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Abstract

The Kneser graph K(n, d) is the graph on the d-subsets of an n-set,
adjacent when disjoint. Clearly, K(n+d, d) is locallyK(n, d). Hall showed
for n ≥ 3d + 1 that there are no further examples. Here we give other
examples of locally K(n, d) graphs for n = 3d, and some further sporadic
examples. It follows that Hall’s bound is best possible.

1 Locally something graphs
A graph Γ is called locally ∆ when for each vertex of Γ the subgraph induced on
the set of its neighbors is isomorphic to ∆. The Trahtenbrot-Zykov problem [31]
asks whether given a finite graph ∆ there exists a graph Γ that is locally ∆. In
general, this question is undecidable (Bulitko [14]). It is unknown whether the
problem restricted to finite Γ is also undecidable.

More generally, one wants to classify all such graphs Γ. Hall [19] determines
the possible Γ for all graphs ∆ on at most 6 vertices. For some ∆ a graph Γ
that is locally ∆ is necessarily infinite.

Weetman [28,29] constructs infinite locally ∆ graphs for ∆ of girth at least
6, and proves a diameter bound in certain other cases.

There is a large literature, see e.g. [1–15,18–30].

2 Locally Kneser graphs
The Kneser graph K(n, d) (where 0 ≤ d ≤ n) is the graph on the d-subsets of
an n-set, adjacent when disjoint.

Hall [20] shows that for n ≥ 3d + 1 any connected locally K(n, d) graph is
isomorpic to K(n+ d, d), and wonders whether this bound can be improved.

In fact there are further examples for n = 3d: The graph on the 2n−1 even
weight binary vectors of length n, adjacent when their difference has weight 2d
is locally K(n, d) and different from K(n + d, d) (for d > 1). It follows that
Hall’s bound is best possible.

For n = 2d + 1, d ≥ 3, the graph K(n, d) has girth 6, so that there exist
infinite locally K(n, d) graphs by Weetman [28].

There are three locally K(5, 2) graphs, on 21, 63, and 65 vertices (Hall [18]).
Note that K(5, 2) is the Petersen graph.
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There are three locallyK(6, 2) graphs, on 28, 32, and 36 vertices (Buekenhout
& Hubaut [10]). Note that K(6, 2) is the collinearity graph of the generalized
quadrangle of order 2.

As we saw, there are infinite locally K(7, 3) graphs. (Are there also finite
examples?)

The graph on the elliptic lines in the O−8 (2) geometry, adjacent when or-
thogonal, is locally K(8, 3). The automorphism group is O−8 (2):2, with point
stabilizer S3 × S8. Diagram:
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See also [16].

As we saw, the graph on the 256 binary even weight vectors of length 9,
adjacent when they have distance 6, is locally K(9, 3). Diagram:
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It can be shown using the arguments from [29] that a locally K(9, 3) graph
is necessarily finite. (Is the same true for all locally K(3d, d) graphs?)

The bimonsterG = M wr 2 (whereM is the monster) contains a S5-subgroup
S whose centralizer is a subgroup S12 in which a 7-point stabilizer is conjugate
to S, see [17]. Let Γ be the graph on the S5-subgroups of G conjugate to S,
adjacent when they commute. Then Γ is locally K(12, 5).

3 Locally λ = 1 graphs
Let ∆ be a graph in which every edge is in a unique triangle (so that ∆ is the
collinearity graph of a partial linear space with lines of size 3). The Kneser
graphs K(3d, d) are examples of such graphs. We study locally ∆ graphs. The
special case where ∆ is the line graph of the Petersen graph was studied in [6].

Given a partial linear space (X,L) with lines of size 3, let G be the group

G = 〈X | x2 = 1 = xyz for all x ∈ X and {x, y, z} ∈ L〉.

Suppose A,B are two disjoint hyperplane complements in (X,L), so that each
line meets A and B in 0 or 2 points. Then the map that sends the elements of A,
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B, X \ (A ∪ B) to a, b, and 1, respectively, is a map from G onto the infinite group
〈a, b | a2 = b2 = 1〉, so that G is infinite.

Given a subgroup H of G, let Γ = Γ(G,H,X) be the graph that has as
vertices the cosets gH for g ∈ G, and adjacencies g1H ∼ g2H when g−1

2 g1 ∈
HXH. Assume that H is normal in G. Now the neighbours of gH are the
vertices gxH for x ∈ X. The group G acts vertex transitively on Γ. The local
graph induced on the set of neighbours of the vertex H of Γ has vertex set
{xH | x ∈ X}, and if {x, y, z} is a line, then xy = z in G, so that xH ∼ yH.
It follows that x 7→ xH is a homomorphism from the collinearity graph ∆ of
(X,L) onto the Γ-neighbourhood of H.

Is this map injective? Suppose H is contained in the commutator subgroup
G′ of G. Then Γ(G,H,X) has quotient Γ(G,G′, X) and the latter can be
identified with the Cayley graph with difference set X in the F2-vector space
〈X | x+ y + z = 0 for {x, y, z} ∈ L〉. If N is the point-line incidence matrix of
(X,L), then this is 〈X〉/N〈L〉, where cosets at Hamming distance 1 are adjacent.
Two points remain distinct in the quotient if the column space of N does not
contain vectors of weight 2. No additional adjacencies are introduced if the
columns of N are the only vectors of weight 3 in the column space of N .

For these latter two conditions to hold, it suffices that for any two distinct
points, and for any three pairwise noncollinear points, (X,L) has a geometric
hyperplane missing precisely one of these points.

If these conditions hold, Γ is locally ∆.

Examples
We construct Γ = Γ(G,G′, X) for a number of spaces (X,L) with lines of size 3.
Note that V = G/G′ is a binary vector space. In all cases except d), the graph
Γ is locally ∆, where ∆ is the collinearity graph of (X,L).

∆ parameters |G| dim V v k d rk Aut Γ
a) GQ(2, 1) srg(9, 4, 1, 2) 16 4 16 9 2 3 [27.32]
b) GQ(2, 2) srg(15, 6, 1, 3) 32 5 32 15 3 4 25:S6

c) GQ(2, 4) srg(27, 10, 1, 5) 64 6 64 27 2 3 26:O−6 (2)
d) V O−4 (3) srg(81, 20, 1, 6) 1 0 -
e) L(K(5, 2)) {4, 2, 1; 1, 1, 4} ∞ 6 64 15 3 6 26:S5

f) GH(2, 1) {4, 2, 2; 1, 1, 2} ∞ 8 256 21 3 7 28:PGL(3, 2)
g) GH(2, 2) {6, 4, 4; 1, 1, 1} ∞ 14 16384 63 4 15 214:G2(2)
g′) GH(2, 2) {6, 4, 4; 1, 1, 1} ∞ 14 16384 63 6 26 214:G2(2)
h) 33 {6, 4, 2; 1, 2, 3} 512 8 256 27 3 6 [212.34]
i) 34 {8, 6, 4, 2; 1, 2, 3, 4} 16 65536 81 6 30 [223.35]
j) GO(2, 1) {4, 2, 2, 2; 1, 1, 1, 2} ∞ 16 65536 45 6 93 216:M10

k) 3S6 {6, 4, 2, 1; 1, 1, 4, 6} ∞ 11 2048 45 5 16 25:(26:3.S6)
l) K(9, 3) (v, k)∆ = (84, 20) 256 8 256 84 3 5 28:S9

m) K(12, 4) (v, k)∆ = (495, 70) 2048 11 2048 495 3 7 211:S12

We give the parameters for a strongly regular graph as srg(v, k, λ, µ), and
for a distance-regular graph of diameter at least 3 as {b0, . . . , bd−1; c1, . . . , cd}
(cf. [5]). In cases a), b), the graphs ∆ are 32 and K(6, 2). In cases a), b), and
c), the graphs Γ are V O+

4 (2), T∆, and V O−6 (2) (with notation as in [7]).
Cases g) and g′) are the dual Cayley and the Cayley generalized hexagon,

respectively. For the former Γ has diameter 4 and Aut Γ has trivial center, for
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the latter Γ is antipodal of diameter 6 and Aut Γ has a center of order 2 that
interchanges antipodes.

In case h) the diagram is
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Cases b), l), and m) suggest that for K(3d, d) the group G is elementary
abelian of order 23d−1, and this is indeed easy to prove.1 Thus, for each d this
approach yields only a single graph Γ that is locally K(3d, d).
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