Locally Paley graphs

aeb
2022-12-01

Let Π be a graph. A graph Γ is called locally Π if the neighbourhood of every vertex in Γ is isomorphic to Π. For the classification it suffices to classify connected locally Π graphs.

Let $q=4 t+1$ be a prime power. Let $\Pi=\Pi^{(q)}$ be the Paley graph of order q. The locally Π graphs have been classified. If $q=9$ there are two examples, on 16 and 20 vertices, while for all other q there is a unique example, on $2 q+2$ vertices.

Where is the proof of this statement? For $q=5$ the Paley graph is the pentagon, and the unique locally pentagon graph is the icosahedron. For $q=9$ the Paley graph is the 3×3 grid, which is a generalized quadrangle. The classification was given by Buekenhaut \& Hubaut [2]. Dominique Buset told me [3] that she had classified the possibilities for $13 \leq q \leq 41$, and that the details would appear in her thesis. For $q>41$, I did the classification in [1], modulo a hypothesis on the automorphism group of the local graph of Π, that was subsequently proved by Muzychuk \& Kovács [5]. So, the classification is complete. Except that Sergey Goryainov provided me with a copy of Buset's thesis [4] yesterday, and the case $q=41$ is not treated there. So perhaps one should check this case, just to be sure.

Read [1] until the point in Section 5 where the case is considered in which the graph Γ has four distinct points ∞, x, a, a_{x}, where $a_{x} \sim \infty \sim x \sim a$ and $a \nsim \infty$ and $a_{x} \nsim x$, with the property that $\{\infty, a, x\}^{\perp}=\left\{\infty, a_{x}, x\right\}^{\perp}$.
(Notation: \sim denotes adjacency, and if A is a set of vertices then A^{\perp} denotes the set of vertices adjacent to each vertex in A.)

Pick $p \in\{\infty, a, x\}^{\perp}$. Its neighbourhood $\Gamma(p)$ is a Paley graph $\Pi^{(q)}$ in which the triples of vertices $\{\infty, a, x\}$ and $\left\{\infty, a_{x}, x\right\}$ have precisely the same neighbours, so that no vertex of $\Gamma(p)$ is adjacent to ∞, a, x but not to a_{x}. But that is impossible for $q>81$ and also for $q=49,61,73,81$, see Lemma 3.2 of [1] and the subsequent discussion. If $q=53$ or $q=41$ or $q=37$ or $q=25$ this situation occurs only for 4 -sets $\left\{\infty, a, a_{x}, x\right\}$ with precisely $4,3,3,2$ common neighbours, respectively, so that the μ-graph $\left\{\infty, x, a_{x}\right\}^{\perp}$ in $\Gamma(\infty)$ is regular of this valency. But $\Pi^{(q)}$ does not have regular μ-graphs. It follows that $q \in\{13,17,29\}$.

So, the same argument that was used in [1] for $q=53$ also works for $q=41$ (and for $q=37$), and there is no missing case.

References

[1] A. E. Brouwer, Locally Paley graphs, Des. Codes Cryptogr. 21 (2000) 6976.
[2] F. Buekenhaut \& X. Hubaut, Locally polar spaces and related rank 3 groups, J. Algebra 45 (1977) 391-434.
[3] D. Buset, letter dd 1996-08-11.
[4] D. Buset, Quelques conditions locales et extrémales en théorie des graphes, Ph. D. Thesis, Université Libre de Bruxelles, December 1997.
[5] M. Muzychuk \& I. Kovács, A solution of a problem of A. E. Brouwer, Des. Codes Cryptogr. 34 (2005) 249-264.

