Maximal cliques in the Paley graph of square order

aeb

September 22, 2022

Consider the Paley graph Γ of order q^{2}, where q is an odd prime power. The vertex set is the field $K=\mathbb{F}_{q^{2}}$. Two vertices are adjacent when they differ by a nonzero square in K. The graph Γ is self-complementary, and strongly regular with parameters $(v, k, \lambda, \mu)=\left(q^{2}, \frac{1}{2}\left(q^{2}-1\right), \frac{1}{4}\left(q^{2}-5\right), \frac{1}{4}\left(q^{2}-1\right)\right)$.

Let $F=\mathbb{F}_{q}$ be the subfield of order q. It induces a clique, and by Blokhuis [2] all q-cliques in Γ look like this: they are affine images of a line in K, considered as affine plane over F.

Let $m_{q}=\frac{1}{2}(q+1)$ if $q \equiv 1(\bmod 4)$, and $m_{q}=\frac{1}{2}(q+3)$ if $q \equiv 3(\bmod 4)$. Baker et al. [1] construct maximal cliques of size m_{q} and conjecture that there are no maximal cliques of size strictly between m_{q} and q. (We checked that this is true for $q<250$).

The clique F meets the Hoffman bound, so that each vertex outside is adjacent to precisely $\frac{1}{2}(q-1)$ vertices inside F. Let $z \in K \backslash F$. Let $S=\Gamma(z) \cap F$. If $q \equiv 1(\bmod 4)$, then $S \cup\{z\}$ is a maximal clique in Γ of size $\frac{1}{2}(q+1)$, and if $q \equiv 3(\bmod 4)$, then $S \cup\left\{z, z^{q}\right\}$ is a maximal clique in Γ of size $\frac{1}{2}(q+3)$. Details below.

Goryainov et al. [6] checked that the number of orbits of maximal cliques of size m_{q} equals 2 for $25 \leq q \leq 83$, and gave a second construction for cliques of this size. Goryainov et al. [7] gave a correspondence between the two classes of maximal cliques of size m_{q}.
(Let $\Delta=\Gamma(0)$ be the subgraph induced on the neighbours of 0 . For $q>9$, the automorphism group $\operatorname{Aut}(\Delta)$ of Δ is twice as large as the stabilizer of 0 in $\operatorname{Aut}(\Gamma)$ (cf. [3, 9]) since also $x \mapsto x^{-1}$ is an automorphism of Δ. This gives the stated correspondence.)

0.1 Details

Let $q=p^{e}$, where p is an odd prime.
Proposition 0.1 (Baker et al. [1]) Let $\gamma \in K \backslash F$ and let $S:=\Gamma(\gamma) \cap F$. For $q \equiv 1(\bmod 4)$ the set $S \cup\{\gamma\}$ is a maximal clique of size $\frac{1}{2}(q+1)$. For $q \equiv 3(\bmod 4)$ the set $S \cup\left\{\gamma, \gamma^{q}\right\}$ is a maximal clique of size $\frac{1}{2}(q+3)$.

Proof. Since F is a clique, $S \cup\{\gamma\}$ is a clique.
Let β be primitive in K, and put $\xi=\gamma^{q}-\gamma$. Then $\xi^{q}=-\xi$. If $\xi=\beta^{i}$ then $i \equiv \frac{1}{2}(q+1)(\bmod q+1)$, so that ξ is a square in $K\left(\right.$ and $\left.\gamma \sim \gamma^{q}\right)$ precisely when $q \equiv 3(\bmod 4)$.

Let $\varepsilon=\beta^{(q+1) / 2}$. Then $\varepsilon^{q}=-\varepsilon$ and $K=\{x+y \varepsilon \mid x, y \in F\}$. An element $\xi=x+y \varepsilon$ is a nonzero square in K if and only if $N(\xi)=\xi^{q+1}=x^{2}-d y^{2}$ is a nonzero square in F, where $d:=\varepsilon^{2} \in F$.

The maps $\xi \mapsto a \xi+b$ with $a, b \in F, a \neq 0$ preserve Γ and F, commute with $\xi \mapsto \xi^{q}$, and $K \backslash F$ is a single orbit under the group they generate. So we may take $\gamma=\varepsilon$. Then $S=-S$. If $\eta \in K \backslash F$ is adjacent to all of $S \cup\{\gamma\}$, then $S=\Gamma(\eta) \cap F$. For $\eta=a \gamma+b$ with $a, b \in F, a \neq 0$, we find $S=a S+b$. The commutator of $\xi \mapsto a \xi+b$ and $\xi \mapsto-\xi$ is $\xi \mapsto \xi+\frac{2 b}{a}$, but $|S|$ is not a multiple of p, so $b=0$. Now $\eta \sim \gamma$ when $(a-1) \gamma$ is a square in K, that is, when γ is a square in K, that is, when $q \equiv 3(\bmod 4)$. If this is the case, then $0 \in S$. The order i of a divides $q-1$. Let r be a prime divisor of i. The set $S \backslash\{0\}$ of size $(q+1) / 2$ is invariant for multiplication by the element $a^{i / r}$ of prime order r dividing $q-1$. It follows that $r=2$ and $i=2($ since $4 \nmid(q-1))$ and $a=-1$, so that $\eta=-\gamma=\gamma^{q}$.

For $q>7$, these maximal cliques have stabilizers (in Aut Γ) of order $2 e$ if $q \equiv 1(\bmod 4)$, and $4 e$ if $q \equiv 3(\bmod 4)$.

Let C be a maximal clique containing 0 . Then, since $\xi \mapsto \xi^{-1}$ is an automorphism of $\Delta=\Gamma(0)$, also the set $C^{\prime}=\{0\} \cup\left\{c^{-1} \mid c \in C \backslash\{0\}\right\}$ is a maximal clique, of the same size as C.

There is a more symmetric description of these latter cliques.
Proposition 0.2 (Goryainov et al. [6]) Let β be primitive in K, and put $\omega:=$ β^{q-1}. Let $Q_{0}:=\left\langle\omega^{2}\right\rangle$. If $q \equiv 1(\bmod 4)$ the set Q_{0} is a maximal coclique of size $(q+1) / 2$. If $q \equiv 3(\bmod 4)$ the set $Q_{0} \cup\{0\}$ is a maximal clique of size $(q+3) / 2$.

Proof. Put $\varepsilon=\beta^{(q+1) / 2}$, so that $\varepsilon^{q}=-\varepsilon$. Then $N(x+y \varepsilon)=x^{2}-d y^{2}$ where $d=\varepsilon^{2} \in F$. We see that $\langle\omega\rangle$ is the set of points on the conic $x^{2}-d y^{2}=1$, and Q_{0} consists of half of the points on this conic. Let $\omega^{i}=x+y \varepsilon$ with $x, y \in F$. Then $N\left(\omega^{2 i}-1\right)=\left((x+y \varepsilon)^{2}-1\right)\left((x-y \varepsilon)^{2}-1\right)=-4 d y^{2}$. Since $-d$ is a square in F if and only if $q \equiv 3(\bmod 4)$, the given sets are (co)cliques as claimed. Maximality follows from the following proposition.

For $q \geq 5$, these maximal cliques have stabilizers (in Aut Γ) of order $e(q+1)$.
Proposition 0.3 (Goryainov et al. [7]) The $\operatorname{map} \xi \mapsto \varepsilon^{-1}\left(1+\frac{2}{\xi-1}\right), 1 \mapsto \varepsilon^{-1}$ maps Q_{0} (resp. $Q_{0} \cup\{0\}$) onto $S \cup\{\gamma\}$ (resp. $S \cup\left\{\gamma, \gamma^{q}\right\}$), where $\gamma=\varepsilon^{-1}$ and $S=\Gamma(\gamma) \cap F$.

Proof. The given map maps $0,1, \eta=x+y \varepsilon \in\langle\omega\rangle$ to $-\varepsilon^{-1}, \varepsilon^{-1}$, and $\frac{y}{x-1}$, respectively. Let C be a maximal (co)clique containing Q_{0} (resp. $Q_{0} \cup\{0\}$). Then $1 \in C$, so $\xi \mapsto \frac{1}{\xi-1}$ and $\xi \mapsto 1+\frac{2}{\xi-1}$ preserve adjacency on C, so $\xi \mapsto \varepsilon^{-1}\left(1+\frac{2}{\xi-1}\right)$ flips or preserves adjacency when $q \equiv 1(\bmod 4)$ or $q \equiv 3(\bmod 4)$.

Conjecture For $q \geq 25$ the maximal cliques from Propositions 0.1 and 0.2 are all the 2nd largest cliques of Γ.

Given two adjacent vertices, the line in $\operatorname{AG}(2, q)$ they determine is a q-clique. Each point is on $\frac{q+1}{2}$ such 'quadratic lines'. Thus, cliques in Γ are subsets of $\mathrm{AG}(2, q)$ that determine at most $\frac{q+1}{2}$ directions. Szőnyi [12] and Sziklai [11] give some information.

0.2 Numerical data

The table below gives the sizes of the maximal cliques in Paley $\left(q^{2}\right)$ for $q \leq 47$. Exponents are the number of nonequivalent orbits of this size under the full group of the graph.

q	sizes
3	3^{1}
5	$3^{1}, 5^{1}$
7	$5^{1}, 7^{1}$
9	$5^{3}, 9^{1}$
11	$7^{3}, 11^{1}$
13	$5^{10}, 7^{4}, 13^{1}$
17	$5^{3}, 7^{41}, 9^{9}, 17^{1}$
19	$7^{25}, 8^{7}, 9^{17}, 11^{4}, 19^{1}$
23	$7^{85}, 8^{108}, 9^{80}, 10^{7}, 11^{9}, 13^{4}, 23^{1}$
25	$7^{405}, 8^{226}, 9^{49}, 13^{2}, 25^{1}$
27	$7^{27}, 8^{411}, 9^{142}, 10^{50}, 11^{12}, 15^{2}, 27^{1}$
29	$7^{410}, 8^{1584}, 9^{2104}, 10^{148}, 11^{46}, 13^{1}, 15^{2}, 29^{1}$
31	$7^{60}, 8^{2004}, 9^{2734}, 10^{933}, 11^{199}, 12^{26}, 13^{46}, 17^{2}, 31^{1}$
37	$7^{103}, 8^{2505}, 9^{21556}, 10^{14002}, 11^{5712}, 12^{219}, 13^{222}, 19^{2}, 37^{1}$
41	$7^{168}, 8^{7801}, 9^{104495}, 10^{62070}, 11^{9583}, 12^{149}, 13^{128}, 14^{19}, 21^{2}, 41^{1}$
43	$7^{15}, 8^{1748}, 9^{54700}, 10^{109127}, 11^{54759}, 12^{9785}, 13^{1490}, 14^{156}, 15^{87}, 17^{20}, 23^{2}, 43^{1}$
47	$7^{12}, 8^{1097}, 9^{125545}, 10^{434029}, 11^{210725}, 12^{28533}, 13^{4904}, 14^{628}, 15^{230}, 16^{27}, 17^{50}, 25^{2}, 47^{1}$

For $q \equiv 3(\bmod 4)$, this confirms the values from Kiermaier \& Kurz [8].
The table below gives the same information for the smallest maximal cliques for $q \leq 73$.

q	3	5	7	9	11	13	17	19	23	25	27	29
size	3^{1}	3^{1}	5^{1}	5^{3}	7^{3}	5^{10}	5^{3}	7^{25}	7^{85}	7^{405}	7^{27}	7^{410}
q	31	37	41	43	47	49	53	59	61	67	71	73
size	7^{60}	7^{103}	7^{168}	7^{15}	7^{12}	7^{2}	8^{455}	8^{113}	7^{1}	8^{9}	9^{119319}	9^{187566}

0.3 The Taylor extension

Given a strongly regular graph Γ on v vertices with $k=2 \mu$, its Taylor extension Σ is a distance-regular graph on $2(v+1)$ vertices with intersection array $\{v, v-$ $k-1,1 ; 1, v-k-1, v\}$ (cf. [4, §1.5], [5, §1.2.7]), an antipodal 2-cover of the complete graph K_{v+1}.

For the Paley graph of order r, the Taylor extension is distance-transitive on $2(r+1)$ vertices, with automorphism group $2 \times P \Sigma L_{2}(r)$ (cf. [4, p.228]). It follows that the maximal cliques in Σ have sizes that are 1 larger than those in Γ, while the number of orbits is smaller. Below a table for $r=q^{2}, q \leq 47$.

We see that the extra automorphisms of $\Delta=\Gamma(0)$ are those flipping the edge 0∞, for $\Gamma=\Sigma(\infty)$.

q	sizes
3	4^{1}
5	$4^{1}, 6^{1}$
7	$6^{1}, 8^{1}$
9	$6^{2}, 10^{1}$
11	$8^{2}, 12^{1}$
13	$6^{6}, 8^{2}, 14^{1}$
17	$6^{2}, 8^{14}, 10^{4}, 18^{1}$
19	$8^{8}, 9^{2}, 10^{5}, 12^{3}, 20^{1}$
23	$8^{22}, 9^{16}, 10^{15}, 11^{1}, 12^{4}, 14^{2}, 24^{1}$
25	$8^{84}, 9^{29}, 10^{15}, 14^{1}, 26^{1}$
27	$8^{6}, 9^{50}, 10^{24}, 11^{8}, 12^{6}, 16^{1}, 28^{1}$
29	$8^{85}, 9^{180}, 10^{307}, 11^{18}, 12^{11}, 14^{1}, 16^{1}, 30^{1}$
31	$8^{17}, 9^{232}, 10^{324}, 11^{96}, 12^{43}, 13^{3}, 14^{13}, 18^{1}, 32^{1}$
37	$8^{31}, 9^{281}, 10^{2471}, 11^{1288}, 12^{640}, 13^{21}, 14^{36}, 20^{1}, 38^{1}$
41	$8^{42}, 9^{871}, 10^{11298}, 11^{5705}, 12^{1003}, 13^{17}, 14^{29}, 15^{3}, 22^{1}, 42^{1}$
43	$8^{7}, 9^{196}, 10^{5715}, 11^{10050}, 12^{4935}, 13^{840}, 14^{182}, 15^{15}, 16^{19}, 18^{5}, 24^{1}, 44^{1}$
47	$8^{5}, 9^{125}, 10^{12980}, 11^{39699}, 12^{18351}, 13^{2388}, 14^{516}, 15^{60}, 16^{38}, 17^{3}, 18^{12}, 26^{1}, 48^{1}$

0.4 Peisert graphs

Peisert [10] characterized symmetric self-complementary graphs, and found (i) the Paley graphs on q vertices, $q \equiv 1(\bmod 4)$ a prime power, and (ii) the graphs that are now called the Peisert graphs (of order $q^{2}=p^{2 e}, p \equiv 3(\bmod 4)$, where two vertices are joined when their difference is β^{i} with $i \equiv 0,1(\bmod 4)$, β primitive in $\mathbb{F}_{q^{2}}$), and (iii) one further graph on 23^{2} vertices. For this last graph, see [5, §10.70]. Sizes of cliques in small Peisert graphs (with number of orbits):

q	sizes
3	3^{1}
7	$4^{1}, 7^{1}$
9	$5^{1}, 9^{1}$
11	$5^{7}, 6^{2}, 11^{1}$
19	$6^{1}, 7^{69}, 8^{40}, 9^{27}, 10^{3}, 19^{1}$
23	$6^{1}, 7^{222}, 8^{442}, 9^{186}, 10^{22}, 11^{1}, 12^{1}, 23^{1}$
27	$7^{205}, 8^{809}, 9^{273}, 10^{16}, 11^{2}, 14^{1}, 27^{1}$
31	$7^{157}, 8^{6099}, 9^{7998}, 10^{1629}, 11^{113}, 12^{11}, 13^{11}, 16^{1}, 31^{1}$
43	$7^{2}, 8^{4495}, 9^{121241}, 10^{258708}, 11^{121126}, 12^{21011}, 13^{2196}, 14^{195}, 15^{45}, 16^{19}, 17^{8}, 22^{1}, 43^{1}$

If $q \equiv 3(\bmod 4)$, the subfield \mathbb{F}_{q} of $\mathbb{F}_{q^{2}}$ consists of $(q+1)$-th powers, so certainly of 4 th powers, and hence induces a clique of size q (reaching the Hoffman bound). A vertex outside has $\frac{q-1}{2}$ neighbors inside, yielding a $\frac{q+1}{2}$-clique.

References

[1] R. D. Baker, G. L. Ebert, J. Hemmeter \& A. J. Woldar, Maximal cliques in the Paley graph of square order, J. Statist. Plann. Inference 56 (1996) 33-38.
[2] A. Blokhuis, On subsets of $G F\left(q^{2}\right)$ with square differences, Indag. Math. 46 (1984) 369-372.
[3] A. E. Brouwer, Locally Paley graphs, Des. Codes Cryptogr. 21 (2000) 69-76.
[4] A. E. Brouwer, A. M. Cohen \& A. Neumaier, Distance-regular graphs, Springer, 1989.
[5] A. E. Brouwer \& H. Van Maldeghem, Strongly regular graphs, Cambridge Univ. Press, 2022.
[6] S. Goryainov, V. V. Kabanov, L. Shalaginov \& A. Valuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields Appl. 52 (2018) 361-369.
[7] S. Goryainov, A. Masley \& L. Shalaginov, On a correspondence between maximal cliques in Paley graphs of square order, Discr. Math. 345 (2022) 112853.
[8] M. Kiermaier \& S. Kurz, Maximal integral point sets in affine planes over finite fields, Discr. Math. 309 (2009) 4564-4575.
[9] M. Muzychuk \& I. Kovács, A solution of a problem of A. E. Brouwer, Des. Codes Cryptogr. 34 (2005) 249-264.
[10] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001) 209229.
[11] P. Sziklai, On subsets of $\operatorname{GF}\left(q^{2}\right)$ with dth power differences, Discr. Math. 208/209 (1999) 547-555.
[12] T. Szőnyi, On the number of directions determined by a set of points in an affine Galois plane, J. Combin. Th. (A) 74 (1996) 141-146.

