5) affine polar graph; projective 5-ary [26,4] code with weights 20, 25
    520 435 420 20104 –5520  
? 625 112 15 21 7400 –13224  
    512 420 416 12224 –8400  
+ 625 120 35 20 20120 –5504 OA(25,5); from a partial spread: projective 5-ary [30,4] code with weights 20, 25
    504 403 420 4504 –21120 OA(25,21)
? 625 130 15 30 5494 –20130  
    494 393 380 19130 –6494  
+ 625 144 43 30 19144 –6480 OA(25,6); Bilin2x2(5); VO+(4,5) affine polar graph; from a partial spread: projective 5-ary [36,4] code with weights 25, 30
    480 365 380 5480 –20144 OA(25,20)
+ 625 156 29 42 6468 –19156 Dissett - 2-wt 5-ary [39,4,30] code; Bouyukliev-Fack-Willems-Winne: projective 5-ary [39,4] code with weights 30, 35
    468 353 342 18156 –7468  
+ 625 168 53 42 18168 –7456 OA(25,7); from a partial spread: projective 5-ary [42,4] code with weights 30, 35
    456 329 342 6456 –19168 OA(25,19)
? 625 182 45 56 7442 –18182  
    442 315 306 17182 –8442  
- 625 192 20 76 2600 –5824 Krein2; Absolute bound
    432 315 261 5724 –3600 Krein1; Absolute bound
+ 625 192 65 56 17192 –8432 OA(25,8); from a partial spread: projective 5-ary [48,4] code with weights 35, 40
    432 295 306 7432 –18192 OA(25,18)
+ 625 208 63 72 8416 –17208 vanLint-Schrijver(1); CK - CY1: projective 5-ary [52,4] code with weights 40, 45
    416 279 272 16208 –9416 vanLint-Schrijver(2)
+ 625 216 79 72 16216 –9408 OA(25,9); from a partial spread: projective 5-ary [54,4] code with weights 40, 45
    408 263 272 8408 –17216 OA(25,17)
? 625 234 83 90 9390 –16234  
    390 245 240 15234 –10390  
+ 625 240 95 90 15240 –10384 OA(25,10); VNO+(4,5) affine polar graph; from a partial spread: projective 5-ary [60,4] code with weights 45, 50
    384 233 240 9384 –16240 OA(25,16)
? 625 246 119 82 4150 –4574  
    378 213 252 3574 –4250 pg(9,41,6)?
+ 625 260 105 110 10364 –15260 VNO(4,5) affine polar graph; projective 5-ary [65,4] code with weights 50, 55
    364 213 210 14260 –11364  
+ 625 264 113 110 14264 –11360 OA(25,11); from a partial spread: projective 5-ary [66,4] code with weights 50, 55
    360 205 210 10360 –15264 OA(25,15)
? 625 286 129 132 11338 –14286  
    338 183 182 13286 –12338  
+ 625 288 133 132 13288 –12336 OA(25,12); from a partial spread: projective 5-ary [72,4] code with weights 55, 60
    336 179 182 11336 –14288 OA(25,14)
- 625 312 125 186 2600 –6324 Absolute bound
    312 185 126 6224 –3600 Absolute bound
+ 625 312 155 156 12312 –13312 Paley(625); OA(25,13); projective 5-ary [78,4] code with weights 60, 65; 2-graph\*
+ 626 300 143 144 12313 –13312 switch OA(25,13)+*; 2-graph
    325 168 169 12312 –13313 S(2,13,313)?; 2-graph
? 629 314 156 157 12.040314 –13.040314 2-graph\*?
? 630 37 4 2 7259 –5370  
    592 556 560 4370 –8259  
? 630 68 1 8 5440 –12189  
    561 500 495 11189 –6440  
! 630 68 34 4 3235 –2594 Triangular graph T(36)
    561 496 528 1594 –3335 pg(17,32,16)?
+ 630 85 20 10 15153 –5476 pg(17,4,2) - Haemers
    544 468 480 4476 –16153  
? 630 111 12 21 6444 –15185  
    518 427 420 14185 –7444  
? 630 119 28 21 14204 –7425 pg(17,6,3)?
    510 411 420 6425 –15204  
? 630 185 40 60 5518 –25111  
    444 318 300 24111 –6518  
? 630 204 78 60 24119 –6510  
    425 280 300 5510 –25119 pg(17,24,12)?
? 630 272 124 112 20170 –8459  
    357 196 210 7459 –21170 pg(17,20,10)?
- 633 316 157 158 12.080316 –13.080316 Conf
? 636 250 95 100 10371 –15264  
    385 234 231 14264 –11371  
? 637 60 11 5 11195 –5441  
    576 520 528 4441 –12195  
? 637 96 5 16 5480 –16156  
    540 459 450 15156 –6480  
? 637 176 60 44 22130 –6506  
    460 327 345 5506 –23130  
? 637 186 35 62 4558 –3178 pg(6,30,2)?
    450 325 300 3078 –5558  
? 637 252 91 105 7468 –21168 pg(12,20,5)?
    384 236 224 20168 –8468  
- 637 270 147 90 6026 –3610 Absolute bound
    366 185 244 2610 –6126 Absolute bound
? 637 318 158 159 12.119318 –13.119318 2-graph\*?
? 638 49 0 4 5406 –9231  
    588 542 540 8231 –6406  
+ 638 112 36 16 2487 –4550 S(2,4,88)
    525 428 450 3550 –2587 pg(21,24,18)?
? 638 189 60 54 15231 –9406 pg(21,8,6)?
    448 312 320 8406 –16231  
? 638 273 112 120 9406 –17231  
    364 210 204 16231 –10406  
? 639 288 112 144 4567 –3671 pg(8,35,4)?; 2-graph\*?
    350 205 175 3571 –5567 2-graph\*?
+ 640 71 6 8 7355 –9284 Haemers(8); Muzychuk S6 (n=8,d=2)
    568 504 504 8284 –8355  
+ 640 72 8 8 8315 –8324 GQ(9,7)
    567 502 504 7324 –9315  
? 640 153 44 34 17180 –7459  
    486 366 378 6459 –18180  
? 640 198 50 66 6495 –22144 pg(9,21,3)?
    441 308 294 21144 –7495  
? 640 210 66 70 10364 –14275 pg(15,13,5)?
    429 288 286 13275 –11364  
? 640 213 72 70 13284 –11355  
    426 282 286 10355 –14284  
? 640 243 66 108 3594 –4545 q222=0
    396 260 220 4445 –4594 q111=0
? 640 284 108 140 4568 –3671 2-graph?
    355 210 180 3571 –5568 2-graph?
? 640 315 170 140 3572 –5567 2-graph?
    324 148 180 4567 –3672 pg(9,35,5)?; 2-graph?
+ 641 320 159 160 12.159320 –13.159320 Paley(641); 2-graph\*
? 645 140 31 30 11300 –10344 pg(14,9,3)?
    504 393 396 9344 –12300  
? 645 160 38 40 10344 –12300  
    484 363 363 11300 –11344  
? 645 184 53 52 12300 –11344  
    460 327 330 10344 –13300  
? 645 210 85 60 3086 –5558  
    434 283 310 4558 –3186 pg(14,30,10)?
- 645 322 160 161 12.198322 –13.198322 Conf
? 646 245 84 98 7475 –21170  
    400 252 240 20170 –8475  
? 649 72 15 7 13176 –5472  
    576 510 520 4472 –14176  
? 649 216 63 76 7472 –20176  
    432 291 280 19176 –8472  
? 649 256 108 96 20176 –8472  
    392 231 245 7472 –21176  
- 649 324 161 162 12.238324 –13.238324 Conf
? 650 55 0 5 5429 –10220  
    594 543 540 9220 –6429  
? 650 121 24 22 11286 –9363  
    528 428 432 8363 –12286  
- 650 177 8 63 2624 –5725 Krein2; Absolute bound
    472 357 304 5625 –3624 Krein1; Absolute bound
? 650 253 108 92 23143 –7506  
    396 234 252 6506 –24143  
- 650 297 168 108 6325 –3624 Absolute bound
    352 162 224 2624 –6425 Absolute bound

Prev Up Next