
The Witt designs, Golay codes and Mathieu

groups

1 The Golay codes

Let V be a vector space over Fq with fixed basis e1, ..., en.
A code C is a subset of V . A linear code is a subspace of V . The vector with

all coordinates equal to zero (resp. one) will be denoted by 0 (resp. 1).
The Hamming distance dH(u, v) between two vectors u, v ∈ V is the number

of coordinates where they differ: when u =
∑

uiei, v =
∑

viei then dH(u, v) =
|{i | ui 6= vi}|. The weight of a vector u is its number of nonzero coordinates,
i.e., dH(u,0).

The minimum distance d(C) of a code C is min{dH(u, v) | u, v ∈ C, u 6= v}.
The support of a vector is the set of coordinate positions where it has a nonzero
coordinate.

Theorem 1.1 There exist codes, unique up to isomorphism, with the indicated
values of n, q, |C| and d(C):

n q |C| d(C) name of C
(i) 23 2 4096 7 binary Golay code
(ii) 24 2 4096 8 extended binary Golay code
(iii) 11 3 729 5 ternary Golay code
(iv) 12 3 729 6 extended ternary Golay code

Let us assume that the codes have been chosen such as to contain 0. Then
each of these codes is linear. (The dimensions are 12, 12, 6, 6.)

The codes (i) and (iii) are perfect, i.e., the balls with radius 1
2 (d(C)− 1) around

the code words partition the vector space.
(Proof by counting: |ball| = 1 +

(
23
1

)
+

(
23
2

)
+

(
23
3

)
= 2048 = 211 in case (i),

and |ball| = 1 + 2
(
11
1

)
+ 4

(
11
2

)
= 243 = 35 in case (iii).)

Except for the repetition codes (with |C| = q, d(C) = n), there are no other
perfect codes C with d(C) > 3.

The codes (ii) and (iv) are self dual, i.e., with the standard inner product (u, v) =∑
uivi one has C = C⊥ for these codes.

The codes (i) and (ii) are self complementary, i.e., if u ∈ C, u = (u1, ..., un)>,
then also u ∈ C, where u = (1− u1, ..., 1− un)>.

(Since the code is linear this is equivalent to saying that 1 ∈ C.)
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The weight enumerators A(x) :=
∑

aix
i, where ai is the number of code words

of weight i, are:

(i) 1 + 253x7 + 506x8 + 1288x11 + 1288x12 + 506x15 + 253x16 + x23

(ii) 1 + 759x8 + 2576x12 + 759x16 + x24

(iii) 1 + 132x5 + 132x6 + 330x8 + 110x9 + 24x11

(iv) 1 + 264x6 + 440x9 + 24x12

(Proof: For cases (i) and (iii) use the fact that the codes are perfect. E.g. in
case (iii) the ball around 0 covers the vectors of weight at most two. The 23

(
11
3

)
vectors of weight 3 must be covered by balls around codewords of weight 5, so
that a5 = 23.

(
11
3

)
/
(
5
3

)
= 132. Next a6 = (24.

(
11
4

)
−132.

(
5
4

)
−132.

(
5
3

)
.2)/

(
6
4

)
= 132.

Etc. Case (ii) follows immediately from (i) (cf. the first paragraph of the next
section), but the implication (iii)⇒(iv) is difficult; cf. Delsarte & Goethals [4].)

The supports of the code words of minimal nonzero weight form Steiner sys-
tems S(4, 7, 23), S(5, 8, 24), S(4, 5, 11) and S(5, 6, 12), respectively. (See the
paragraph on Steiner systems.)

For those who know what a near polygon is: the partial linear space with as
points the vectors of the extended ternary Golay code and as lines the cosets
of 1-dimensional subspaces spanned by a vector of weight 12 is a near hexagon
with s + 1 = 3 points/line and t + 1 = 12 lines/point and diagram (as distance
transitive graph)

����
1

24 1 ����
24

1

22 2 ����
264

2

20 12 ����
440

12

v = 729

It has quads (namely 3× 3 grids GQ(2,1)).

2 The Golay codes - constructions

Given one of the extended codes one may puncture it by just deleting one coor-
dinate position. This produces (i) and (iii) from (ii), (iv).

Conversely, given (i) one may construct (ii) by extending it, i.e., adding a
parity check bit such as to make the weight of all code words even; and given
(iii) (normalized by multiplying certain coordinate positions by −1 such that the
normalized code contains the all-one vector) one may construct (iv) by adding
a check trit such as to make the sum of all coordinates a multiple of three.

2.1 A construction of the extended binary Golay code

This code is the lexicographically first code with word length n = 24 and mini-
mum distance 8: write down the numbers 0, 1, ..., 224−1 in binary and consider
them as binary vectors of length 24. Cross out each vector that has distance
less than 8 to a previous non-crossed out vector. The 4096 vectors not crossed
out form the extended binary Golay code.
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Proof: just do it. Some work may be saved by observing [M.R.Best] that
any lexicographically minimal binary code with a number of vectors that is a
power of two is linear so that all one needs are the 12 base vectors. These turn
out to be

000000000000000011111111
000000000000111100001111
000000000011001100110011
000000000101010101010101
000000001001011001101001
000000110000001101010110
000001010000010101100011
000010010000011000111010
000100010001000101111000
001000010001001000011101
010000010001010001001110
100000010001011100100100

Remark: deleting the columns with only one 1 and interchanging zeros and
ones we find the incidence matrix of the unique symmetric group divisible design
GD(5,2,2;12) in Hanani’s notation - see below.

2.2 Construction as quadratic residue codes

For (n, q) = (11, 3) or (23, 2) consider the linear code generated over Fq by the
n vectors ci (1 ≤ i ≤ n) with coordinates

(ci)j =
{

1 if j − i is a nonzero square mod n,
0 otherwise.

This yields the ternary and binary Golay codes.
Proof: the only nontrivial thing to check is the minimum distance. One

easily sees that the extended code has all weights divisible by 3 resp. 4 so that
all that remains is to prove that its minimum distance is not 3 resp. 4 and that
is easy. For explicit details see van Lint [6], §6.9 (but note that some of the
statements there are valid only in the binary case).

2.3 Construction from 2-(11,5,2) biplane and icosahedron

Let B be the incidence matrix of a design with point set Z11 and blocks
{1, 3, 4, 5, 9} + i (i ∈ Z11) (i.e., the translates of the set of nonzero squares
mod 11). This design is a square block design 2-(11,5,2): any two points are

on two blocks and dually. Then the rows of the 12× 24 matrix
(

I
0 1>

1 J −B

)
generate the extended binary Golay code.

Let N be the adjacency matrix of the icosahedron (points: 12 vertices, ad-
jacent: joined by an edge). Then the rows of the 12 × 24 matrix (I J − N)
generate the extended binary Golay code.
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Conversely, given a generator matrix (I X) for the extended binary Golay
code, either one of its rows has weight 12 and we are in the first situation, or all
rows have weight 8 and X is the incidence matrix of the unique symmetric group
divisible design GD(5, 2, 2; 12); by suitably ordering the rows and columns we
may obtain X = N and we are in the second situation.

2.4 A similar construction for the extended ternary Golay
code

Let S be the 5×5 circulant matrix with first row ( 0 1 −1 −1 1 ) (the quadratic

residue character mod 5). Then the rows of the 6 × 12 matrix
(

I
0 1>

−1 S

)
generate the extended ternary Golay code (over F3). (Cf. Cameron & van
Lint [2], Chapter 13: Symmetry codes.) One checks easily that (up to permut-
ing coordinate positions and multiplying columns by −1, i.e., up to monomial
transformations) this is the only possibility for a generator matrix (I X).

2.5 Two Hamming codes

Let H be the extended binary Hamming code (with word length 8, dimension

4) consisting of the 8 rows of
(

0 0>

1 F

)
(where F = circ(0110100) is the

incidence matrix of the Fano plane PG(2, 2)) and their complements.
Let H∗ be the code obtained by replacing F by F ∗ = circ(0001011) (that is,

by reversing all code words). Then H ∩H∗ = {0,1}.
Let C = {(a+x, b+x, a+ b+x) | a, b ∈ H, x ∈ H∗}. Then C has word length

24, dimension 12 and minimum distance 8 as one easily checks. Hence C is the
extended binary Golay code. This representation shows an automorphism with
cycle structure 1373.

2.6 Miracle octad generator

Let us give yet another representation of C (due to Conway). Consider the set
of 4× 6 matrices with entries 0 or 1 satisfying the following two restraints:

(i) The six column sums and the first row sum have the same parity.
(ii) If ri denotes the i-th row (1 ≤ i ≤ 4) and F4 = {0, 1, ω, ω2} and F is the

linear code (with word length 6, dimension 3 and minimum distance 4) over F4

generated by the rows of the matrix 1 0 0 1 ω ω2

0 1 0 1 ω2 ω
0 0 1 1 1 1


then r2 + ωr3 + ω2r4 ∈ F .

It is almost trivial to verify that these matrices form a linear code with word
length 24, dimension 12 and minimum distance 8 over F2, i.e., we have the
extended binary Golay code again.
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Figure 1: Three octads.

Some easy automorphisms [with cycle structure]:
- interchange rows r2, r3, r4 cyclically [3616]
- interchange the last two rows and the last two columns [2818]
- interchange 1st and 2nd, 3rd and 4th, 5th and 6th column, and rows r3 and

r4 [212].

3 Steiner systems

A t-(v, k, λ) design is a set of v points together with a collection of subsets of size
k (called blocks) such that each set of t points is in precisely λ blocks. (Some
people write Sλ(t, k, v) for such a design.)

A Steiner system S(t, k, v) is such a design with λ = 1.
A projective plane PG(2, n) is a Steiner system S(2, n + 1, n2 + n + 1).
An affine plane AG(2, n) is a Steiner system S(2, n, n2).
Infinitely many Steiner systems with t ≤ 3 are known, a few with t = 4, 5

and none with t > 5. (The complete list of known systems with t = 5 is S(5, 6, v)
for v = 12, 24, 48, 72, 84, 108, 132, S(5, 7, 28), S(5, 8, 24).)

Given a t-(v, k, λ) design one may delete one point and all blocks not con-
taining that point and obtain a (t−1)-(v−1, k−1, λ) design (called the derived
design).

On the other hand, deleting a point and all blocks containing it one obtains
a (t− 1)-(v − 1, k, v−k

k−t λ) design (called the residual design).
A t-(v, k, λ) design is also an i-(v, k, λi) design for 0 ≤ i ≤ t, with λi =

λ(v − t + 1) · · · (v − i)/(k − t + 1) · · · (k − i).
For a t-(v, k, λ) design, the number of blocks containing a point set X and

disjoint from a point set Y (where X∩Y = ∅) can be expressed in the parameters
t, v, k, λ, |X|, |Y | when |X ∪ Y | ≤ t. Let us call these numbers µ(|X|, |Y |).

We are mostly interested in the systems S(5, 8, 24) and S(5, 6, 12) and de-
rived designs.

For S(5, 8, 24) we have: λ5 = 1, λ4 = 5, λ3 = 21, λ2 = 77, λ1 = 253,
λ0 = 759. The ‘intersection’ triangle here gives the numbers µ(|X|, |Y |) with
|X ∪ Y | constant in each row and |X| increasing in each row, where X ∪ Y is
contained in a block.
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759
253 506

77 176 330
21 56 120 210

5 16 40 80 130
1 4 12 28 52 78

1 0 4 8 20 32 46
1 0 0 4 4 16 16 30

1 0 0 0 4 0 16 0 30

Given a block B0 of S(5, 8, 24), let ni be the number of blocks B such that
|B0 ∩ B| = i. Then n8 = 1, n4 = 280, n2 = 448, n0 = 30 and all other ni are
zero.

For those who know what a near polygon is: the partial linear space with as
points the 759 blocks of the Steiner system S(5, 8, 24) and as lines the partitions
of the point set of the design into three pairwise disjoint blocks, is a near hexagon
with s + 1 = 3 points/line and t + 1 = 15 lines/point and diagram (as distance
transitive graph)

����
1

30 1 ����
30

1

28 3 ����
280

3

24 15 ����
448

15

v = 759

It has quads (with 15 points and 15 lines: GQ(2,2) i.e., Sp(4,2) generalized
quadrangles). A quad in the near polygon corresponds to a sextet in the design:
a partition of the point set into six 4-sets such that the union of any two of them
is a block. Distances 0, 1, 2, 3 in the near polygon correspond to intersections
of size 8, 0, 4, 2, respectively.

For S(5, 6, 12) we have: λ5 = 1, λ4 = 4, λ3 = 12, λ2 = 30, λ1 = 66, λ0 = 132.
Our intersection triangle becomes

132
66 66

30 36 30
12 18 18 12

4 8 10 8 4
1 3 5 5 3 1

1 0 3 2 3 0 1

Given a block B0 of S(5, 6, 12), let ni be the number of blocks B such that
|B0∩B| = i. Then n6 = 1, n4 = 45, n3 = 40, n2 = 45, n0 = 1 (and n5 = n1 = 0).
In particular the complement of a block is again a block.

Note that the above intersection numbers are a consequence of the parame-
ters alone (and may thus be used in uniqueness proofs).

There exist unique designs S(5, 8, 24), S(4, 7, 23), S(3, 6, 22), S(2, 5, 21),
S(1, 4, 20), S(5, 6, 12), S(4, 5, 11), S(3, 4, 10), S(2, 3, 9), S(1, 2, 8). The sys-
tem S(2, 5, 21) is the projective plane of order 4, S(2, 3, 9) the affine plane
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of order 3, S(3, 4, 10) the Möbius plane of order 3. (In view of the derivation
S(t, k, v) → S(t−1, k−1, v−1) it suffices to construct S(5, 8, 24) and S(5, 6, 12),
and we shall find these as the supports of the code words of minimal nonzero
weight in the extended Golay codes. Uniqueness will also be shown as a corollary
of the uniqueness of the Golay codes.)

4 The uniqueness of the extended binary Golay
code C

For a good account of the uniqueness of the Golay codes and associated Steiner
systems see MacWilliams & Sloane [7], Chapter 20. There the uniqueness of
S(5, 8, 24) is proven ‘by hand’ - examining its structure in detail, and the unique-
ness of C follows rather easily by use of the linear programming bound. Here
we follow the opposite way, getting the uniqueness of S(5, 8, 24) from that of
C, and proving the latter directly, without recourse to the theory of associa-
tion schemes. Instead, the uniqueness of C will come as a consequence of the
uniqueness of the 2-(11,5,2) biplane.

Theorem 4.1 Let C be a binary code containing 0, with word length 24, mini-
mum distance 8 and |C| ≥ 212. Then C is the extended binary Golay code.

Proof If we delete a coordinate position we find a code C0 with word length
23, minimum distance (at least) 7 and |C0| ≥ 212. As we saw before, such a
code must have |C0| = 212 and weight enumerator coefficients a0 = a23 = 1,
a7 = a16 = 253, a8 = a15 = 506, a11 = a12 = 1288 (by the ball-packing
argument it follows that C0 is perfect). Now if C contains a word of weight w
not divisible by 4 then by suitably puncturing we would find a C0 containing
a word of weight w or w − 1 not 0 or −1 (mod 4), a contradiction. Hence C
has weight enumerator coefficients a0 = a24 = 1, a8 = a16 = 759, a12 = 2576.
Giving an arbitrary vector in C the rôle of 0 we see that all distances between
code words are divisible by 4. If u, v ∈ C then dH(u, v) = wt(u)+wt(v)−2(u, v)
so the inner product (u, v) is even and it follows that C is self-orthogonal. But
C⊥ is a linear subspace of dimension 24 − dim〈C〉 ≤ 12 so that C⊥ = C and C
is a linear code. Let u and u be two complementary weight 12 vectors in C.
The code Cu obtained from C by throwing away all coordinate positions where
u has a 1, has word length 12 and dimension 11 and hence must be the even
weight code (consisting of all vectors of even weight). This means that we can
pick a basis for C consisting of u and 11 vectors vj with (u, vj) = 2 so as to

get a generator matrix of the form
(

0 0> 1> 1
1 I K 0

)
, where I is an identity

matrix of order 11. A little reflection shows that J −K is the incidence matrix
of a 2-(11,5,2) biplane. This shows uniqueness of C given the uniqueness of the
2-(11,5,2) biplane, and the latter is easily verified by hand. 2

Theorem 4.2 There is a unique Steiner system S(5, 8, 24).
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Proof (i) Existence: the words of weight 8 in C cover each 5-set at most once
since d(C) = 8, and exactly once since

(
24
5

)
= 759.

(
8
5

)
.

(ii) Uniqueness: Let S be such a system, and let C1 be the linear code over
F2 spanned by its blocks. From the intersection numbers we know that C1 is
self-orthogonal (i.e., C1 ⊆ C1

⊥) with all weights divisible by 4. In order to show
that |C1| ≥ 212 fix three independent coordinate positions, say 1, 2, 3 and look
at the subcode C2 of C1 consisting of the vectors u with u1 = u2 = u3. Then
dim C1 = (dim C2) + 2. Thus, in order to prove dim C1 ≥ 12 it suffices to show
that the code generated by the blocks of S(5, 8, 24) containing 3 given points has
dimension at least 10. In other words, we must show that the code generated
by the lines of the projective plane PG(2, 4) (which is nothing but S(2, 5, 21))
has dimension at least 10, but that is the result of the next theorem.

The blocks of an S(5, 8, 24) assume all possible 0-1 patterns on sets of car-
dinality at most 5 so that C1

⊥ has minimum weight at least 6. Since C1 has all
weights divisible by 4 and C1 ⊆ C1

⊥ it follows that d(C1) = 8. Now apply the
previous theorem to see that C1 is the extended binary Golay code, and S the
set of its weight 8 vectors. 2

Theorem 4.3 The code over F2 spanned by the lines of the projective plane
PG(2, 4) has dimension 10.

Proof Let abcde be a line in PG(2, 4). The set of ten lines consisting of all
5 lines on a, 3 more lines on b, and one more line on each of c, d, is linearly
independent, so the dimension is at least 10. But the previous proof (or a simple
direct argument showing that the extended code cannot be self-dual) shows that
it is at most 10. 2

5 Substructures of S(5, 8, 24)

An octad is a block of S(5, 8, 24).

Theorem 5.1 Let B0 be a fixed octad. The 30 octads disjoint from B0 form a
self-complementary 3-(16,8,3) design, namely the design of the points and affine
hyperplanes in AG(4, 2), the 4-dimensional affine space over F2.

Proof Let B be the collection of octads disjoint from B0. We have seen already
that |B| = 30.

(i) The linear span of B is a code of dimension 5 and weight enumerator
1 + 30x8 + x16.

(Proof: having zeros at the positions of B0 gives 7 restrictions, so this span
has codimension 7 in the extended binary Golay code C.)

(ii) Each block B ∈ B is disjoint from a unique B′ ∈ B and meets all other
blocks in precisely 4 points.

(Proof: obvious from (i).)
(iii) B is a 3-(16,8,3) design.
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(Proof: each triple is covered 30.
(
8
3

)
/
(
16
3

)
= 3 times on average, but no triple

is covered 4 times.)
(iv) We have AG(4, 2).
(Proof: invoke your favorite characterization of AG(4, 2) or PG(3, 2), say

Dembowski-Wagner or Veblen & Young. An explicit construction of the vector
space is also easy: choose a point 0 /∈ B0 and regard it as origin. If x,y are
nonzero points then the three blocks B1, B2, B3 on 0, x, y have a fourth point z
in common (for B3 is the complement of B1 + B2 (i.e. B1∆B2) hence contains
B1∩B2) - now write x+y = z. If x, y, z are three arbitrary nonzero points and
B1, B2, B3 are the blocks containing 0, x, y then unless z = x+y precisely one of
the Bj , say B1, also contains z. Now in order to check that (x+y)+z = x+(y+z)
we can do all computations within B1 (using the induced 3-(8,4,1) design) - but
clearly the 3-(8,4,1) design is unique (the extension of the Fano plane), i.e., is
AG(3, 2) and addition is associative. This defines the vector space structure,
and the blocks are the hyperplanes on 0 and their complements.) 2

Theorem 5.2 Let T0 be a fixed tetrad (4-set). Then T0 determines a unique
sextet, i.e., partition of the 24-set into 6 tetrads Ti such that Ti ∪ Tj is a block
for all i, j (i 6= j).

Proof Since λ4 = 5 there are 5 blocks Bi on T0 (i = 1, 2, 3, 4, 5) and with
Ti := Bi \ T0 we have Ti ∪ Tj = Bi + Bj (0 6= i 6= j 6= 0). Since λ5 = 1 the 6
tetrads Ti are pairwise disjoint. 2

Theorem 5.3 Let B0 be a fixed octad, x ∈ B0, y /∈ B0, Z the complement
of B0 ∪ {y}. Then there is a natural 1-1 correspondence between the

(
7
3

)
= 35

triples in B0 \{x} and the (22 +1)(22 +2+1) = 35 lines in the PG(3, 2) defined
on Z. Triples meeting in a singleton correspond to intersecting lines.

Proof A line in the PG(3, 2) on Z is a set T \ {y} where T is a 4-set such that
3 of the blocks on it are disjoint from B0. Of the remaining two blocks on T ,
precisely one contains the point x, and if B is this one then B ∩B0 \ {x} is the
triple corresponding to the given line. 2

Theorem 5.4 Let D0 be a fixed dodecad (support of a vector of weight 12 in
C). The 132 octads meeting D0 in six points form the blocks of a Steiner system
S(5, 6, 12) on D0.

Proof Each 5-set in D0 is in a unique block of S(5, 8, 24), and this block must
meet D0 in 6 points. 2

Theorem 5.5 Let D0 be a fixed dodecad and x /∈ D0. The 22 octads meeting
D0 in six points and containing x form the blocks of a Hadamard 3-design 3-
(12, 6, 2). There is a natural 1-1 correspondence between the 1

2 .132 = 66 pairs
of disjoint blocks of the S(5, 6, 12) on D0 and the

(
12
2

)
= 66 pairs of points not

in D0.
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Proof Given a pair of points x,y outside D0, there are precisely two octads on
{x, y} meeting D0 in six points, and these give disjoint blocks in the S(5, 6, 12)
(for: if these octads are B, B′ then B′ = B +D0). Varying y we find 11 pairs of
disjoint blocks, blocks from different pairs having precisely 3 points in common.
2

6 The Mathieu group M24

M24 is by definition the automorphism group of the extended binary Golay
code C (or, what is the same, of the Witt design S(5, 8, 24)), i.e., the group of
permutations of the 24 coordinate positions preserving the code. For a beautiful
discussion of this and related groups, see Conway [3].

Theorem 6.1 M24 has order 24.23.22.21.20.16.3 and acts 5-transitively on the
24 coordinate positions.

Proof Let N be the adjacency matrix of the icosahedron. Since Aut N is
transitive on the 12 points, and N is nonsingular, so that if ( I J−N ) generates
C then also ( J − N ′ I ) for some N ′ equivalent to N , it follows that M24 is
transitive. (This immediately implies uniqueness of the binary Golay code - see
next section.)

The representation as quadratic residue code gives an automorphism with
cycle structure 1+23, so M24 is 2-transitive. This same representation also
gives 1+1+11+11. The representation using the two Hamming codes H and H∗

exhibits an automorphism with cycle structure 1373 so that M24 is 3-transitive.

From automorphisms with cycle structure 1373 and 1454 (the latter is easily
seen in the icosahedral representation) we see that M24 is 4-transitive.

Both H and H∗ have automorphism group PSL(2, 7) acting on the coor-
dinates numbered ∞,0,1,2,3,4,5,6. Elements in PGL(2, 7) \ PSL(2, 7) inter-
change H and H∗. Any automorphism of H of shape 42 (for definiteness, say
x 7→ 2− 1

x+2 ) yields an automorphism of C of shape 46.

From automorphisms of shape 1454 and 46 we see that M24 is transitive on
5-sets. The stabilizer of a 5-set contains permutations of shape 1454 and 1828

(the latter e.g. by interchanging the first and second groups of 8 coordinates
in the representation given above) inducing 5 and 132 on the 5-set, but since
(ABCDE) and (AB) generate the symmetric group Sym(5) on 5 symbols, this
shows that M24 is 5-transitive.

Since M24 is transitive on 5-sets, and a 5-set determines a unique octad, M24

is transitive on octads.

The miracle octad generator representation shows that the pointwise stabi-
lizer of a 5-set is transitive on the remaining 3 points of the octad containing it.
Next observe that if π is a permutation fixing a certain octad pointwise and g
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fixes this octad setwise, then πg := g−1πg fixes the octad pointwise. It follows
that if O is an orbit of the pointwise stabilizer of this octad, then gO is also an
orbit. Since we can find g with shapes 42 + 44 and 135 + 1 53 and π with shape
153 + 1 35 we see that the pointwise stabilizer of an octad is transitive on the
remaining 16 points.

Let H be the subgroup of M24 fixing a block B (setwise) and a point x /∈ B.
By the above |H| ≥ 24.23.22.21.20.16.3

759.16 = 1
2 .8!. The code words in C that are

zero on the positions of B ∪ {x} form a subcode with codimension 8 in C,
i.e., with dimension 4. No nonidentity element of H can act trivially on this
subcode (no two coordinate positions are dependent, e.g. because this is the
code spanned by the complements of the hyperplanes in PG(3, 2) so |H| ≤
|PGL(4, 2)| = 15.14.12.8 = 1

2 .8!. Since equality must hold we have shown that
|M24| = 24.23.22.21.16.3 and that H∼=Alt(8)∼=PGL(4, 2). 2

Theorem 6.2 M24 is transitive on trios (partitions of the point set into 3 oc-
tads), sextets and dodecads (vectors in C of weight 12).

Proof (i) PGL(4, 2) is transitive on the hyperplanes of PG(3, 2).
(ii) Any tetrad determines the sextet containing it, and M24 is 4-transitive.
(iii) Writing the dodecad as B+B′ where B and B′ are octads with |B∩B′| =

2 we see that it suffices to show that the pointwise stabilizer of B is transitive on
the 16 blocks B′ meeting B in a given pair. But this stabilizer is the elementary
abelian group 24 and if some translation fixed B′ then there would be an affine
hyperplane meeting B′ in 6 points - impossible. 2

7 More uniqueness results

Theorem 7.1 Let C0 be a binary code containing 0 with word length 23, mini-
mum distance 7 and |C0| ≥ 212. Then C0 is the (perfect) binary Golay code.

Proof Add a parity check to C0 to obtain C. Thus C0 is obtained from C by
suppressing some coordinate position, but all positions are equivalent since M24

is transitive. 2

Theorem 7.2 There is a unique Steiner system S(4, 7, 23).

Proof The proof is very similar to that of the uniqueness of S(5, 8, 24). Let
C0 be the code spanned by the blocks and add a parity bit to obtain a self-
orthogonal code C of word length 24. As before one identifies C as the extended
binary Golay code, then C0 as the (perfect) binary Golay code, then the blocks
of S(4, 7, 23) as the words of weight 7 in this code. 2

Theorem 7.3 There is a unique Steiner system S(3, 6, 22).
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Proof Inspired by Lander [5] (esp. pp. 54 and 71), we first construct D
as the extended linear code over F2 spanned by the lines of PG(2, 4). Then
D has word length 22, and we have seen already that dim D = 10. D is
self-orthogonal and hence there are three codes Di of dimension 11 such that
D ⊆ Di ⊆ D⊥ (i = 1, 2, 3). But D can be identified with the subcode of
C defined by u1 = u2 = u3, and the three codes Di are found as subcodes
defined by u2 = u3, u1 = u3 and u1 = u2, respectively. (More precisely, our
codes are obtained from the subcodes of C just mentioned by dropping the first
three coordinate positions and adding a parity bit; note that 1 ∈ D.) Now
3-transitivity of M24 tells us that the three codes Di are equivalent; each has 77
words of weight 6. Given any Steiner system S(3, 6, 22), its blocks must span
one of the codes Di, and the blocks of the Steiner system are recovered as the
supports of the code words of weight 6 in this code. 2

Theorem 7.4 (a) Let C(i) be a binary code containing 0 with word length 24−i,
minimum distance 8, and size at least 212 − i. If 0 ≤ i ≤ 3 then C(i) is the i
times shortened extended binary Golay code.

(b) Let C(i)
0 be a binary code containing 0 with word length 23− i, minimum

distance 7, and size at least 212−i. If 0 ≤ i ≤ 3 then C(i)
0 is the i times shortened

binary Golay code.
The weight enumerators are (for i > 0) given by

i n dim weight enumerator
1 23 11 1 + 506x8 + 1288x12 + 253x16

2 22 10 1 + 330x8 + 616x12 + 77x16

3 21 9 1 + 210x8 + 280x12 + 21x16

1 22 11 1 + 176x7 + 330x8 + 672x11 + 616x12 + 176x15 + 77x16

2 21 10 1 + 120x7 + 210x8 + 336x11 + 280x12 + 56x15 + 21x16

3 20 9 1 + 80x7 + 130x8 + 160x11 + 120x12 + 16x15 + 5x16

Adding a parity check bit to C(i)
0 we find C(i), and for i > 0 the latter is the

even weight subcode of C(i)
0 .

(c) Let C00 be a binary self dual code with word length 22 and minimum
distance 6. Then C00 is the once truncated binary Golay code.

Proof (Sketch): Part (b) follows from part (a) since each of these codes has
a group that acts transitively on the coordinate positions. For part (a), apply
Delsarte’s linear programming bound (enhanced by addition of a few obvious
inequalities) to obtain uniqueness of all weight enumerators given. (Cf. Best et
al. [1].)

The case i = 0 has been treated earlier. C(1)∪(C(1)+1) has minimum distance
7 hence is the binary Golay code. This settles the case i = 1. C(2) ∪ (C(2) + 1)
is self-orthogonal with minimum distance 6 and word length 22 with 211 words
hence is linear. But according to Pless & Sloane [9], the unique such code is the
once truncated binary Golay code. This settles the case i = 2 and part (c). If we

12



extend C(3) ∪ (C(3) +1) with a parity check bit we obtain a self-orthogonal code
D with minimum distance 6 and word length 22; D is contained in a self-dual
code with d = 6 and n = 22, necessarily C00. Removing the parity bit again we
find that C(3) is contained in the twice truncated binary Golay code which has
weight enumerator (1 + x21) + 21(x5 + x16) + 56(x6 + x15) + 120(x7 + x14)
+ 210(x8 + x13) + 280(x9 + x12) + 336(x10 + x11). Clearly C(3) must consist
of all vectors in this code with a weight divisible by 4, and hence is uniquely
determined. 2

Starting from S(5, 8, 24) and taking successive derived or residual designs
we find designs with the following parameters:

5-(24,8,1)
4-(23,7,1) 4-(23,8,4)

3-(22,6,1) 3-(22,7,4) 3-(22,8,12)
2-(21,5,1) 2-(21,6,4) 2-(21,7,12) 2-(21,8,28)

Up to now we have seen uniqueness of the three largest Steiner systems (and
used the uniqueness of S(2, 5, 21) = PG(2, 4) - an easy exercise). Such strong
results are not available for the remaining 6 designs.

(In fact, observe that a 2-(21,7,3) design exists - e.g., the residual of an SBIBD 2-(31,10,3).

Taking 4 copies of such a design, independently permuting the point sets in each case, pro-

duces large numbers of nonisomorphic designs with parameters 2-(21,7,12), so this structure

is certainly not determined by its parameters alone.)

Tonchev [10] shows that there are unique quasisymmetric designs 2-(22,7,16),
2-(21,7,12) and 2-(21,6,4).

(A design is called quasisymmetric if it has only two distinct block intersection numbers;

here 0,2 in case of 2-(21,6,4) and 1,3 for the other two designs. Note that 3-(22,7,4) has

λ2 = 16.)

He also showed (in Tonchev [11]) that there are unique designs 2-(23,8,56),
2-(22,8,40), 2-(21,8,28) with intersection numbers 0, 2, 4.

(Note that 4-(23,8,4) has λ2 = 56 and that 3-(22,8,12) has λ2 = 40. Tonchev is not quite

explicit about the middle case—he assumes 3-(22,8,12)—but his methods also work when only

2-(22,8,40) is given.)

The proofs are always by generating a self-orthogonal code and using the
classification of binary self-dual codes with n = 22.

More information is contained in the following. Let D be a collection of
k-subsets of an n-set such that any two k-subsets have distance at least 8. Then
for each of the cases listed below we have |D| ≤ b, and when equality holds
then the system is known to be unique, except in five cases. For (n, k, b) =
(19, 5, 12) there are precisely two nonisomorphic systems, corresponding to the
two Latin squares of order 4. For (n, k, b) = (18, 5, 9) there are precisely three
nonisomorphic systems. For the three cases (n, k, b) = (19, 6, 28), (20, 7, 80),
(21, 8, 210) no information is available. In all cases other than these three the
block intersection numbers are as shown.
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k \ n 18 19 20 21 22 23 24 intersections
5 9 12 16 21 1
6 28 40 56 77 0,2
7 80 120 176 253 1,3
8 210 330 506 759 0,2,4

[Proof: The entries 21, 77, 253, 759 clearly correspond to unique Steiner systems. The

entry 16 must correspond to a dual affine plane AG(2, 4)∗ and hence for the entries 16, 56, 176,

506 the intersection numbers are as claimed, and uniqueness follows from Tonchev’s results.

The entry 12 must correspond to a dual linear space where the linear space has 16 3-lines and

3 pairwise disjoint 4-lines on 12 points, a Latin square of order 4. It follows that for the entries

12, 40, 120, 330 all intersection numbers are as claimed and by Tonchev uniqueness follows

for 120 and 330. Concerning 40, these 40 6-sets span a self-orthogonal code contained in a

self-dual code C20 with word length 20 and minimum distance at least 4. Some study of the

derived structure shows that this code has a4 = 5. Now by the classification of self-dual codes

of word length 20 (see Pless [8] the code C20 is uniquely determined; it is obtained as subcode

of the extended binary Golay code by selecting the code words with u1 = u2 and u3 = u4,

and throwing away the first four coordinate positions. Its weight enumerator is 1 + x20 +

5(x4 + x16) + 80(x6 + x14) + 250(x8 + x12) + 352x10. The 80 words of weight 6 fall into

two groups (those that started 1100... and those that started 0011...) and one quickly sees

that our set of 40 words cannot meet both groups. This shows uniqueness for the entry 40.

Concerning the entry 9, quadratic counting shows that no two of its 5-sets can be disjoint,

and one finds that the point set splits into two halves: X = X2 ∪ X3 such that each block

has i points in Xi and each point of Xi is on i blocks (i = 2, 3). On X2 we see a union of

polygons, and the three solutions are described by: 3C3, C3 + C6 and C9. In the former two

cases the solution is obvious; in the third case we have X3 = circ(101001000).]
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