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It has been an open problem whether Hobart’s inequality on the parameters
of a quasisymmetric 2-design is independent of earlier known restrictions. In
this note we show that it is equivalent to inequalities found by Neumaier and
Calderbank.

1 Quasisymmetric designs

A design is a finite set called the point set, provided with a collection of subsets
called blocks. A t-(v, k, λ) design is a design with v points, where all blocks have
size k and any t distinct points are in precisely λ blocks.

A quasisymmetric design with intersection numbers x, y, is a design where
distinct blocks meet in either x or y points, where x, y are distinct and both
occur.

A strongly regular graph with parameters (v, k, λ, µ) is a finite undirected
graph without loops, having both edges and nonedges, with v vertices, regular
of valency k, where two distinct adjacent (resp. nonadjacent) vertices have pre-
cisely λ (resp. µ) common neighbours. In this note we shall write (V,K,Λ,M)
for the parameters of a strongly regular graph, to avoid a clash with design
parameters.

Let (X,B) be a quasisymmetric 2-(v, k, λ) design with intersection numbers
x, y, where 1 < k < v. The number of blocks on each point is r = λ(v−1)/(k−1)
and the total number of blocks is b = vr/k.

Let N be the point-block incidence matrix. Let A be the 0-1 matrix indexed
by the blocks with (B,C)-entry 1 precisely when |B∩C| = x. ThenNN> = rI+
λ(J−I) and N>N = kI+xA+y(J−I−A). Now A is the adjacency matrix of a
strongly regular graph. Indeed, NN> has two eigenvalues r−λ and kr, so N>N
has three eigenvalues 0, r−λ and kr, and also A = 1

x−y (N>N − (k− y)I − yJ)

has three eigenvalues, namely K = (r−1)k−(b−1)y
x−y , R = r−λ−k+y

x−y and S = −k−yx−y
with multiplicities 1, v − 1, and b− v, respectively.

We see that the intersction-x graph of (X,B) with vertex set B, where B ∼
C when |B ∩ C| = x, is strongly regular with parameters (V,K,Λ,M) and
eigenvalues K, R, S, where V = b, and K,R, S are as above, and Λ,M are
determined by RS = M −K and R+ S = Λ−M .
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Many examples are known. For example, the Steiner system S(4, 7, 23)
is a quasisymmetric 2-(23, 7, 21) design with intersection numbers 1 and 3.
Its intersection-3 graph is strongly regular with parameters (V,K,Λ,M) =
(253, 140, 87, 65) with spectrum 1401 2522 (−3)230 where multiplicities are writ-
ten as exponents.

Blokhuis & Haemers [3] constructed an infinite family of examples with
parameters v = q3, k = 1

2q
2(q − 1), λ = 1

4q(q
3 − q2 − 2), x = 1

2k, y = x − 1
4q
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where q is a power of two.

1.1 Complement

Given a quasisymmetric 2-(v, k, λ) design (X,B), with b blocks, r on each point,
and intersection numbers x, y, the complementary design is (X,B′), where B′ =
{X \B | B ∈ B}. It has parameters v′ = v, k′ = v − k, λ′ = b− 2r + λ, b′ = b,
r′ = b− r, x′ = v − 2k + x, y′ = v − 2k + y.

2 Inequalities

2.1 The Calderbank-Cowen inequality

The following result allows one to express the number of blocks b of a quasi-
symmetric 2-design in terms of the parameters v, k, x, y.

Proposition 2.1 (Calderbank [4]) Every 1-(v, k, r) design with b blocks, and
two block intersection numbers x, y, satisfies

1− 1

b
≤ k(v − k)

v(v − 1)

(
(v − 1)(2k − x− y)− k(v − k)

(k − x)(k − y)

)
with equality if and only if the design is a 2-design. 2

2.2 Neumaier’s inequality

Let Γ be a strongly regular graph. A proper nonempty subset Y of its vertex set
is called a regular set with degree d and nexus e when each vertex inside (resp.
outside) Y has d (resp. e) neighbours in Y .

Let Γ be the strongly regular graph on the blocks of a quasi-symmetric 2-
(v, k, λ) design (X,B) with block intersection numbers x, y, where blocks are
adjacent if they meet in x points. Let r = λ(v − 1)/(k − 1) be the replication
number (number of blocks on any point).

Proposition 2.2 (Neumaier [8]) The sets of all blocks S(x) containing a fixed

point x are regular sets in Γ of size r, degree d = (λ−1)(k−1)−(r−1)(y−1)
x−y and nexus

e = λk−ry
x−y .

Proof. Clearly, |S(x)| = r. For B ∈ S(x), with dB neighbours in S(x), count
the number of pairs (y, C) with y 6= x and C 6= B and x, y ∈ C and y ∈ B.
This number is (k − 1)(λ− 1) and also dB(x− 1) + (r − dB − 1)(y − 1) so that
d = dB does not depend on B and has the stated value. Similarly, for B 6∈ S(x),
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with eB neighbours in S(x), we find kλ = eBx+ (r− eB)y, so that eB does not
depend on B and has the stated value. 2

Proposition 2.3 (Neumaier [8]) The parameters of (X,B) satisfy

B(B −A) ≤ AC, (N)

where
A = (v − 1)(v − 2), B = r(k − 1)(k − 2)

C = rd(x− 1)(x− 2) + r(r − 1− d)(y − 1)(y − 2).

Equality holds if and only if (X,B) is a 3-design.

Proof. For distinct points x, y, z, let λxyz denote the number of blocks con-
taining these three points. Fix x and sum over all ordered pairs y, z with x, y, z
distinct. One obtains

∑
1 = A,

∑
λxyz = B,

∑
λxyz(λxyz − 1) = C. Now

0 ≤
∑

(λxyz − B
A )2 = B + C − B2

A . 2

One may check that Neumaier’s inequality (N) for a design is equivalent to
the inequality for the complementary design.

2.3 The Calderbank and Hobart inequalities

Proposition 2.4 (Calderbank [4]) Let x̄ = k − x and ȳ = k − y. Then

(v − 1)(v − 2)x̄ȳ − k(v − k)(v − 2)(x̄+ ȳ) + k(v − k)(k(v − k)− 1) ≥ 0, (C)

with equality if and only if the design is a 3-design. 2

Clearly, inequality (C) for a design is equivalent to this inequality for the
complementary design. Calderbank observes that (C) is equivalent to (N).

The following inequality was derived by Hobart as a consequence of inequal-
ities for coherent configurations.

Proposition 2.5 (Hobart [7]) The parameters of a quasisymmetric 2-(v, k, λ)
design with intersection numbers x, y, where k > x > y, with strongly regular
intersection-x graph with eigenvalues K,R, S, where K > R > S, satisfy

v − 2

v

(
1 +

R3

K2
− (R+ 1)3

(b−K − 1)2

)
− (v − 2k)2λ

k2(k − 1)(v − k)
≥ 0. (H)

This can also be formulated as Q1
11 ≥

(v−2k)2(v−1)
k(v−k)(v−2) , where Q1

11 is the obvious

Krein parameter of the strongly regular graph.
Since the strongly regular graph (for the largest intersection size) is the

same for a quasisymmetric design and the complementary design, we see that
inequaliy (H) for a design is equivalent to this inequality for the complementary
design.

In the next section we show the equivalence of (C) and (H).
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3 Proof of Hobart’s inequality

Let A = 1 + R3

K2 − (R+1)3

(b−K−1)2 be the parenthetical part of the inequality (H).

Substitute b = V and V = (K−R)(K−S)
M and M = K +RS to get

A = − (K−R)(KR+R2−2KS+2R2S−KS2−RS2)
K2(S+1)2 . Now (H) says

−v − 2

v

(K −R)(KR+R2 − 2KS + 2R2S −KS2 −RS2)

K2(S + 1)2
− (v − 2k)2λ

k2(k − 1)(v − k)
≥ 0.

If S = −1, then x = k and the design is a multiple of a square (or symmetric)
design, a case that was excluded. Hence S < −1. Multiply by vK2(S+ 1)2 and

substitute R = r−λ−k+y
x−y and S = −k−yx−y and K = (r−1)k−(b−1)y

x−y and multiply

by (x − y)4 and substitute λ = r(k−1)
v−1 and r = bk

v and multiply by (v−1)3
b3 and

substitute the value of b found from equality in Proposition 2.1. Since we have
e > 0 in Proposition 2.2, it follows that kλ 6= ry, that is, k2 − k − vy + y 6= 0.
Divide by (k2 − k − vy + y)2. We see that (H) says

(v − 1)(v − 2)xy + k2(k − 1)(k − 3) + 2k(k − 1)(x+ y)− k(k − 1)v(x+ y − 1) ≥ 0

but this is precisely inequality (C).

In the same way one sees that Calderbank’s inequality (C) is equivalent to
Neumaier’s inequality (N).

4 On the Blokhuis-Calderbank conditions

Additional nonexistence results were given by Bagchi [1] and Blokhuis &
Calderbank [2]. The methods and results are rather similar, but the results
are not equivalent: the latter paper eliminates several parameter sets that
survive other tests. We repeat the table from [2], p. 203.

v k λ y x comment
1090 540 2646 243 270 fails [2], Theorem 5.1
1101 495 2223 198 225
1266 396 1422 99 126 fails [2], Lemma 5.5
1443 624 2136 246 273 fails [2], Theorem 5.1
2704 544 1086 85 112
2976 528 1023 69 96 fails [2], Theorem 5.1 for complement
5292 378 29 0 27 fails [9], Theorem 3

In [2] it is said that Theorem 5.1 summarizes the earlier results, but that
theorem does not rule out the third parameter set, while Lemma 5.5 does (but
the theorem rules out the complementary parameter set).

The last parameter set here is that of an ARD(14, 2), where an affine
resolvable design ARD(n, t) is a 2-(v, k, λ) design with parameters v = nk =
n2((n − 1)t + 1), b = nr = n(n2t + n + 1), λ = nt + 1 where there is a
resolution into r parallel classes, and any two blocks from different classes have
k2/v = (n−1)t+1 points in common. Using the Hasse invariant Shrikhande [9]
shows that no ARD(n, t) exists when n ≡ 2 (mod 4) and the square-free part
of n contains a prime ≡ 3 (mod 4).

On the other hand, several far smaller parameter sets are ruled out.
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v k λ y x r b comment
77 33 24 12 15 57 133 fails [1] and [2]

101 21 21 3 6 105 505 fails [1] and [2]
137 40 195 10 15 680 2329 fails [1] and [2]
145 70 161 28 35 336 696 fails [1] and [2]
163 64 672 22 28 1728 4401 fails [2]
172 28 63 4 10 399 2451 fails [2]
176 50 49 8 15 175 616 fails [2]

In the first four cases, the complementary design violates [1], Theorem 1.
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