Prev Up Next

  v k λ μ rf sgcomments
+ 701 350 174 175 12.738350 –13.738350 Paley(701); 2-graph\*
! 703 72 36 4 3437 –2665 Triangular graph T(38)
    630 561 595 1665 –3537 pg(18,34,17)?
? 703 182 81 35 4937 –3665  
    520 372 420 2665 –5037  
? 704 37 0 2 5407 –7296  
    666 630 630 6296 –6407  
? 704 190 54 50 14285 –10418 pg(19,9,5)?
    513 372 378 9418 –15285  
? 704 228 52 84 4627 –3676  
    475 330 300 3576 –5627  
? 705 256 80 100 6564 –26140  
    448 291 273 25140 –7564  
? 705 308 145 126 26140 –7564  
    396 213 234 6564 –27140  
- 705 352 175 176 12.776352 –13.776352 Conf
+ 709 354 176 177 12.814354 –13.814354 Paley(709); 2-graph\*
? 711 70 5 7 7395 –9315  
    640 576 576 8315 –8395  
? 711 230 85 69 23158 –7552  
    480 318 336 6552 –24158  
- 713 356 177 178 12.851356 –13.851356 Conf
? 714 92 10 12 8391 –10322  
    621 540 540 9322 –9391  
? 714 161 40 35 14272 –9441  
    552 425 432 8441 –15272  
? 714 217 56 70 7527 –21186  
    496 348 336 20186 –8527  
? 714 248 97 80 24153 –7560  
    465 296 315 6560 –25153  
? 715 120 20 20 10351 –10363 pg(12,9,2)?
    594 493 495 9363 –11351  
? 715 154 33 33 11350 –11364  
    560 438 440 10364 –12350  
? 715 224 48 80 4637 –3677  
    490 345 315 3577 –5637  
? 715 228 65 76 8494 –19220 pg(12,18,4)?
    486 333 324 18220 –9494  
? 715 266 105 95 19220 –9494  
    448 276 288 8494 –20220  
? 715 272 102 104 12374 –14340  
    442 273 273 13340 –13374  
- 717 358 178 179 12.888358 –13.888358 Conf
? 721 192 48 52 10412 –14308  
    528 387 385 13308 –11412  
? 721 220 69 66 14308 –11412  
    500 345 350 10412 –15308  
? 721 324 147 144 15308 –12412 S(2,12,309)?
    396 215 220 11412 –16308  
- 721 360 179 180 12.926360 –13.926360 Conf
? 722 103 12 15 8412 –11309  
    618 529 528 10309 –9412  
? 722 105 16 15 10336 –9385  
    616 525 528 8385 –11336  
? 722 309 116 144 5618 –33103  
    412 246 220 32103 –6618  
? 722 336 170 144 32105 –6616  
    385 192 220 5616 –33105  
- 725 148 3 37 3666 –3758 Krein2
    576 464 432 3658 –4666 Krein1
+ 725 196 63 49 21174 –7550 S(2,7,175)
    528 380 396 6550 –22174 pg(24,21,18)?
? 725 362 180 181 12.963362 –13.963362 2-graph\*?
- 726 29 4 1 7261 –4464 mu=1
    696 667 672 3464 –8261  
? 726 116 10 20 6522 –16203  
    609 512 504 15203 –7522  
? 726 125 28 20 15225 –7500  
    600 494 504 6500 –16225  
? 726 140 22 28 8455 –14270 pg(10,13,2)?
    585 472 468 13270 –9455  
? 726 145 32 28 13290 –9435  
    580 462 468 8435 –14290  
+ 726 145 44 25 24120 –5605 S(2,5,121)
    580 459 480 4605 –25120  
- 726 195 88 39 5236 –3689 Absolute bound
    530 373 424 2689 –5336 Absolute bound
- 726 200 10 72 2700 –6425 Krein2; Absolute bound
    525 396 336 6325 –3700 Krein1; Absolute bound
? 726 203 40 63 5609 –28116  
    522 381 360 27116 –6609  
? 726 225 84 63 27125 –6600  
    500 337 360 5600 –28125  
- 726 261 132 72 6329 –3696 Absolute bound
    464 274 336 2696 –6429 Absolute bound
? 726 270 87 108 6585 –27140 pg(10,26,4)?
    455 292 273 26140 –7585  
? 726 290 127 108 26145 –7580  
    435 252 273 6580 –27145  
? 726 300 95 144 3680 –5245  
    425 268 221 5145 –4680  
? 726 325 164 130 3975 –5650  
    400 204 240 4650 –4075 pg(10,39,6)?
! 729 52 25 2 2552 –2676 272; from a partial spread of 3-spaces: projective ternary [26,6] code with weights 9, 18
    676 625 650 1676 –2652 OA(27,26)
+ 729 78 27 6 2478 –3650 OA(27,3); from a partial spread of 3-spaces: projective ternary [39,6] code with weights 18, 27
    650 577 600 2650 –2578 OA(27,25)
+ 729 88 7 11 7440 –11288 Godsil(q=9,r=5); GQ(8,10)
    640 562 560 10288 –8440  
+ 729 104 31 12 23104 –4624 OA(27,4); Bilin2x3(3); from a Baer subplane: projective 9-ary [13,3] code with weights 9, 12; from a partial spread of 3-spaces: projective ternary [52,6] code with weights 27, 36
    624 531 552 3624 –24104 OA(27,24)
! 729 112 1 20 4616 –23112 36.2.L3(4) (rk 3) - Hill cap: projective ternary [56,6] code with weights 36, 45; Bondarenko-Radchenko
    616 523 506 22112 –5616  
+ 729 130 37 20 22130 –5598 OA(27,5); from a partial spread of 3-spaces: projective ternary [65,6] code with weights 36, 45
    598 487 506 4598 –23130 OA(27,23)
? 729 140 13 30 5588 –22140  
    588 477 462 21140 –6588  
+ 729 156 45 30 21156 –6572 OA(27,6); from a partial spread of 3-spaces: projective ternary [78,6] code with weights 45, 54
    572 445 462 5572 –22156 OA(27,22)
- 729 160 88 20 7018 –2710 Absolute bound
    568 427 497 1710 –7118 Absolute bound
+ 729 168 27 42 6560 –21168 pg(8,20,2) - Mathon; Gulliver: projective ternary [84,6] code with weights 54, 63
    560 433 420 20168 –7560  
- 729 182 1 60 2702 –6126 Krein2; Absolute bound
    546 423 366 6026 –3702 Krein1; Absolute bound
+ 729 182 55 42 20182 –7546 OA(27,7); from a partial spread of 3-spaces: projective ternary [91,6] code with weights 54, 63
    546 405 420 6546 –21182 OA(27,21)
+ 729 196 43 56 7532 –20196 Gulliver: projective ternary [98,6] code with weights 63, 72
    532 391 380 19196 –8532  
? 729 208 37 68 4648 –3580  
    520 379 350 3480 –5648  
+ 729 208 67 56 19208 –8520 OA(27,8); from a partial spread of Baer subplanes: projective 9-ary [26,3] code with weights 21, 24; Brouwer(q=3,d=2,e=3,+); from a partial spread of 3-spaces: projective ternary [104,6] code with weights 63, 72
    520 367 380 7520 –20208 OA(27,20)
+ 729 224 61 72 8504 –19224 from a unital: projective 9-ary [28,3] code with weights 24, 27; VO(6,3) affine polar graph
    504 351 342 18224 –9504  
+ 729 234 81 72 18234 –9494 OA(27,9); VNO+(6,3) affine polar graph; from a partial spread of 3-spaces: projective ternary [117,6] code with weights 72, 81
    494 331 342 8494 –19234 OA(27,19)
? 729 248 67 93 5620 –31108 pg(8,30,3)?
    480 324 300 30108 –6620  
+ 729 252 81 90 9476 –18252 VNO(6,3) affine polar graph; projective ternary [126,6] code with weights 81, 90
    476 313 306 17252 –10476  
+ 729 260 97 90 17260 –10468 OA(27,10); VO+(6,3) affine polar graph; from a partial spread of 3-spaces: projective ternary [130,6] code with weights 81, 90
    468 297 306 9468 –18260 OA(27,18)
- 729 280 31 155 1720 –1258 Krein2; Absolute bound
    448 322 200 1248 –2720 Krein1; Absolute bound
+ 729 280 103 110 10448 –17280 35-set of type (2,5) in PG(2,9) - De Resmini: projective 9-ary [35,3] code with weights 30, 33
    448 277 272 16280 –11448  
? 729 280 127 95 3780 –5648  
    448 262 296 4648 –3880  
+ 729 286 115 110 16286 –11442 OA(27,11); from a partial spread of 3-spaces: projective ternary [143,6] code with weights 90, 99
    442 265 272 10442 –17286 OA(27,17)
+ 729 308 127 132 11420 –16308 Gulliver: projective ternary [154,6] code with weights 99, 108
    420 243 240 15308 –12420  
+ 729 312 135 132 15312 –12416 OA(27,12); from a partial spread of Baer subplanes: projective 9-ary [39,3] code with weights 33, 36; from a partial spread of 3-spaces: projective ternary [156,6] code with weights 99, 108
    416 235 240 11416 –16312 OA(27,16)
- 729 312 171 105 6926 –3702 Absolute bound
    416 208 276 2702 –7026 Absolute bound
? 729 320 166 120 5048 –4680  
    408 207 255 3680 –5148 pg(8,50,5)?
+ 729 328 127 164 4656 –4172 Godsil(q=9,r=2); pg(8,40,4)?; 2-graph\*
    400 235 200 4072 –5656 2-graph\*
+ 729 336 153 156 12392 –15336 Penttila & Royle: projective 9-ary [42,3] code with weights 36, 39
    392 211 210 14336 –13392  
+ 729 338 157 156 14338 –13390 OA(27,13); Pasechnik(27); from a partial spread of 3-spaces: projective ternary [169,6] code with weights 108, 117
    390 207 210 12390 –15338 OA(27,15)
+ 729 364 181 182 13364 –14364 Paley(729); OA(27,14); projective ternary [182,6] code with weights 117, 126; 2-graph\*
? 730 153 24 34 7510 –17219 pg(9,16,2)?
    576 456 448 16219 –8510  
? 730 324 123 160 4657 –4172 2-graph?
    405 240 205 4072 –5657 2-graph?
+ 730 351 168 169 13365 –14364 switch OA(27,14)+*; switch skewhad2+*; 2-graph
    378 195 196 13364 –14365 S(2,14,365)?; 2-graph
+ 730 360 195 160 4073 –5656 2-graph
    369 168 205 4656 –4173 pg(9,40,5)?; Taylor 2-graph for U3(9)
? 731 250 105 75 3585 –5645  
    480 304 336 4645 –3685  
? 732 238 92 70 28122 –6609  
    493 324 348 5609 –29122  
+ 733 366 182 183 13.037366 –14.037366 Paley(733); 2-graph\*
? 735 318 109 159 3689 –5345 pg(6,52,3)?; 2-graph\*?
    416 256 208 5245 –4689 2-graph\*?
? 735 360 172 180 10459 –18275 pg(20,17,10)?; 2-graph\*?
    374 193 187 17275 –11459 2-graph\*?
- 736 42 8 2 10207 –4528 μ=2 (Brouwer-Neumaier)
    693 652 660 3528 –11207  
? 736 60 14 4 14160 –4575  
    675 618 630 3575 –15160  
? 736 105 20 14 13252 –7483 pg(15,6,2)?
    630 538 546 6483 –14252  
? 736 168 32 40 8483 –16252  
    567 438 432 15252 –9483  
? 736 180 68 36 3669 –4666  
    555 410 444 3666 –3769 pg(15,36,12)?
? 736 195 50 52 11390 –13345 pg(15,12,4)?
    540 396 396 12345 –12390  
? 736 270 114 90 30115 –6620  
    465 284 310 5620 –31115 pg(15,30,10)?
? 736 294 122 114 18252 –10483  
    441 260 270 9483 –19252  
? 736 315 106 156 3690 –5345 2-graph?
    420 260 212 5245 –4690 2-graph?
? 736 330 140 154 8528 –22207 pg(15,21,7)?
    405 228 216 21207 –9528  
? 736 350 162 170 10460 –18275 2-graph?
    385 204 198 17275 –11460 2-graph?
? 736 357 176 170 17276 –11459 2-graph?
    378 190 198 10459 –18276 2-graph?
? 736 364 204 156 5246 –4689 2-graph?
    371 162 212 3689 –5346 pg(7,52,4)?; 2-graph?
+ 737 96 35 9 2966 –3670 S(2,3,67)
    640 552 580 2670 –3066  
- 737 368 183 184 13.074368 –14.074368 Conf
! 741 74 37 4 3538 –2702 Triangular graph T(39)
    666 595 630 1702 –3638  
? 741 180 39 45 9455 –15285 pg(12,14,3)?
    560 424 420 14285 –10455  
? 741 260 91 91 13360 –13380  
    480 310 312 12380 –14360  
? 741 320 130 144 8532 –22208  
    420 243 231 21208 –9532  
- 741 370 184 185 13.111370 –14.111370 Conf
? 742 221 60 68 9476 –17265 pg(13,16,4)?
    520 366 360 16265 –10476  
? 742 255 92 85 17265 –10476  
    486 315 324 9476 –18265 S(2,18,477)?
? 742 285 92 120 5636 –33105  
    456 290 264 32105 –6636  
? 742 351 180 153 33105 –6636  
    390 191 220 5636 –34105  
? 745 372 185 186 13.147372 –14.147372 2-graph\*?
? 748 180 53 40 20187 –7560  
    567 426 441 6560 –21187 S(2,21,561)?
- 749 374 186 187 13.184374 –14.184374 Conf
? 750 112 20 16 12294 –8455 pg(14,7,2)?
    637 540 546 7455 –13294  
? 750 210 55 60 10441 –15308 pg(14,14,4)?
    539 388 385 14308 –11441  
? 750 214 63 60 14321 –11428  
    535 380 385 10428 –15321  
? 750 308 118 132 8539 –22210 pg(14,21,6)?
    441 264 252 21210 –9539  
? 750 321 144 132 21214 –9535  
    428 238 252 8535 –22214  
? 750 343 168 147 28140 –7609  
    406 209 232 6609 –29140 pg(14,28,8)?

Prev Up Next