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- ABSTRACT
s
Erdos asked whether it is true that for any ¥ there 13 av (r}

_ 'Such that for v > voir), v 2§ or 3 (mod 6) there exists a Ste1ner tr1p1a]
. system on v points such that for 2 £ j <t no j+2 points carry j trxpies,

' {Eurely this must be true.]} .
. In this note we attack the first nontrivial case (r = 4) and pruvé'
o that whenever v 5 3 {mod 6) there exists an STS{v) without four trlplesf'
'on six points. For v = 7 ox i3 zuch an STS{v) does not exist, and we crm.«_:_
jecture that vo(a) = 13, supporting this conjecture with a few 1nf1nxte |
.series for v 2 | (mod 6), including v = 19. We also give some results for;

T =5,
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0, INTRODUCTION

in [1] Exdos asked whether it is true that for any integer T there
is 2 ve(r) such that for v > vo(r} atd v'E 1 or 3 (mod 6) there exists a
Steiner triple system on v points such that for 2 < j € r no j+2 points
caxrry i triples. Note that this result would be best possible, since 3+3
points always carry j triples. I comjecture that it is true, i.e. vo(r)< =
for all r, but am not able te prove this. Probably the correct way is using
a counting srgument, proving that aimost all of the 8TS{v) in a certain
suitably chosen family have the desired property. Ie [1] Erdos remarked
that Doyen had an infinite family of examples for the case r = 4. Here I
solve the case r = 4, v * 3 (mod 6) completely, and give infinitely many
examples with r = 4, v £ | (mod 6). The methods used are mostly direct
constructions, since it is usually difficult to see what happens with

recursive constructions.

0A. REMARK. Note that there is only one configuration of 4 triples on b
points (without rTepeated edges) namely {6,1,2},60,1%,2"},{1,2',0'3,{1",2,0"},

T shall call 1t an arrows

Picture:

it is the Fano plane minus ome point and the three lines incident with
this point. Hence avoiding thiy configuratiom means in particalar avoiding

Fano subplanes. Given a Steiner triple system containing an arrow
{a,b,c},{a,d,e},{b,d,f},{c,e,f}

we can derive another Steiner triple system by replacing these four triples

by the following four triples:
{a,b,d},{a,e,e},{b,c,£},{d,e,f}.

This operation is calied 'invertimg' the arrow.




i. CYCLIC STEINER TRx?LﬂfSYSEEnsﬁETS{q}ﬁﬁqf=:6t{fj s

Let q be a prime power, q = | (mod 6), ¢ =z~ . A well known con-

struction for an $TS(g) is as follows: let x be a primitive eiementnof
GF(q) and take the triples {x7+i, xu+2t+i, xa+45+i} fo; 1€ GF{Q) aﬁ&
G50 < e, |

More generally, writing y = th so that y2+y+1 = §, we find that

the coliection of triples
fc{i,y,yol+i | e e C, i € GF(Q)}

{where of course c{l,y,yz}+i means {c+l, cy+i, cy2+i}} is a Steiner triple

system iff 1G] = £, 0 ¢ C and if x°, x* ¢ € ther « # 8 (mod ©).
Now let us investigate whether this system contains & triples on 6 points.

LEMMA. Let (G,8) be an arbitrary Steiner triple system on an Abelian group
¢, and invariant under the natural actton of G. If S containg both T anc
2T and {31} = 3 them 8 containe 4 triples on 6 poinie.

PROOF. Let T = {a,b,c}, then T + (a-b) = {2a-b,a,a-bh+c},
T + {c«b) = {a~b+tc,c,2c~b} and 2T - b = {2a~b,b,2c-bl. i

(REMARK. A cyclic 87S(15) will contain the tripiles {1,5+1,1045} and
2{0,5,10} = {0,10,5} = {0,5,10}; in such a case (i.e. b-a = c~b = a-¢;
3(b-a) = Q) the four triples used in the proof all coincide. This explains

the requirement |3T| = 3).
An immediate corollary is:
LEMMA., The cyelic 8TS(33) contains an arrow.

PROOF. It is defined by {1,3,9} and 2{1,3,9} (mod 13). g

As is well known there exist only two noniscmorphic §T$s om 13 points.
1f we invert an arrow in the cyelic $TS{i3) we find the other STS(13), so

also the other %TS{i3) contains an arrow.




Returning to the abuvé:éoﬁsftﬁé:

actual freedom we have ig chnoaxng?

once we have chosen ¢ we cannot chnese Zt and tharefore mest chouse.'zc,l.e;

if an STS8{4) constructed as abvoe does not. contdin arrows then it falinva~ R

riant under multiplication by ~-2.
In particular, since there are only qt triples, the order of -2 is a
divigor of t, i.e. ~2 is a square in GF{g) and for g = pu, p prime it .

follows that either a iz even or »p ¥ 1 or 3 {mod 8).

Consider again the case of two copgruent triples in an arrow!

§, = {a,b,c} and §, = {2a~b,a;a-b+c}.

2 . .
The case where a-b+c and ¢ are copnected in the arrow was considered above; -

in the other case we have

53 = {b,a—b+c,d} and S = {Za~bh,c,d}.

A1l four triples are shifts of mnltlples of {i,y,y } so we may suppose

b= ay, ¢ = ayz. Now (a~h+c)~b = a(!—y} - (a—h)(l—y) and

¢ - (2a-b)} = -3a = (¢~a)(l-y} so that §, and §, are both shifts of +(1~y}s
In particular 83 and S# are congruent themselves and by the same reasonlnv
it follows that 5, and . are shifts of (i~} S = t(m By)SI w d{m B)Si.

1 2
But if 5., is a ghift of tSSI then v = *3 (or ?2 = +3), 1 = y3 = +27,

p=7 er}13.

Conversely, if p = 7 then vy = 2, and already the shifts by elements
of GF(7) of {1,2,4} (or of ~{1,2,4}) form a Fano subplane of our Ste1ner
triple system. Furthermore, if p = I3 then y = 3, and the shifts of
£{1,3,9) and #{2,6,5} form & sub STS(13). (CGenerally of course if p &

" (med 6) then we have a sub STS(p)).

Finally conaider am arbitrary arrow. By normalizing if necessary we may

“agsume it contains Sl = {l,y,y 1. If 1 ¢ 52 and 52 is a shift of cSI “then
w.l.o.g. 5, = {1,1~ctyc,l~cty c}, but l-c+yc—y = {c-i){y—1} and '
' 2

:l*c+y2¢_y2 = (c“l}(yzﬂl} hence if 53 » {y,l=ctyc,z}, 5& = {y2,1~c+y;c;z}

- then both S, and §, are shifts of t(c--l)sI sc that they are congruent,

. and we are in the previous case,



Therefore S, = {yz,l“c+yc,z},;54 ¥Ef§,i~d+y2c,z}; L
From 53 wa fiud either z ~ {i—c+y¢}'# yiimc+yc*y2), i. z = y(i-e}-2c

EP
or 1~c+yc—y2 = y{zn{lwc+yc)}, i.e. z

= dy{o-i}tec. _
From 8, we find either z - (I—c+y2¢) = y{l—c+y2c-y}, il.e, z = —2y{c-1)ctd o
' or t"c+yzc—y = y{z-{l~c+y2c}}, i.e, z = yl{c~1)-c-I.

But these values of z are not compatible:

Froe y{i-c}~2c = y{e-§)-c~1 or 2y{c~1)}+c = ~2y(c~i)-c+2 we find

v o= = %—or c = |, but y3 n - %—ﬂ 1 is impozsible since ¢ # 1 (mod 6},
80 that ¢ = 1.,

From y(l=~e¢)-2c = ~2y(c-i)—¢ct+? we find ¢ = yz, and from
2y{e=1)+c = y{e~1)-c-i we find c = y.
in all cases ¢ ¢ {i,y;yz} so that SZ 18 a shift of S§¢

Thus we have showni

THEOREM 1. Let g = 1 {mod 6}, g = p°, p prime and conetruct a Steiner
triple system S, as above.

(1) Ifp= 17T or 13 then SC aontaing a sub-STS(p), and in pariicular
an arrow.

(ii) If p # 7, 13 then 3; contains an arrow Lff for some $ ¢ S. also
28 ¢ SC‘ where 8 # I8.

Hence C can be chosen such that Sy does not comtain an arrow i1ff -2 {8 a
square, t.e. iff o = 0 (mod 2) or p = 1 or 3 (mod B). Any arrow contains
three edges which ave translates of each cother, G

Later we shall nesd the next:

LEMMA. There exists an STS{21) with a parallel class and without arrow.

PROOF. The cyclic STS{21} defined by
{0,1,3%,{0,4,12%,{0,6,11},{0,7,14} med 21

contains the parallel class [{0,7,14} mod 211, Checking that it does

not contain an arrow 1s feft to the reader. 5




2, THE CASE v = 3 (mod 6)
In this section we pt'cﬁre

THEQREM 2. Let v = 3 {med 6&)}. Then there ertsts gn S$TS(v) without arrous.

Let v = 3g, q odd {not necessarily a prime power). Let (Q,°) be an idem-
potent commutative quasigroup on {, where {0} = q. (One might for example
take () = zq and aob =-E%E.}_As iz well known one ohtains an STS(v} om

X=Qx Ky by taking the triples {gq} x X, for q € @ {note that these form

a parallel class} and
{{a,i},(b,i),(ach,i+1)} for a, b e @, i € 23.

1t is easily checked that this Steiner triple system contains an arvow

iff 7

(i} 3a,b € Q, a # b: as(ac(ach)) = b
[An arrow is given by {{a} x Z,, {(a,0),(b,0),(acb,1}},
{(a,1),(a0b,1},(aclach), D}, {(2,2),{ac(ach},2},(b,0}}}.]

or

(ii) 3a,b,c,d ¢ 4, all distinct: aob = cod and acc = bod
{that is, the Latin square that is the smultiplication table of
(Q,7) contains a 2x2 subsquare. In this case an arrow is given by
{{{a,0),{b,0},(asb,13},{(c,0),{(d,0),{ced,1}},

{{a,0),{c,0},(a2e,1}},{(b,0),(d,0),(bed, ¥} 3}}.1].

¥ow let {Q,2} be the example indicated above: (zq, 4%L). We have

a»(aa{acb}) = %Eﬁ +-%iq 0 that ac(ac{ash)) = b iff 7{a-b) = G,

a&lso atb _ cid and 235 = btd
2 2 2 2

This proves

implies a = d, b = c.

LEMMA. The STS{v) constructed j&wm?(zq, i%lJ ae above oontaing an
arvcw 1ff Tlg.

in order to prove theorem 2 we have to find an STS(v) without arvows

for 21{v, For v = 2} this has been done in §l.




[After trying all pcé&ﬁiiﬂtié
idempotent quasigroup of order-;, 1 Er
system of order 21 is free fram arrnwsr€ 0nsequent1y the dlrect construc_ ;fff

tion given in 5! is indispensable.]

For v > 21 we use a recursive constructlon;
et v = Ju, u = 3 (mod 5) and let 8 be an STS{u} on & set U with a.
parallel class P and without arrow. e construct an STS{v) with parallel
class and without arvow as follows:

Let ¥V = Iny and t;ke the following triples:

{i) for easch T ¢ S\P take the rriples of a traﬁsversal design
TE3,137] on 1,%T with groups 1 x{t} {teT), where this transversal
design {(Latin square of order ?) does not contain an arrow (Latan
subsquare of order 2); a suitable Latim square is for example the
addition table of £y

(ii) for each T ¢ P take the triples of an ST5(Z1) with parallel class

PT and without arrows on I7XT.

Obviously this yields an STS(v) with parailel class U PT. If it contains ;
an arrow, and all four triples are of type (i) then p%ojecting them down
yields an arrow in S uniéss two tripies have the same projection T. But
in this case all four have the same projection, and we have an arrew in
the transversal design on I xT. Contradiction. If two triples are of type
(ii) then (since they intersect} they have the same projection T and it
follows that all four are in the STS(Z2i) on I,xT, Contradiction. Finally
with three triples of type (i) and onme af type (ii) we find a contradic-
ticn if twe have the same projection T, hence the three triples of type
{i} project in three intersecting triples so that the triple of type (ii}
has te project inte a triple too and again we found an arrow at the bottom .
{i.e., in 8). This proves that our STS(v) is free of arrows, which ﬁompletés;

the proof of theorem 2.
3. THE CASE ¢ = 5

It is easy to verify that the only configuration of five triples on

seven gointg not coataining an arrow is given by



{0,1,1'3,10,2,2'1,{0,3,3° 1, {1,2,3},(1
- I shall call it a mitre. IR

Picture:

It is the affine plane AG(2,3) winus twe points and the seven linea
incident with these points. Hence avoiding this configuration means in

particular also avoiding sub STS{,O'B.

Ler us now investigate for which quasigroups(Q,<) the associated
Steiner triple system SQ contains & mitre. If the two disjoint triples

are embedded vertically, we find the mitre

{Z3K{a}.z3x{b},{0,c).(D,a),{i,b)},
{(G,C),,(U,b}'{l,a)},{(D,C),(z,a),{z’b)}}

and it follows that {a,b,c} is a quasigroup of order 3:
ach = ¢, acc » b, hec = &.
1f there is one vertical triple we find the mitye

{33“'{3}1{{1 ,a)__,{1,'}5},(2,&01’)}},{{2,3),(2,({},(U,aod)},
{(0,a),{1,b),(0,a:d}},{(0,2),(2,3:b),(2,d)}}

and it follows that a = do{ac(8c{asd))), All other cases lead to a

contradiction, 50 we have

LEMMA. S containe a mitre iff @ containg distinct e¢lements a, b such thatﬁ”f

Q -
a = bo{ac(ac{aob))). (;)f:ﬂ

{Note that {1) holds in case {a,b,c} is a subguasigroup of Q).
|+r
If we take the special quasigroup (Qo,o) = (Zq, —EHJ then (1)

holds iff 9(a-b) = 0, so that 3]q.

Hence

THEOREM. Let (q,42) = 1 and v = 3q. Then there exists an STS(v) without

arroy or mitre, ac. 8, .
Qo
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