Maximal cliques in the Paley graph of square order

aeb

September 22, 2022

Consider the Paley graph Γ of order q^2 , where q is an odd prime power. The vertex set is the field $K = \mathbb{F}_{q^2}$. Two vertices are adjacent when they differ by a nonzero square in K. The graph Γ is self-complementary, and strongly regular with parameters $(v, k, \lambda, \mu) = (q^2, \frac{1}{2}(q^2 - 1), \frac{1}{4}(q^2 - 5), \frac{1}{4}(q^2 - 1))$.

Let $F = \mathbb{F}_q$ be the subfield of order q. It induces a clique, and by Blokhuis [2] all q-cliques in Γ look like this: they are affine images of a line in K, considered as affine plane over F.

Let $m_q = \frac{1}{2}(q+1)$ if $q \equiv 1 \pmod{4}$, and $m_q = \frac{1}{2}(q+3)$ if $q \equiv 3 \pmod{4}$. Baker et al. [1] construct maximal cliques of size m_q and conjecture that there are no maximal cliques of size strictly between m_q and q. (We checked that this is true for q < 250).

The clique F meets the Hoffman bound, so that each vertex outside is adjacent to precisely $\frac{1}{2}(q-1)$ vertices inside F. Let $z \in K \setminus F$. Let $S = \Gamma(z) \cap F$. If $q \equiv 1 \pmod{4}$, then $S \cup \{z\}$ is a maximal clique in Γ of size $\frac{1}{2}(q+1)$, and if $q \equiv 3 \pmod{4}$, then $S \cup \{z, z^q\}$ is a maximal clique in Γ of size $\frac{1}{2}(q+3)$. Details below.

Goryainov et al. [6] checked that the number of orbits of maximal cliques of size m_q equals 2 for $25 \le q \le 83$, and gave a second construction for cliques of this size. Goryainov et al. [7] gave a correspondence between the two classes of maximal cliques of size m_q .

(Let $\Delta = \Gamma(0)$ be the subgraph induced on the neighbours of 0. For q > 9, the automorphism group Aut(Δ) of Δ is twice as large as the stabilizer of 0 in Aut(Γ) (cf. [3, 9]) since also $x \mapsto x^{-1}$ is an automorphism of Δ . This gives the stated correspondence.)

0.1 Details

Let $q = p^e$, where p is an odd prime.

Proposition 0.1 (Baker et al. [1]) Let $\gamma \in K \setminus F$ and let $S := \Gamma(\gamma) \cap F$. For $q \equiv 1 \pmod{4}$ the set $S \cup \{\gamma\}$ is a maximal clique of size $\frac{1}{2}(q+1)$. For $q \equiv 3 \pmod{4}$ the set $S \cup \{\gamma, \gamma^q\}$ is a maximal clique of size $\frac{1}{2}(q+3)$.

Proof. Since F is a clique, $S \cup \{\gamma\}$ is a clique.

Let β be primitive in K, and put $\xi = \gamma^q - \gamma$. Then $\xi^q = -\xi$. If $\xi = \beta^i$ then $i \equiv \frac{1}{2}(q+1) \pmod{q+1}$, so that ξ is a square in $K \pmod{\gamma \sim \gamma^q}$ precisely when $q \equiv 3 \pmod{4}$.

Let $\varepsilon = \beta^{(q+1)/2}$. Then $\varepsilon^q = -\varepsilon$ and $K = \{x + y\varepsilon \mid x, y \in F\}$. An element $\xi = x + y\varepsilon$ is a nonzero square in K if and only if $N(\xi) = \xi^{q+1} = x^2 - dy^2$ is a nonzero square in F, where $d := \varepsilon^2 \in F$.

The maps $\xi \mapsto a\xi + b$ with $a, b \in F$, $a \neq 0$ preserve Γ and F, commute with $\xi \mapsto \xi^q$, and $K \setminus F$ is a single orbit under the group they generate. So we may take $\gamma = \varepsilon$. Then S = -S. If $\eta \in K \setminus F$ is adjacent to all of $S \cup \{\gamma\}$, then $S = \Gamma(\eta) \cap F$. For $\eta = a\gamma + b$ with $a, b \in F$, $a \neq 0$, we find S = aS + b. The commutator of $\xi \mapsto a\xi + b$ and $\xi \mapsto -\xi$ is $\xi \mapsto \xi + \frac{2b}{a}$, but |S| is not a multiple of p, so b = 0. Now $\eta \sim \gamma$ when $(a - 1)\gamma$ is a square in K, that is, when γ is a square in K, that is, when $q \equiv 3 \pmod{4}$. If this is the case, then $0 \in S$. The order i of a divides q - 1. Let r be a prime divisor of i. The set $S \setminus \{0\}$ of size (q + 1)/2 is invariant for multiplication by the element $a^{i/r}$ of prime order r dividing q - 1. It follows that r = 2 and i = 2 (since $4 \nmid (q - 1)$) and a = -1, so that $\eta = -\gamma = \gamma^q$.

For q > 7, these maximal cliques have stabilizers (in Aut Γ) of order 2e if $q \equiv 1 \pmod{4}$, and 4e if $q \equiv 3 \pmod{4}$.

Let C be a maximal clique containing 0. Then, since $\xi \mapsto \xi^{-1}$ is an automorphism of $\Delta = \Gamma(0)$, also the set $C' = \{0\} \cup \{c^{-1} \mid c \in C \setminus \{0\}\}$ is a maximal clique, of the same size as C.

There is a more symmetric description of these latter cliques.

Proposition 0.2 (Goryainov et al. [6]) Let β be primitive in K, and put $\omega := \beta^{q-1}$. Let $Q_0 := \langle \omega^2 \rangle$. If $q \equiv 1 \pmod{4}$ the set Q_0 is a maximal coclique of size (q+1)/2. If $q \equiv 3 \pmod{4}$ the set $Q_0 \cup \{0\}$ is a maximal clique of size (q+3)/2.

Proof. Put $\varepsilon = \beta^{(q+1)/2}$, so that $\varepsilon^q = -\varepsilon$. Then $N(x+y\varepsilon) = x^2 - dy^2$ where $d = \varepsilon^2 \in F$. We see that $\langle \omega \rangle$ is the set of points on the conic $x^2 - dy^2 = 1$, and Q_0 consists of half of the points on this conic. Let $\omega^i = x + y\varepsilon$ with $x, y \in F$. Then $N(\omega^{2i}-1) = ((x+y\varepsilon)^2-1)((x-y\varepsilon)^2-1) = -4dy^2$. Since -d is a square in F if and only if $q \equiv 3 \pmod{4}$, the given sets are (co)cliques as claimed. Maximality follows from the following proposition.

For $q \ge 5$, these maximal cliques have stabilizers (in Aut Γ) of order e(q+1).

Proposition 0.3 (Goryainov et al. [7]) The map $\xi \mapsto \varepsilon^{-1}(1 + \frac{2}{\xi-1}), 1 \mapsto \varepsilon^{-1}$ maps Q_0 (resp. $Q_0 \cup \{0\}$) onto $S \cup \{\gamma\}$ (resp. $S \cup \{\gamma, \gamma^q\}$), where $\gamma = \varepsilon^{-1}$ and $S = \Gamma(\gamma) \cap F$.

Proof. The given map maps 0, 1, $\eta = x + y\varepsilon \in \langle \omega \rangle$ to $-\varepsilon^{-1}$, ε^{-1} , and $\frac{y}{x-1}$, respectively. Let *C* be a maximal (co)clique containing Q_0 (resp. $Q_0 \cup \{0\}$). Then $1 \in C$, so $\xi \mapsto \frac{1}{\xi-1}$ and $\xi \mapsto 1 + \frac{2}{\xi-1}$ preserve adjacency on *C*, so $\xi \mapsto \varepsilon^{-1}(1 + \frac{2}{\xi-1})$ flips or preserves adjacency when $q \equiv 1 \pmod{4}$ or $q \equiv 3 \pmod{4}$.

Conjecture For $q \ge 25$ the maximal cliques from Propositions 0.1 and 0.2 are all the 2nd largest cliques of Γ .

Given two adjacent vertices, the line in AG(2, q) they determine is a q-clique. Each point is on $\frac{q+1}{2}$ such 'quadratic lines'. Thus, cliques in Γ are subsets of AG(2, q) that determine at most $\frac{q+1}{2}$ directions. Szőnyi [12] and Sziklai [11] give some information.

0.2 Numerical data

The table below gives the sizes of the maximal cliques in $\text{Paley}(q^2)$ for $q \leq 47$. Exponents are the number of nonequivalent orbits of this size under the full group of the graph.

qsizes 3^1 3 5 $3^1, 5^1$ $5^1, 7^1$ 7 $5^3, 9^1$ 9 11 $7^3, 11^1$ (7, 11) $(5^{10}, 7^4, 13^1)$ $(5^3, 7^{41}, 9^9, 17^1)$ $(7^{25}, 8^7, 9^{17}, 11^4, 19^1)$ 131719 7^{85} , 8^{108} , 9^{80} , 10^7 , 11^9 , 13^4 , 23^1 23 $7^{405}, 8^{226}, 9^{49}, 13^2, 25^1$ $7^{27}, 8^{411}, 9^{142}, 10^{50}, 11^{12}, 15^2, 27^1$ 2527 $\begin{array}{c} 7^{21}, 8^{210}, 9^{212}, 10^{-3}, 11^{-1}, 13^{-1}, 24^{-1} \\ 7^{410}, 8^{1584}, 9^{2104}, 10^{148}, 11^{46}, 13^{1}, 15^{2}, 29^{1} \\ 7^{60}, 8^{2004}, 9^{2734}, 10^{933}, 11^{199}, 12^{26}, 13^{46}, 17^{2}, 31^{1} \\ 7^{103}, 8^{2505}, 9^{21556}, 10^{14002}, 11^{5712}, 12^{219}, 13^{222}, 19^{2}, 37^{1} \\ 7^{103}, 8^{100}, 9^{1000}, 10^{1000}, 11^{100$ 293137 $\begin{array}{c} 7168, 8260, 921005, 10^{-1022}, 11^{-112}, 12^{-12}, 13^{-12}, 19, 57\\ 7168, 87801, 9104495, 1062070, 119583, 12149, 13128, 14^{19}, 21^2, 411\\ 715, 81748, 954700, 10109127, 1154759, 129785, 131490, 14^{156}, 1587, 17^{20}, 23^2, 431\\ 71^2, 8^{1097}, 9^{125545}, 10^{434029}, 11^{210725}, 12^{28533}, 13^{4904}, 14^{628}, 15^{230}, 16^{27}, 17^{50}, 25^2, 47^1 \end{array}$ 41 43 47

For $q \equiv 3 \pmod{4}$, this confirms the values from Kiermaier & Kurz [8].

The table below gives the same information for the smallest maximal cliques for $q \leq 73$.

												27	29
siz	e 3	1	3^{1}	5^{1}	5^{3}	7^{3}	5^{10}	5^{3}	7^{25}	7^{85}	7^{405}	7^{27}	7^{410}
												71	
siz	$\approx 7^6$	50	7^{103}	7^{168}	7^{15}	7^{12}	7^{2}	8^{455}	8^{113}	7^{1}	8^{9}	9^{119319}	9^{187566}

0.3 The Taylor extension

Given a strongly regular graph Γ on v vertices with $k = 2\mu$, its Taylor extension Σ is a distance-regular graph on 2(v+1) vertices with intersection array $\{v, v - k - 1, 1; 1, v - k - 1, v\}$ (cf. [4, §1.5], [5, §1.2.7]), an antipodal 2-cover of the complete graph K_{v+1} .

For the Paley graph of order r, the Taylor extension is distance-transitive on 2(r+1) vertices, with automorphism group $2 \times P \Sigma L_2(r)$ (cf. [4, p. 228]). It follows that the maximal cliques in Σ have sizes that are 1 larger than those in Γ , while the number of orbits is smaller. Below a table for $r = q^2$, $q \leq 47$.

We see that the extra automorphisms of $\Delta = \Gamma(0)$ are those flipping the edge 0∞ , for $\Gamma = \Sigma(\infty)$.

q	sizes
0	41

3	4 ¹
5	$4^1, 6^1$
7	$6^1, 8^1$
9	$6^2, 10^1$
11	$8^2, 12^1$
13	$6^6, 8^2, 14^1$
17	$6^2, 8^{14}, 10^4, 18^1$
19	$8^8, 9^2, 10^5, 12^3, 20^1$
23	$8^{22}, 9^{16}, 10^{15}, 11^1, 12^4, 14^2, 24^1$
25	$8^{84}, 9^{29}, 10^{15}, 14^1, 26^1$
27	$8^6, 9^{50}, 10^{24}, 11^8, 12^6, 16^1, 28^1$
29	$8^{85}, 9^{180}, 10^{307}, 11^{18}, 12^{11}, 14^1, 16^1, 30^1$
31	$8^{17}, 9^{232}, 10^{324}, 11^{96}, 12^{43}, 13^3, 14^{13}, 18^1, 32^1$
37	$8^{31}, 9^{281}, 10^{2471}, 11^{1288}, 12^{640}, 13^{21}, 14^{36}, 20^1, 38^1$
41	$8^{42}, 9^{871}, 10^{11298}, 11^{5705}, 12^{1003}, 13^{17}, 14^{29}, 15^3, 22^1, 42^1$
43	$8^7, 9^{196}, 10^{5715}, 11^{10050}, 12^{4935}, 13^{840}, 14^{182}, 15^{15}, 16^{19}, 18^5, 24^1, 44^1$
4	

0.4 Peisert graphs

Peisert [10] characterized symmetric self-complementary graphs, and found (i) the Paley graphs on q vertices, $q \equiv 1 \pmod{4}$ a prime power, and (ii) the graphs that are now called the Peisert graphs (of order $q^2 = p^{2e}, p \equiv 3 \pmod{4}$), where two vertices are joined when their difference is β^i with $i \equiv 0, 1 \pmod{4}$, β primitive in \mathbb{F}_{q^2}), and (iii) one further graph on 23² vertices. For this last graph, see [5, §10.70]. Sizes of cliques in small Peisert graphs (with number of orbits):

q sizes

 3^1 3 $4^1, 7^1$ 7

 $5^1, 9^1$ 9

 $5^7, 6^2, 11^1$ 11

 $6^1, 7^{69}, 8^{40}, 9^{27}, 10^3, 19^1$ 19

- $\begin{array}{c} 13 \\ 13 \\ 23 \\ 6^1, 7^{222}, 8^{442}, 9^{186}, 10^{22}, 11^1, 12^1, 23^1 \\ 27 \\ 7^{205}, 8^{809}, 9^{273}, 10^{16}, 11^2, 14^1, 27^1 \\ 31 \\ 7^{157}, 8^{6099}, 9^{7998}, 10^{1629}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 9^{1098}, 10^{1629}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 9^{1098}, 10^{1629}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 9^{1098}, 10^{1629}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{1099}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{157}, 8^{199}, 11^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 12^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 13^{11}, 15^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 13^{11}, 15^{11}, 13^{11}, 16^1, 31^1 \\ 7^{113}, 13^{11}, 15^{11}, 13^{11}, 15^{11}, 13^{11}, 15^{11$
- $\begin{array}{c} 1 \\ 43 \\ 7^{2}, 8^{4495}, 9^{121241}, 10^{258708}, 11^{121126}, 12^{21011}, 13^{2196}, 14^{195}, 15^{45}, 16^{19}, 17^{8}, 22^{1}, 43^{11}, 13^{11},$

If $q \equiv 3 \pmod{4}$, the subfield \mathbb{F}_q of \mathbb{F}_{q^2} consists of (q+1)-th powers, so certainly of 4th powers, and hence induces a clique of size q (reaching the Hoffman bound). A vertex outside has $\frac{q-1}{2}$ neighbors inside, yielding a $\frac{q+1}{2}$ -clique.

References

- [1] R. D. Baker, G. L. Ebert, J. Hemmeter & A. J. Woldar, Maximal cliques in the Paley graph of square order, J. Statist. Plann. Inference 56 (1996) 33-38.
- [2] A. Blokhuis, On subsets of $GF(q^2)$ with square differences, Indag. Math. 46 (1984) 369-372.
- [3] A. E. Brouwer, Locally Paley graphs, Des. Codes Cryptogr. 21 (2000) 69–76.
- [4] A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-regular graphs, Springer, 1989.
- [5] A. E. Brouwer & H. Van Maldeghem, Strongly regular graphs, Cambridge Univ. Press, 2022.
- [6] S. Goryainov, V. V. Kabanov, L. Shalaginov & A. Valuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields Appl. 52 (2018) 361-369.
- [7] S. Goryainov, A. Masley & L. Shalaginov, On a correspondence between maximal cliques in Paley graphs of square order, Discr. Math. 345 (2022) 112853.
- [8] M. Kiermaier & S. Kurz, Maximal integral point sets in affine planes over finite fields, Discr. Math. 309 (2009) 4564-4575.
- [9] M. Muzychuk & I. Kovács, A solution of a problem of A. E. Brouwer, Des. Codes Cryptogr. 34 (2005) 249-264.
- [10] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001) 209-229.
- [11] P. Sziklai, On subsets of $GF(q^2)$ with dth power differences, Discr. Math. 208/209 (1999) 547–555.
- [12] T. Szőnyi, On the number of directions determined by a set of points in an affine Galois plane, J. Combin. Th. (A) 74 (1996) 141-146.