Parameters of an association scheme

A. E. Brouwer

Dec 2013

In BCN [1], Theorem 12.1.1 the existence of a certain association scheme is claimed, and details are given for \(n = 3 \). As Frédéric Vanhove [2] observed, things are slightly different for odd \(n \geq 5 \). Let us redo his computations.

Let \(q \) be a power of 2, and \(n \geq 3 \). Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_q \) provided with a nondegenerate quadratic form \(Q \). Let \(B \) be the associated symmetric bilinear form, given by \(B(x, y) = Q(x + y) - Q(x) - Q(y) \).

If \(n \) is odd, there will be a nucleus \(N = V^\perp \).

We construct an association scheme with point set \(X \), where \(X \) is the set of projective points not on the quadric \(Q \) and (for odd \(n \)) distinct from \(N \). For \(n = 3 \) and for even \(n \), the relations will be \(R_0, R_1, R_2, R_3 \) where

\[
R_0 = \{(x, x) \mid x \in X\}, \text{ the identity relation;}
R_1 = \{(x, y) \mid x + y \text{ is a hyperbolic line (secant)}\};
R_2 = \{(x, y) \mid x + y \text{ is an elliptic line (exterior line)}\};
R_3 = \{(x, y) \mid x + y \text{ is a tangent}\}.
\]

For odd \(n, n \geq 5 \), it is necessary to distinguish \(R_{3a} \) and \(R_{3n} \), defined by

\[
R_{3a} = \{(x, y) \mid x + y \text{ is a tangent not on } N\};
R_{3n} = \{(x, y) \mid x + y \text{ is a tangent on } N\}.
\]

Note that every line on \(N \) is a tangent, and that for \(n = 3 \) there are no other tangents, so that \(R_{3a} \) is empty. For \(q = 2 \) a hyperbolic line contains only one nonisotropic point, so that \(R_1 \) is empty.

1 Quadric size

The number of \(N \) isotropic projective points on a nonisotropic quadric in \(V \), where \(V \) has vector space dimension \(n \) equals

\[
N = \begin{cases}
(q^{2m} - 1)/(q - 1) & \text{if } n = 2m + 1 \\
(q^m - \varepsilon)(q^{m-1} + \varepsilon)/(q - 1) & \text{if } n = 2m.
\end{cases}
\]

Equivalently,

\[
N = (q^{n-1} - 1)/(q - 1) + \varepsilon q^{n/2-1}
\]

with \(\varepsilon = \pm 1 \) if \(n \) is even, and \(\varepsilon = 0 \) if \(n \) is odd.
2 \ n = 3

Suppose first that \(n = 3 \). The parameters \((p^i_{jk})\) were given in BCN p. 375. Let us call them \((a^i_{jk})\) here in the special case \(n = 3 \).

\[
(a^i_{0j})_{ij} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}, \quad (a^i_{1j})_{ij} = \begin{pmatrix}
0 & \frac{1}{2}q(q-2) & 0 & 0 \\
1 & \frac{1}{4}q(q-2)^2 & \frac{1}{4}q(q-2) & \frac{1}{2}q - 2 \\
0 & \frac{1}{4}q(q-2)^2 & \frac{1}{4}q(q-2) & \frac{1}{2}q - 1 \\
0 & \frac{1}{4}q(q-4) & \frac{1}{4}q^2 & 0 \\
\end{pmatrix},
\]

\[
(a^i_{2j})_{ij} = \begin{pmatrix}
0 & 0 & \frac{1}{2}q^2 & 0 \\
0 & \frac{1}{4}q(q-2) & \frac{1}{4}q^2 & \frac{1}{2}q - 1 \\
0 & \frac{1}{4}q^2 & \frac{1}{4}q^2 & 0 \\
\end{pmatrix}, \quad (a^i_{3j})_{ij} = \begin{pmatrix}
0 & 0 & 0 & q - 2 \\
0 & \frac{1}{2}q^2 & 0 & 0 \\
0 & \frac{1}{2}q - 2 & \frac{1}{2}q - 1 & 0 \\
1 & 0 & 0 & q - 3 \\
\end{pmatrix}.
\]

The \(P \) matrix has in column \(h \) the eigenvalues of \((p^i_{jk})_{ij}\). The rows correspond to eigenspaces. We find

\[
P = \begin{pmatrix}
1 & q(q - 2)/2 & q^2/2 & q - 2 \\
1 & q/2 & -q/2 & -1 \\
1 & -q/2 + 1 & -q/2 & q - 2 \\
1 & -q/2 & q/2 & -1 \\
\end{pmatrix}.
\]

We see that \(R_3 \) is an equivalence relation (and the equivalence classes are the tangent lines, that is, the lines on \(N \)). We also see that \(R_2 \) has only three distinct eigenvalues, and hence defines a strongly regular graph.

Now suppose that \(\dim V = 3 \) but the quadratic form \(Q \) on \(V \) is degenerate in such a way that \(N := V^\perp \) is a (single) isotropic point. Then the space is a cone over a hyperbolic or elliptic line. We have \(v = |X| = q^2 - \varepsilon q \) and the valencies are \(k_0 = 1, \ k_3 = q - 1 \) and \(k_1 = q^2 - 2q, \ k_2 = 0 \) if \(\varepsilon = 1 \), \(k_3 = 0, \ k_2 = q^2 \) if \(\varepsilon = -1 \). Call the corresponding parameters \((h^i_{jk})\) and \((e^i_{jk})\), respectively. Then

\[
(h^i_{1j})_{ij} = \begin{pmatrix}
0 & q^2 - 2q & 0 & 0 \\
1 & q^2 - 3q & 0 & q - 1 \\
* & * & * & * \\
0 & q^2 - 2q & 0 & 0 \\
\end{pmatrix}, \quad (h^i_{3j})_{ij} = \begin{pmatrix}
0 & 0 & 0 & q - 1 \\
0 & q - 1 & 0 & 0 \\
* & * & * & * \\
1 & 0 & 0 & q - 2 \\
\end{pmatrix},
\]

\[
(e^i_{2j})_{ij} = \begin{pmatrix}
0 & 0 & q^2 & 0 \\
* & * & * & * \\
1 & 0 & q^2 - q & q - 1 \\
0 & 0 & q^2 & 0 \\
\end{pmatrix}, \quad (e^i_{3j})_{ij} = \begin{pmatrix}
0 & 0 & 0 & q - 1 \\
* & * & * & * \\
0 & 0 & q - 1 & 0 \\
1 & 0 & 0 & q - 2 \\
\end{pmatrix}.
\]

(with undefined * since relation \(R_2 \) (resp. \(R_1 \)) does not occur).

Finally, suppose that \(\dim V = 3 \) and the quadratic form \(Q \) on \(V \) is a double line (that is, \(B \) vanishes identically, \(Q \) is the square of a linear form). Now \(k_0 = 1, \ k_1 = k_2 = 0, \ k_3 = q^2 - 1 \). Call the corresponding parameters \((z^i_{jk})\). Then

\[
(z^i_{3j})_{ij} = \begin{pmatrix}
0 & 0 & 0 & q^2 - 1 \\
* & * & * & * \\
* & * & * & * \\
1 & 0 & 0 & q^2 - 2 \\
\end{pmatrix}.
\]
3 \textit{n even}

Now let \(n \) be even, say \(n = 2m \), where \(m \geq 2 \). Let the form have type \(\varepsilon \), with \(\varepsilon = 1 \) for a hyperbolic and \(\varepsilon = -1 \) for an elliptic quadric.

The number of points of the scheme equals \(v = |X| = q^{2m-1} - \varepsilon q^{m-1} \).

For the valencies \(k_i \) of the relations \(R_i \), we find

\[
\begin{align*}
k_0 & = 1 \\
k_1 & = (q - 2)q^{m-1}(q^{m-1} + \varepsilon)/2 \\
k_2 & = q^m(q^{m-1} - \varepsilon)/2 \\
k_3 & = q^{2m-2} - 1
\end{align*}
\]

If \(n = 2, m = 1 \), then only one type of lines occurs (since all of \(V \) is just a line), and \(P = \begin{pmatrix} 1 & q - 2 \\ 1 & -1 \end{pmatrix} \) if \(\varepsilon = 1 \), and \(P = \begin{pmatrix} 1 & q \\ 1 & -1 \end{pmatrix} \) if \(\varepsilon = -1 \).

Let \(n \geq 4, m \geq 2 \). If \((x, y) \in R_h \) for a certain \(h \in \{1, 2, 3\} \) then for each plane on the line \(x + y \) we find the same relation, and a contribution as just computed for the case \(n = 3 \). In the plane we did not count the nucleus, but here that nucleus contributes \(1 \) to \(p^h_{33} \) for \(h \neq 3 \). If \(h = 3 \) then \(x \) or \(y \) might itself be the nucleus of a nondegenerate plane on \(x + y \). The details follow.

Let \(L \) be a hyperbolic line, and consider the \((q^{n-2} - 1)/(q - 1) \) planes on \(L \). A degenerate plane must be the span \(L + z \) of \(L \) and a point \(z \) in \(L^\perp \). Now \(L^\perp \) has the same type \(\varepsilon \) as \(V \) and dimension \(n - 2 \), so has \(a := (q^{2m-3} - 1)/(q - 1) + \varepsilon q^{m-2} \) isotropic points. Hence \(L \) is on \(a \) degenerate planes \(L + z \), and on \((q^{n-2} - 1)/(q - 1) - a = q^{n-3} - \varepsilon q^{m-2} \) nondegenerate planes. All parameters \(p^1_{jk} \) follow by summing such parameters of these two types of planes: If \((x, y) \in R_1 \), then \(L = x + y \) is a hyperbolic line that contributes \(q - 3 \) to \(p^1_{11} \) and nothing to \(p^1_{jk} \) for \(\{j, k\} \not\subseteq \{0, 1\} \). A degenerate plane on \(L \) is a cone over a hyperbolic line, and contributes \(h^1_{jk} \). Thus

\[
p^1_{11} = q - 3 + (q^{n-3} - \varepsilon q^{m-2})(a^1_{11} - q + 3) + a(h^1_{11} - q + 3)
\]

and

\[
p^1_{33} = (q^{n-3} - \varepsilon q^{m-2})(a^1_{33} + 1) + ah^1_{33}
\]

and

\[
p^1_{jk} = (q^{n-3} - \varepsilon q^{m-2})a^1_{jk} + ah^1_{jk}
\]

for nonzero \(j, k \) not both 1 or both 3.

Let \(L \) be an elliptic line, and consider planes on \(L \). This time \(L^\perp \) has the opposite type, so has \(b := (q^{2m-3} - 1)/(q - 1) - \varepsilon q^{m-2} \) isotropic points, and \(L \) is on \((q^{n-2} - 1)/(q - 1) - b = q^{n-3} + \varepsilon q^{m-2} \) nondegenerate planes. We find

\[
p^2_{22} = q - 1 + (q^{n-3} + \varepsilon q^{m-2})(a^2_{22} - q + 1) + b(\varepsilon^2_{22} - q + 1)
\]

and

\[
p^2_{33} = (q^{n-3} + \varepsilon q^{m-2})(a^2_{33} + 1) + be^2_{33}
\]

and

\[
p^2_{jk} = (q^{n-3} + \varepsilon q^{m-2})a^2_{jk} + be^2_{jk}
\]

for nonzero \(j, k \) not both 2 or both 3.
Let L be a tangent, with isotropic point z. Then L^\perp is an $(n-2)$-space containing L. The line L is on q^{n-3} nondegenerate planes (where Q is a conic, L a tangent to the conic, and the nucleus of the plane is a nonisotropic point of L), namely those not contained in z^\perp. The space z^\perp / z is a nondegenerate $(n-2)$-space of the same type ε in which L is a nonisotropic point. The quadric in that space has size $(q^{n-3} - 1)/(q - 1) + \varepsilon q^{m-2}$, and through the point L there are $(q^{n-4} - 1)/(q - 1)$ tangents, and $(q^{n-4} + \varepsilon q^{m-2})/2$ hyperbolic lines, and $(q^{n-4} - \varepsilon q^{m-2})/2$ elliptic lines. Consequently, of the q^{n-4} degenerate planes π on L with radical z, for $(q^{n-4} + \varepsilon q^{m-2})/2$ the quotient π/z is hyperbolic, and for $(q^{n-4} - \varepsilon q^{m-2})/2$ elliptic. Each of the q nonisotropic points of L is nucleus of q^{n-4} nondegenerate planes. For the computation of p^{3}_{jk} starting with two points x, y where $L = x + y$ is a tangent, the q^{n-4} nondegenerate planes in which x is nucleus each contribute $\frac{1}{2} q(q-2)$ for $k = 1$ and $\frac{1}{2} q^2$ for $k = 2$. There are $q^{n-4}(q - 2)$ such planes where none of x, y is nucleus. Altogether, we find

$$p^{3}_{jk} = q^{n-4}(q - 2) p^{3}_{jk} + \frac{1}{2} (q^{n-4} + \varepsilon q^{m-2}) h^{3}_{jk} + \frac{1}{2} (q^{n-4} - \varepsilon q^{m-2}) e^{3}_{jk}$$

for $j, k \neq 0, 3$, and

$$p^{3}_{31} = \frac{1}{2} q^{n-3}(q - 2),$$

$$p^{3}_{32} = \frac{1}{2} q^{n-2},$$

$$p^{3}_{33} = q - 2 + \frac{q^n - 1}{q - 1} (z^3_{33} - q + 2).$$

Since we could compute all p^{i}_{jk}, this proves that we have an association scheme. Let us substitute the values of $a^{i}_{jk}, h^{i}_{jk}, e^{i}_{jk}$ and z^{i}_{jk} and compute the eigenmatrix P of the scheme. In order to save space, we abbreviate $r := q - 2$.

For $(p^{i}_{jk})_{ij}$ one finds

\[
\begin{pmatrix}
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
1 & \frac{1}{2} q^{m-3} r^2 + \varepsilon q^{m-2} r (q^2 - 2q - 1) & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
0 & \frac{1}{2} q^{m-2}(q^{m-1} + \varepsilon) r^2 & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
0 & \frac{1}{2} q^{m-2}(q^{m-1} - \varepsilon) r & \frac{1}{2} q^{m-2}(q^{m-1} - \varepsilon) r \\
\end{pmatrix}
\]

with eigenvalues $\frac{1}{2} q^{m-1}(q^{m-1} + \varepsilon)(q - 2), \frac{1}{2} \varepsilon q^{m-2}(q + 1)(q - 2), -\varepsilon q^{m-1}, 0$.

For $(p^{3}_{jk})_{ij}$ one finds

\[
\begin{pmatrix}
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
1 & \frac{1}{2} q^{m-1}(q^{m-1} + \varepsilon) r & \frac{1}{2} q^{m-1}(q^{m-1} - \varepsilon) r \\
0 & \frac{1}{2} q^{m-2}(q^{m-1} + \varepsilon) r & \frac{1}{2} q^{m-1} - \varepsilon q^{m-1}(\frac{1}{2} q - 1) \\
0 & \frac{1}{2} q^{m-2}(q^{m-1} - \varepsilon) r & \frac{1}{2} q^{m-2} - \varepsilon q^{m-1}(\frac{1}{2} q - 1) \\
\end{pmatrix}
\]

with eigenvalues $\frac{1}{2} q^{m}(q^{m-1} - \varepsilon), \varepsilon q^{m-1}, -\frac{1}{2} \varepsilon q^{m-1}(q - 1), 0$.

For $(p^{3}_{jk})_{ij}$ one finds

\[
\begin{pmatrix}
0 & 0 \\
0 & \frac{1}{2} q^{m-2}(q^{m-2} r + 2\varepsilon) \\
0 & \frac{1}{2} q^{m-2}(q^{m-1} + \varepsilon) r & \frac{1}{2} q^{m-1} - \varepsilon q^{m-1}(\frac{1}{2} q - 1) \\
1 & \frac{1}{2} q^{m-3} r \\
\end{pmatrix}
\]

with eigenvalues $\frac{1}{2} q^{m-2}(q^{m-2} - \varepsilon), \varepsilon q^{m-2}(q^{m-1} - \varepsilon), q^{m-2}(q^{m-1} + \varepsilon), \frac{1}{2} q^{m-3} - 2$.
with eigenvalues \(q^{n-2} - 1, q^{m-1} - 1, -q^{m-1} - 1, \varepsilon q^{m-2} - 1 \).

The \(P \)-matrix is

\[
P = \begin{pmatrix}
1 & \frac{1}{2} q^{m-1}(q^{m-1} + \varepsilon)(q - 2) & \frac{1}{2} q^{m}(q^{m-1} - \varepsilon) & q^{2m-2} - 1 \\
1 & \frac{1}{2} \varepsilon q^{m-2}(q + 1)(q - 2) & -\frac{1}{2} \varepsilon q^{m-1}(q - 1) & \varepsilon q^{m-2} - 1 \\
1 & 0 & \varepsilon q^{m-1} - 1 & \varepsilon q^{m-1} - 1 \\
1 & 0 & -\varepsilon q^{m-1} & 0
\end{pmatrix}.
\]

The multiplicities (in the order of the rows of \(P \)) are \(1, \frac{1}{2} q(q^{m-1} - \varepsilon)(q^m - \varepsilon)/(q + 1), \frac{1}{2}(q - 2)(q^{m-1} + \varepsilon)(q^m - \varepsilon)/(q - 1) \).

4 n odd

Now let \(n \) be even, say \(n = 2m + 1 \), where \(m \geq 2 \). Let \(Q \) be a nondegenerate quadric, and let \(N \) be its nucleus. We compute the \(p^i_{jk} \) as before, this time splitting relation \(R_3 \) (being joined by a tangent) into the two relations \(R_{3a} \) and \(R_{3n} \), depending on whether the tangent does not or does pass through \(N \).

The number of points of the scheme equals \(v = |X| = q^{n-1} - 1 \).

For the valencies \(k_i \) of the relations \(R_i \) we find

\[
\begin{align*}
k_0 &= 1 \\
k_1 &= \frac{1}{2} q^{n-2}(q - 2) \\
k_2 &= \frac{1}{2} q^{n-1} \\
k_{3a} &= q^{n-2} - q \\
k_{3n} &= q - 2
\end{align*}
\]

The number of planes on a line \(L \) is \((q^{n-2} - 1)/(q - 1) \). If \(L \) is hyperbolic or elliptic, then a degenerate plane must be the span \(L + z \) of \(L \) and an isotropic point \(z \) in \(L^1 \). Now \(L^1 \) is a nondegenerate \((n-2)\)-space, and has \((q^{n-3} - 1)/(q - 1)\) isotropic points, so there are \(q^{n-3} \) nondegenerate planes, and \((q^{n-3} - 1)/(q - 1)\) degenerate planes on \(L \). We find for \(i = 1, 2 \) that

\[
p^i_{jk} = q^{n-3}(a^i_{jk} - c) + \frac{q^{n-3} - 1}{q - 1}(x^i_{jk} - c) + c
\]

with \(x = h \) for \(i = 1 \) and \(x = e \) for \(i = 2 \), and \(c = q - 3 \) if \(i = j = k = 1 \), \(c = q - 1 \) if \(i = j \) or \(k = 2 \) and \(c = 0 \) otherwise.

If \(L \) is a tangent on \(N \), with isotropic point \(z \), then the \(q^{n-3} \) nondegenerate planes on \(L \) are the planes not in \(z^1 \). The remaining \((q^{n-3} - 1)/(q - 1)\) planes on \(L \) are contained in \(L^1 \), and the form induces a double line on these. Hence

\[
p^i_{jk} = q^{n-3} a^3_{jk}
\]

for \(i = 3n \) when not \(\{j, k\} \subseteq \{0, 3a, 3n\} \).

If \(L \) is a tangent not on \(N \), with isotropic point \(z \), then the \(q^{n-3} \) nondegenerate planes on \(L \) are the planes not in \(z^1 \). Each nonsotropic point of \(L \) is the nucleus of \(q^{n-4} \) of these planes. There are \((q^{n-4} - 1)/(q - 1)\) planes on \(L \) contained in \(L^1 \), where the form induces a double line. The remaining planes are degenerate, cones over a hyperbolic or elliptic line, \(\frac{1}{2} q^{n-4} \) of each.
Relation R_{3n} is an equivalence relation with equivalence classes of size $q - 1$. If L does not pass through N, then it is on a unique plane $L + N$ on N, and the points that have relation R_{4n} with x or y live in that plane. We find $p_{1,3n}^1 = \frac{1}{2} q - 2$, $p_{2,3n}^1 = \frac{1}{2} q$, $p_{1,3n}^2 = p_{2,3n}^2 = \frac{1}{2} q - 1$.

For (p_{1j}^i) one finds

$$
\begin{pmatrix}
0 & \frac{1}{2}q^{n-2}(q-2) & 0 & 0 & 0 \\
1 & \frac{1}{2}q^{n-3}(q-2)^2 & \frac{1}{2}q^{n-2}(q-2) & \frac{1}{2}(q^{n-3} - 1)(q-2) & \frac{1}{2} q - 2 \\
0 & \frac{1}{4}q^{n-3}(q-2)^2 & \frac{1}{2}q^{n-2}(q-2) & \frac{1}{2}(q^{n-3} - 1)(q-2) & \frac{1}{2} q - 1 \\
0 & \frac{1}{4}q^{n-3}(q-2)^2 & \frac{1}{2}q^{n-2}(q-2) & \frac{1}{2}q^{n-3}(q-2) & 0 \\
0 & \frac{1}{4}q^{n-2}(q-4) & \frac{1}{2}q^{n-1} & 0 & 0
\end{pmatrix}
$$

with eigenvalues $\frac{1}{2} q^{2m-1}(q-2)$, $\pm \frac{1}{2} q^{m-1}(q-2)$, $\pm \frac{1}{2} q^m$.

For (p_{2j}^i) one finds

$$
\begin{pmatrix}
0 & 0 & \frac{1}{2}q^{n-1} & 0 & 0 \\
0 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}q^{n-1} & \frac{1}{2} q(q^{n-3} - 1) & \frac{1}{2} q \\
1 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}q^{n-1} & \frac{1}{2} q(q^{n-3} - 1) & \frac{1}{2} q + 1 \\
0 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}q^{n-1} & \frac{1}{2}q^{n-2} & 0 \\
0 & \frac{1}{4}q^{n-2}(q-2) & \frac{1}{2}q^{n-1} & 0 & 0
\end{pmatrix}
$$

with eigenvalues $\frac{1}{2} q^m$, $\pm \frac{1}{2} q^m$ (each twice).

For $(p_{3a,j}^i)$ one finds

$$
\begin{pmatrix}
0 & 0 & 0 & \frac{1}{2}(q^{n-3} - 1)(q-2) & 0 \\
0 & \frac{1}{2}(q^{n-3} - 1)(q-2) & \frac{1}{2} q(q^{n-3} - 1) & q^{n-3} - 1 & 0 \\
0 & \frac{1}{2}(q^{n-3} - 1)(q-2) & \frac{1}{2} q(q^{n-3} - 1) & q^{n-3} - 1 & 0 \\
1 & \frac{1}{2}q^{n-3}(q-2) & \frac{1}{2}q^{n-2} & q^{n-3} - 2q + 1 & q - 2 \\
0 & 0 & 0 & q(q^{n-3} - 1) & 0
\end{pmatrix}
$$

with eigenvalues $q(q^{2m-2} - 1)$, $(q^{m-1} - 1)(q-1)$, $-(q^{m-1} + 1)(q-1)$, 0 (twice).

For $(p_{3n,j}^i)$ one finds

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & q - 2 \\
0 & \frac{1}{2} q^2 & \frac{1}{2} q & 0 & 0 \\
0 & \frac{1}{2} q - 1 & \frac{1}{2} q - 1 & 0 & 0 \\
0 & 0 & 0 & q - 2 & 0 \\
1 & 0 & 0 & 0 & q - 3
\end{pmatrix}
$$

with eigenvalues $q - 2$ (three times) and -1 (twice).

Since we could compute all p_{jk}^i, this is indeed an association scheme.

The P-matrix is

$$
P = \begin{pmatrix}
1 & \frac{1}{2} q^{2m-1}(q-2) & \frac{1}{2} q^{2m} & q(q^{2m-2} - 1) & q - 2 \\
1 & \frac{1}{2} q^{n-1}(q-2) & \frac{1}{2} q^m & -(q^{m-1} + 1)(q-1) & q - 2 \\
1 & -\frac{1}{2} q^{m-1}(q-2) & -\frac{1}{2} q^m & (q^{m-1} - 1)(q-1) & q - 2 \\
1 & \frac{1}{2} q^m & -\frac{1}{2} q^m & 0 & -1 \\
1 & -\frac{1}{2} q^m & \frac{1}{2} q^m & 0 & -1
\end{pmatrix}
$$

The multiplicities (in the order of the rows of P) are 1, $\frac{1}{2} q(q^m + 1)(q^{m-1} - 1)/(q-1)$, $\frac{1}{2} q(q^m - 1)(q^{m-1} + 1)/(q-1)$, $\frac{1}{2}(q - 2)(q^{2m - 1} - 1)/(q-1)$ (twice).
5 Conclusion

Vanhove computed all p_{jk} and communicated both P matrices. We recomputed the p'_{jk} and the P matrices and find the same results.

References
