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Consider the Paley graph Γ of order q2, where q is an odd prime power. The
vertex set is the field K = Fq2 . Two vertices are adjacent when they differ by a
nonzero square in K. The graph Γ is self-complementary, and strongly regular
with parameters (v, k, λ, µ) = (q2, 12 (q2 − 1), 14 (q2 − 5), 14 (q2 − 1)).

Let F = Fq be the subfield of order q. It induces a clique, and by Blokhuis [2]
all q-cliques in Γ look like this: they are affine images of a line in K, considered
as affine plane over F .

Let mq = 1
2 (q + 1) if q ≡ 1 (mod 4), and mq = 1

2 (q + 3) if q ≡ 3 (mod 4).
Baker et al. [1] construct maximal cliques of size mq and conjecture that there
are no maximal cliques of size strictly between mq and q. (We checked that this
is true for q < 250).

The clique F meets the Hoffman bound, so that each vertex outside is adjacent to precisely
1
2

(q − 1) vertices inside F . Let z ∈ K \ F . Let S = Γ(z) ∩ F . If q ≡ 1 (mod 4), then S ∪ {z}
is a maximal clique in Γ of size 1

2
(q + 1), and if q ≡ 3 (mod 4), then S ∪ {z, zq} is a maximal

clique in Γ of size 1
2

(q + 3). Details below.

Goryainov et al. [6] checked that the number of orbits of maximal cliques of
size mq equals 2 for 25 ≤ q ≤ 83, and gave a second construction for cliques of
this size. Goryainov et al. [7] gave a correspondence between the two classes of
maximal cliques of size mq.

(Let ∆ = Γ(0) be the subgraph induced on the neighbours of 0. For q > 9, the automor-
phism group Aut(∆) of ∆ is twice as large as the stabilizer of 0 in Aut(Γ) (cf. [3, 9]) since
also x 7→ x−1 is an automorphism of ∆. This gives the stated correspondence.)

0.1 Details

Let q = pe, where p is an odd prime.

Proposition 0.1 (Baker et al. [1]) Let γ ∈ K \ F and let S := Γ(γ) ∩ F .
For q ≡ 1 (mod 4) the set S ∪ {γ} is a maximal clique of size 1

2 (q + 1). For
q ≡ 3 (mod 4) the set S ∪ {γ, γq} is a maximal clique of size 1

2 (q + 3).

Proof. Since F is a clique, S ∪ {γ} is a clique.
Let β be primitive in K, and put ξ = γq − γ. Then ξq = −ξ. If ξ = βi then

i ≡ 1
2 (q+1) (mod q+1), so that ξ is a square in K (and γ ∼ γq) precisely when

q ≡ 3 (mod 4).
Let ε = β(q+1)/2. Then εq = −ε and K = {x + yε | x, y ∈ F}. An element

ξ = x+ yε is a nonzero square in K if and only if N(ξ) = ξq+1 = x2 − dy2 is a
nonzero square in F , where d := ε2 ∈ F .
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The maps ξ 7→ aξ + b with a, b ∈ F , a 6= 0 preserve Γ and F , commute with
ξ 7→ ξq, and K \ F is a single orbit under the group they generate. So we may
take γ = ε. Then S = −S. If η ∈ K \ F is adjacent to all of S ∪ {γ}, then
S = Γ(η) ∩ F . For η = aγ + b with a, b ∈ F , a 6= 0, we find S = aS + b. The
commutator of ξ 7→ aξ + b and ξ 7→ −ξ is ξ 7→ ξ + 2b

a , but |S| is not a multiple
of p, so b = 0. Now η ∼ γ when (a − 1)γ is a square in K, that is, when γ is
a square in K, that is, when q ≡ 3 (mod 4). If this is the case, then 0 ∈ S.
The order i of a divides q − 1. Let r be a prime divisor of i. The set S \ {0} of
size (q + 1)/2 is invariant for multiplication by the element ai/r of prime order
r dividing q − 1. It follows that r = 2 and i = 2 (since 4 - (q − 1)) and a = −1,
so that η = −γ = γq. 2

For q > 7, these maximal cliques have stabilizers (in Aut Γ) of order 2e if
q ≡ 1 (mod 4), and 4e if q ≡ 3 (mod 4).

Let C be a maximal clique containing 0. Then, since ξ 7→ ξ−1 is an auto-
morphism of ∆ = Γ(0), also the set C ′ = {0}∪ {c−1 | c ∈ C \ {0}} is a maximal
clique, of the same size as C.

There is a more symmetric description of these latter cliques.

Proposition 0.2 (Goryainov et al. [6]) Let β be primitive in K, and put ω :=
βq−1. Let Q0 := 〈ω2〉. If q ≡ 1 (mod 4) the set Q0 is a maximal coclique of
size (q + 1)/2. If q ≡ 3 (mod 4) the set Q0 ∪ {0} is a maximal clique of size
(q + 3)/2.

Proof. Put ε = β(q+1)/2, so that εq = −ε. Then N(x+ yε) = x2 − dy2 where
d = ε2 ∈ F . We see that 〈ω〉 is the set of points on the conic x2 − dy2 = 1, and
Q0 consists of half of the points on this conic. Let ωi = x + yε with x, y ∈ F .
Then N(ω2i−1) = ((x+yε)2−1)((x−yε)2−1) = −4dy2. Since −d is a square
in F if and only if q ≡ 3 (mod 4), the given sets are (co)cliques as claimed.
Maximality follows from the following proposition. 2

For q ≥ 5, these maximal cliques have stabilizers (in Aut Γ) of order e(q+1).

Proposition 0.3 (Goryainov et al. [7]) The map ξ 7→ ε−1(1 + 2
ξ−1 ), 1 7→ ε−1

maps Q0 (resp. Q0 ∪ {0}) onto S ∪ {γ} (resp. S ∪ {γ, γq}), where γ = ε−1 and
S = Γ(γ) ∩ F .

Proof. The given map maps 0, 1, η = x + yε ∈ 〈ω〉 to −ε−1, ε−1, and y
x−1 ,

respectively. Let C be a maximal (co)clique containingQ0 (resp.Q0∪{0}). Then
1 ∈ C, so ξ 7→ 1

ξ−1 and ξ 7→ 1+ 2
ξ−1 preserve adjacency on C, so ξ 7→ ε−1(1+ 2

ξ−1 )

flips or preserves adjacency when q ≡ 1 (mod 4) or q ≡ 3 (mod 4). 2

Conjecture For q ≥ 25 the maximal cliques from Propositions 0.1 and 0.2 are
all the 2nd largest cliques of Γ.

Given two adjacent vertices, the line in AG(2, q) they determine is a q-clique.
Each point is on q+1

2 such ‘quadratic lines’. Thus, cliques in Γ are subsets of

AG(2, q) that determine at most q+1
2 directions. Szőnyi [12] and Sziklai [11]

give some information.
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0.2 Numerical data

The table below gives the sizes of the maximal cliques in Paley(q2) for q ≤ 47. Exponents are
the number of nonequivalent orbits of this size under the full group of the graph.

q sizes

3 31

5 31, 51

7 51, 71

9 53, 91

11 73, 111

13 510, 74, 131

17 53, 741, 99, 171

19 725, 87, 917, 114, 191

23 785, 8108, 980, 107, 119, 134, 231

25 7405, 8226, 949, 132, 251

27 727, 8411, 9142, 1050, 1112, 152, 271

29 7410, 81584, 92104, 10148, 1146, 131, 152, 291

31 760, 82004, 92734, 10933, 11199, 1226, 1346, 172, 311

37 7103, 82505, 921556, 1014002, 115712, 12219, 13222, 192, 371

41 7168, 87801, 9104495, 1062070, 119583, 12149, 13128, 1419, 212, 411

43 715, 81748, 954700, 10109127, 1154759, 129785, 131490, 14156, 1587, 1720, 232, 431

47 712, 81097, 9125545, 10434029, 11210725, 1228533, 134904, 14628, 15230, 1627, 1750, 252, 471

For q ≡ 3 (mod 4), this confirms the values from Kiermaier & Kurz [8].

The table below gives the same information for the smallest maximal cliques for q ≤ 73.

q 3 5 7 9 11 13 17 19 23 25 27 29

size 31 31 51 53 73 510 53 725 785 7405 727 7410

q 31 37 41 43 47 49 53 59 61 67 71 73

size 760 7103 7168 715 712 72 8455 8113 71 89 9119319 9187566

0.3 The Taylor extension

Given a strongly regular graph Γ on v vertices with k = 2µ, its Taylor extension
Σ is a distance-regular graph on 2(v+ 1) vertices with intersection array {v, v−
k − 1, 1; 1, v − k − 1, v} (cf. [4, §1.5], [5, §1.2.7]), an antipodal 2-cover of the
complete graph Kv+1.

For the Paley graph of order r, the Taylor extension is distance-transitive
on 2(r + 1) vertices, with automorphism group 2×PΣL2(r) (cf. [4, p. 228]). It
follows that the maximal cliques in Σ have sizes that are 1 larger than those in
Γ, while the number of orbits is smaller. Below a table for r = q2, q ≤ 47.

We see that the extra automorphisms of ∆ = Γ(0) are those flipping the edge 0∞, for
Γ = Σ(∞).

q sizes

3 41

5 41, 61

7 61, 81

9 62, 101

11 82, 121

13 66, 82, 141

17 62, 814, 104, 181

19 88, 92, 105, 123, 201

23 822, 916, 1015, 111, 124, 142, 241

25 884, 929, 1015, 141, 261

27 86, 950, 1024, 118, 126, 161, 281

29 885, 9180, 10307, 1118, 1211, 141, 161, 301

31 817, 9232, 10324, 1196, 1243, 133, 1413, 181, 321

37 831, 9281, 102471, 111288, 12640, 1321, 1436, 201, 381

41 842, 9871, 1011298, 115705, 121003, 1317, 1429, 153, 221, 421

43 87, 9196, 105715, 1110050, 124935, 13840, 14182, 1515, 1619, 185, 241, 441

47 85, 9125, 1012980, 1139699, 1218351, 132388, 14516, 1560, 1638, 173, 1812, 261, 481
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0.4 Peisert graphs

Peisert [10] characterized symmetric self-complementary graphs, and found (i)
the Paley graphs on q vertices, q ≡ 1 (mod 4) a prime power, and (ii) the
graphs that are now called the Peisert graphs (of order q2 = p2e, p ≡ 3 (mod 4),
where two vertices are joined when their difference is βi with i ≡ 0, 1 (mod 4),
β primitive in Fq2), and (iii) one further graph on 232 vertices. For this last
graph, see [5, §10.70]. Sizes of cliques in small Peisert graphs (with number of
orbits):

q sizes

3 31

7 41, 71

9 51, 91

11 57, 62, 111

19 61, 769, 840, 927, 103, 191

23 61, 7222, 8442, 9186, 1022, 111, 121, 231

27 7205, 8809, 9273, 1016, 112, 141, 271

31 7157, 86099, 97998, 101629, 11113, 1211, 1311, 161, 311

43 72, 84495, 9121241, 10258708, 11121126, 1221011, 132196, 14195, 1545, 1619, 178, 221, 431

If q ≡ 3 (mod 4), the subfield Fq of Fq2 consists of (q + 1)-th powers, so certainly of 4th
powers, and hence induces a clique of size q (reaching the Hoffman bound). A vertex outside
has q−1

2
neighbors inside, yielding a q+1

2
-clique.
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