D. S. Asche (cf. [1], Example 5.19) gave a construction for a system of 72 lines in \mathbb{R}^{19} with mutual angles $\arccos(1/5)$. F. Szöllösi [2] discovered that Asche's system contains a subsystem of 54 lines in \mathbb{R}^{18} with mutual angles $\arccos(1/5)$.

The construction in [2] is very explicit. Here we give precisely the same construction but formulated without choosing an explicit Golay code, and an explicit vector m.

1 Asche's construction

Let (X, B) be a Steiner system $S(5, 8, 24)$. (Thus, $|X| = 24$, $|B| = 759$, members of B have size 8, and each subset of size 5 of X is contained in a unique member of B.) Call the elements of X points. Call the members of B octads. Octads meet in 8, 4, 2, or 0 points.

Let $B_1, B_2 \in B$ be two octads that meet in 2 points. Let p be a point outside $B_1 \cup B_2$, and let $B_1 \cap B_2 = \{q, r\}$. Let A be the set of 72 octads that contain p but not q, r and meet each of B_1 and B_2 in 2 points. All choices made are unique up to isomorphism, and the resulting set A (for Asche) is a single orbit of the subgroup of size 144 of M_{24} that stabilizes this situation.

For each subset S of X, let $\chi_S \in \mathbb{R}^X$ be its characteristic vector (so that $\chi_S(x) = 1$ if $x \in S$ and $\chi_S(x) = 0$ otherwise). With the usual inner product this means that $(\chi_S, \chi_T) = |S \cap T|$. Put $u := \chi_p + \frac{1}{4} \chi_X$. Now the 72 unit vectors $(\chi_B - u)/\sqrt{5}$ have mutual inner products $\pm 1/5$, so that the system Φ of 72 lines they span is equiangular. The five conditions $p \in B$, $q \notin B$, $r \notin B$, $|B \cap B_1| = 2$, $|B \cap B_2| = 2$ force $\langle \Phi \rangle$ to have dimension 19.

2 Szöllösi's construction

Continuing the notation from the previous section, let B_3 be an octad containing p, q, r such that $|B_3 \cap B_1| = 4$ and $|B_3 \cap B_2| = 2$. Let s be a point other than q, r in $B_3 \cap B_1$. Let S (for Szöllösi) be the subset of size 54 of A consisting of the octads B such that $|B \cap B_3| = 4$ if $s \in B$ and $|B \cap B_3| = 2$ otherwise. All choices made are unique up to isomorphism.

The condition given says that $\chi_B - u$ is orthogonal to $3(\chi_{B_3} - 2\chi_{\{s\}}) + 2\chi_p - 4\chi_{\{q, r\}}$, so that the resulting subsystem Ψ of Φ spans a subspace of dimension 18.
References
