AFDELING ZUIVERE WISKUNDE

A.E. BROUWER & A. SCHRIJVER
ON THE PERIOD OF AN OPERATOR, DEFINED ON ANTICHAINS

2e boerhaavestraat 49 amsterdam
Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
ABSTRACT

In this report we will study the period of a certain operator defined on antichains in a partially ordered set.

0. INTRODUCTION

If \((X, \leq)\) is a partially ordered set, then define for each \(A \subseteq X\):

\[
A^+ = \{ x \in X \mid \exists a \in A: a \leq x \}, \\
A^c = \{ x \in X \mid x \not\in A \}, \\
A^{\max} = \{ a \in A \mid \forall b \in A: b \geq a \rightarrow b = a \},
\]

Set \(A(X)\) = the set of antichains in \(X\) (order-free subsets of \(X\)), and for each \(A \in A(X)\): \(F(A) = A^{+\max}\).

Then one can easily see: \(F\) is a bijection of \(A(X)\) onto \(A(X)\), and for each \(A \in A(X)\) there exists a \(k > 0\) so that \(F^k(A) = A\).

Motivated by an abundance of examples we conjectured that, if \(X\) is a Boolean algebra with \(2^n\) elements, for each antichain \(A \in A(X)\) the relation \(F^{n+2}(A) = A\) would be valid. This conjecture turned out to be wrong. However, the following can be proved:

1. If \(n \leq 4\) and \(X\) is a Boolean-algebra with \(2^n\) elements, then for each \(A \in A(X)\): \(F^{n+2}(A) = A\).

2. For each \(n \in \mathbb{N}\) the following propositions are equivalent:
 a. If \(X\) is a Boolean algebra with \(2^n\) elements and \(A \in A(X)\), then \(F^{n+2}(A) = A\);
 b. If \(\ell_1 + \ell_2 + \ldots + \ell_p = n\), \(X = \{0, \ldots, \ell_1\} \times \ldots \times \{0, \ldots, \ell_p\}\) (the cardinal product of \(p\) chains) and \(A \in A(X)\), then \(F^{n+2}(A) = A\).

3. If \(X\) is the cardinal product of the 2 chains \(\{0, \ldots, \ell\}\) and \(\{0, \ldots, m\}\) and \(A \in A(X)\), then \(F^{\ell+m+2}(A) = A\).

1. BASIC DEFINITION AND PROPERTIES

In the sequel all sets (except \(\mathbb{N}\) and \(\mathbb{Z}\)) are supposed to be finite.
If \((X_1, \leq_1), \ldots, (X_n, \leq_n)\) are p.o. sets (partially ordered sets) then the cardinal product \((\prod_{i=1}^n X_i, \leq)\) is the p.o. set \(\prod_{i=1}^n X_i\) with order:

\[
(x_1, \ldots, x_n) \leq (y_1, \ldots, y_n) \iff x_1 \leq_1 y_1, \ldots, x_n \leq_n y_n.
\]

If \(n \in \mathbb{N}\) then \(\overline{n}\) is the totally ordered set \(\{0, \ldots, n\}\) with \(0 \leq 1 \leq \ldots \leq n\).

A lattice \(L\) of dimension \(k\) is the product of \(k\) totally ordered sets.

If \(L = \overline{n}_1 \times \ldots \times \overline{n}_k\) then \(n_1 + \ldots + n_k\) is called the length of \(L\).

If \(n \in \mathbb{N}\), we identify the following p.o. sets:

1. the power-set-algebra \(P(X)\), where \(X\) is any set with \(|X| = n\) (ordered by inclusion),
2. the Boolean algebra with \(2^n\) elements (as a lattice),
3. the \(n\)-cube \(\{0, 1\}^n\) (with \((x_1, \ldots, x_n) \leq (y_1, \ldots, y_n) \iff x_i \leq y_i, \ldots, x_n \leq y_n\)).

Each of these p.o. sets will be denoted by \(2^n\).

In particular: \(2^n\) is a lattice with dimension \(n\) and length \(n\).

If \((X, \leq)\) is a p.o. set and \(A \subseteq X\), define

\[
A^\dual = \{x \in X \mid \exists a \in A: a \leq x\},
\]

\[
A^+ = \{x \in X \mid \exists a \in A: x \leq a\},
\]

\[
A_{\max} = \{x \in A \mid \forall y \in A: y \leq x \rightarrow y = x\},
\]

\[
A_{\min} = \{x \in A \mid \forall y \in A: y \geq x \rightarrow y = x\},
\]

\[
A^c = \{x \in X \mid x \not\in A\},
\]

\(A\) is an antichain if \(\forall x, y \in A: x \leq y \rightarrow x = y\),

\(A(X)\) is the set of antichains in \(X\).

Proposition 1.1. If \((X, \leq)\) is a p.o. set and \(A \subseteq X\), then

1. \(A^{++} = A^+, A^{++} = A^+\),
2. \(A_{\max} \cdot A_{\max} = A_{\max}, A_{\min} \cdot A_{\min} = A_{\min}\),
3. \(A\) is antichain \(\iff A_{\max} = A \iff A_{\min} = A\),
4. \(A^c = A\),
5. \(A^{\min} = A_{\min}, A^{\max} = A_{\max}\),
6. \(A^{\min c} = A^{\min} A^{\max}, A^{\max c} = A^{\max}\),
7. \(A^{\dual c} = A^{\dual} A^{c}, A^{c \dual} = A^{c \dual}\).

Proof. obvious. \(\square\)
If \((X, \leq)\) is a p.o.set, define: \(F: A(X) \rightarrow A(X)\) by \(F(A) = A^{+\text{cmax}}\) for each \(A \in A(X)\); and \(G: A(X) \rightarrow A(X)\) by \(G(A) = A^{+\text{cmin}}\) for each \(A \in A(X)\).

Proposition 1.2. \(F\) and \(G\) are bijections from \(A(X)\) onto \(A(X)\) and \(F^{-1} = G.\)

Proof. For each \(A \in A(X)\), \(F(G(A)) = A^{+\text{cmin}+\text{cmax}} = A^{+\text{c+cmax}} = A^{+\text{ccmax}} = A^{+\text{max}} = A^{\text{max}} = A,\) and similarly \(G(F(A)) = A.\) \(\Box\)

If \(A \subset 2^n\), define \(A^C = \{x \in 2^n \mid x' \in A\}.\)

Proposition 1.3. If \(A \subset 2^n\) then

1. \(A^{CC} = A,\)
2. \(A^{CC} = A^{CC},\)
3. \(A^{+C} = A^{C+}, A^{+C} = A^{C+},\)
4. \(A^{minC} = A^{cmax}, A^{maxC} = A^{cmin}.\)

Proof. obvious. \(\Box\)

Define \(H: A(2^n) + A(2^n)\) by \(H(A) = A^{+\text{cmaxC}}\) for each \(A \in A(2^n).\)

Proposition 1.4.

1. For each \(A \in A(2^n)\), \(H(A) = F(A)^C = G(A^C)\).
2. \(H\) is a bijection from \(A(2^n)\) onto \(A(2^n)\) and \(H^{-1} = H.\)

Proof.

1. \(F(A)^C = A^{+\text{cmaxC}} = H(A),\)
\(G(A^C) = A^{+\text{cmin}} = A^{+\text{cmin}} = A^{+\text{cmax}} = H(A).\)
2. \(H(H(A)) = H(F(A)^C) = G(F(A)^C) = G(F(A)) = A.\) \(\Box\)
2. EXAMPLES

a. If \(G = (V,E) \) is an undirected graph (\(V \) is vertex-set and \(E \) is edge-set), \(|E| = n\), \(P(E) = 2^n \) and \(A = \{C \subseteq E \mid C \) a circuit in \(G \) and \(C \) contains no other circuit\},
then:
\[
A \in A(P(E)),
\]
\[
F(A) = \{F \subseteq E \mid F \) is a spanning forest of \(G \} \in A(P(E)).
\]
and
\[
H(F(A)) = F^2(A)^C = \{C \subseteq E \mid C \) is a cutset in \(G \} \in A(P(E)).
\]

b. If \(X \) is a \(k \)-dimensional linear space over a finite field, \(|X| = n\), \(P(X) = 2^n \), and \(A = \{L \subseteq X \mid L \) is linear dependent in \(X \) and \(L \) contains no other linear dependent set\},
then:
\[
A \in A(P(X)),
\]
\[
F(A) = \{B \subseteq X \mid B \) is basis of \(X\},
\]
and
\[
F^2(A) = \{Y \subseteq X \mid Y \) is a \((k-1)\)-dimensional subspace of \(X\}.
\]

c. If \(G = (V,E) \) is an undirected graph, \(|V| = n\), \(P(V) = 2^n \), and \(A = \{(x,y) \mid (x,y) \in E\},
then:
\[
A \in A(P(V)),
\]
\[
F(A) = \{I \subseteq V \mid I \) is a maximal edge-independent set of vertices\},
\]
and
\[
H(A) = \{C \subseteq V \mid C \) is a minimal edge-covering set of vertices\}.
\]

d. If \((X,\preceq) \) is a p.o.set, \(|X| = n\), \(P(X) = 2^n \), and \(A = \{(x,y) \mid x \preceq y \) and \(y \not\preceq x\},
then:
\[
A \in A(P(X)),
\]
and
\[
F(A) = \{A \subseteq X \mid A \) is a maximal chain in \(X\}.
\]

e. If \(M = (X,\mathcal{B}) \) is a matroid, \(|X| = n\), \(P(X) = 2^n \), and \(\mathcal{B} \) is the collection of basis of \(M\),
then:
\[
\mathcal{B} \in A(P(X)),
\]
\[
G(\mathcal{B}) \) is the collection of circuits of \(M\),
and
\[
H(\mathcal{B}) \) is the collection of co-circuits of \(M\).
Our principal interest will be in the orbit of an antichain under repeated application of F. In the remainder of this section we show these orbits in a few cases, both in lattices and in general p.o. sets.

f. If $X = \{a, b, c, d\}$
and $A = \{\{a, b\}, \{a, c\}, \{b, c, d\}\}$,
then $A \in A(P(X))$,

$$A^+ = \{\{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\},$$
$$A^+ c = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\},$$
$$A^+ c_{\text{max}} = F(A) = \{\{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\}.$$

$F^2(A) = \{\{a, b\}, \{a, c\}, \{d\}\}$,
$F^3(A) = \{\{a\}, \{b, c\}\}$,
$F^4(A) = \{\{b, d\}, \{c, d\}\}$,
$F^5(A) = \{\{a, b, c\}, \{a, d\}\}$,
and $F^6(A) = \{\{a, b\}, \{a, c\}, \{b, c, d\}\} = A$.

g. If $X = \{a, b, c, d\}$
and $A = \{Y \subseteq X \mid |Y| = 2\}$,
then $F(A) = \{Y \subseteq X \mid |Y| = 1\}$,
$F^2(A) = \{\emptyset\}$,
$F^3(A) = \emptyset$,
$F^4(A) = \{X\}$,
$F^5(A) = \{Y \subseteq X \mid |Y| = 3\}$,
$F^6(A) = \{Y \subseteq X \mid |Y| = 2\} = A$.

h. If $X = \{a, b, c\}$,
and $A = \{\{a, b\}, \{a, c\}\}$,
then $F(A) = \{\{a\}, \{b, c\}\}$,
$F^2(A) = \{\{b\}, \{c\}\}$,
$F^3(A) = \{\{a\}\}$,
$F^4(A) = \{\{b, c\}\}$,
$F^5(A) = \{\{a, b\}, \{a, c\}\} = A$.
i. If \(X = \{a_1, \ldots, a_n\} \) and \(A = \{\{a_1, \ldots, a_n\}\} = \{X\} \), then \(F(A) = \{\text{all (n-1)-subsets of } X\} \),

\[
\begin{align*}
F^1(A) &= \{\text{all singletons in } X\}, \\
F^2(A) &= \{\emptyset\}, \\
F^3(A) &= \emptyset, \\
F^4(A) &= \{X\} = A.
\end{align*}
\]

j. If \(X = \bar{3} \times \bar{3} \) and \(A = \{(1,2), (3,1)\} \), then \(F(A) = \{(0,3), (2,1), (5,0)\} \),

\[
\begin{align*}
F^2(A) &= \{(1,2), (4,0)\}, \\
F^3(A) &= \{(0,3), (3,1)\}, \\
F^4(A) &= \{(2,2), (5,0)\}, \\
F^5(A) &= \{(1,3), (4,1)\}, \\
F^6(A) &= \{(0,3), (3,2), (5,0)\}, \\
F^7(A) &= \{(2,2), (4,1)\}, \\
F^8(A) &= \{(1,3), (3,1), (5,0)\}, \\
F^9(A) &= \{(0,3), (2,2), (4,0)\}, \\
F^{10}(A) &= \{(1,2), (3,1)\} = A.
\end{align*}
\]

k. If \(L = \bar{n}_1 \times \bar{n}_2 \times \cdots \times \bar{n}_k \), \(n_1 + \cdots + n_k = N \), and \(A = \{(n_1, \ldots, n_k)\} \), then \(F(A) = \{(x_1, \ldots, x_k) \mid \sum_{i=1}^{k} x_i = N - 1\} \),

\[
\begin{align*}
F^{N-1}(A) &= \{(x_1, \ldots, x_k) \mid \sum_{i=1}^{k} x_i = 1\}, \\
F^N(A) &= \{(0, \ldots, 0)\}, \\
F^{N+1}(A) &= \emptyset, \\
F^{N+2}(A) &= \{(n_1, \ldots, n_k)\} = A;
\end{align*}
\]

this orbit is called the principal orbit of the lattice.
In general, the principal orbit of a p.o.set is the orbit (under action of \(F \)) of the empty set. It is easily seen, that the principal orbit of a p.o.set, on which a height function can be defined, consists of those sets, that contain all elements of a given height, and has length \(H+2 \) if \(H \) is the height of the p.o.set.

As the following examples show, the length of an orbit other than the principal one need not be correlated with the height of the p.o.set.

1. If \(X = \{a_1, \ldots, a_n, c, d, e\} \) with \(a_1 < a_2 < \ldots < a_n < b < c < e; b < d < e \) and \(c \nleq d, d \nleq c \) and \(A = \{\{c\}\} \), then \(F(A) = \{\{d\}\} \), \(F^2(A) = \{\{c\}\} = A \).

m. If \(k \in \mathbb{N}, k \text{ even}, k \geq 8 \) and \(X = \{1, \ldots, k\} \), and \(\ell < \ell - 1 \) and \(\ell < \ell + 1 \) if \(\ell \) is even, and \(k < 1 \), and \(A = \{1,4\} \), then \(F(A) = \{2\} \cup \{\ell \mid \ell \text{ odd}, 7 \leq \ell \leq k - 1\} \), \(F^2(A) = \{5\} \cup \{\ell \mid \ell \text{ even}, 8 \leq \ell \leq k\} \), \(F^3(A) = \{3,6\} \), \(F^6(A) = \{5,8\} \), \(F^m(A) = \{1,4\} = A \), if \(m = \frac{3}{2} k \).

(For \(k=6 \) we get, if \(A=\{1,4\} \), \(F^5(A) = A \) which is not a special case of the behaviour shown above).

3. THE CONJECTURE

Proposition 3.1. If \((X, \preceq)\) is a p.o.set and \(A \in A(X) \), then there exists a \(k > 0 \) with \(F^k(A) = A \).

Proof. \(F \) is a permutation of \(A(X) \). \(\Box \)

Examples \(f, g, h, i \) suggest the following
Conjecture. If A ∈ A(2^n) then F^{n+2}(A) = A.

In fact one can prove

Theorem 3.2. If n ≤ 4 and A ∈ A(2^n), then F^{n+2}(A) = A.

Proof. Check each antichain. □

Theorem 3.3. If n ∈ N and A = {2^n} then F^{n+2}(A) = A.

Proof. See example i. □

There exists a connection between the above conjecture and an analogous one for lattices:

Theorem 3.4. If n ∈ N, then the following assertions are equivalent:
(i) ∀A ∈ A(2^n): F^{n+2}(A) = A (the conjecture for n),
(ii) each lattice L with length n satisfies: ∀A ∈ A(L): F^{n+2}(A) = A.

Proof. (ii) → (i): 2^n is a lattice with length n.

(i) → (ii): Suppose L = ˜n_1 × ... × ˜n_k, with n_1 + ... + n_k = n.
Let X_1, ..., X_k be k pairwise disjoint sets with |X_j| = n_j
(1 ≤ j ≤ k), and set X = X_1 ∪ ... ∪ X_k.
Now |X| = n and P(X) = 2^n.

Define φ: P(X) → L by

φ(Y) = (m_1, ..., m_k) if Y ⊆ X and |Y ∩ X_j| = m_j (1 ≤ j ≤ k).

Then it is easily seen that:
(1) φ is a function onto,
(2) for each A ∈ A(L) φ^{-1}[A] ∈ A(P(X)), and
(3) for each A ∈ A(L) φ^{-1}[F(A)] = F(φ^{-1}[A]).

Therefore, if A ∈ A(L), for each k ∈ Z, φ^{-1}[F_k(A)] = F_k(φ^{-1}[A])
and φ^{-1}[F^{n+2}(A)] = F^{n+2}(φ^{-1}[A]). But, by (i), since
φ^{-1}[A] ∈ A(P(X)), F^{n+2}(φ^{-1}[A]) = φ^{-1}[A], and so

F^{n+2}(A) = φ φ^{-1}[F^{n+2}(A)] = φ F^{n+2}(φ^{-1}[A]) = φ φ^{-1}[A] = A. □

Corollary 3.5. Each lattice L with length n ≤ 4 satisfies: ∀A ∈ A(L):
F^{n+2}(A) = A.
Proof. Consequence of theorems 3.2 and 3.4. □

Remark. Example ℓ shows that not each modular (general) lattice \(L \) with length \(n \leq 4 \) satisfies \(\forall A \in \mathcal{A}(L) \), \(F^{n+2}(A) = A \).

Corollary 3.5 gave a sufficient condition on the length of a lattice. The next theorem gives a sufficient condition on the dimension of a lattice.

Theorem 3.6. Each lattice \(L \) with dimension 2 and length \(n \) satisfies:
\[
\forall A \in \mathcal{A}(L), F^{n+2}(A) = A.
\]

Proof. Suppose \(L = \vec{\ell} \times \vec{m} \), \(n = \ell + m \) and \(A \in \mathcal{A}(L) \). Define for each \(t \in \mathbb{Z} \) the sets \(X(t) \subseteq \vec{\ell} \) and \(Y(t) \subseteq \vec{m} \), by
\[
X(t) = \{ x \in \vec{\ell} \mid \exists y \in \vec{m} : (x, y) \in F^t(A) \}
\]
and
\[
Y(t) = \{ y \in \vec{m} \mid \exists x \in \vec{\ell} : (x, y) \in F^t(A) \}.
\]

The theorem will be proved by demonstrating the following facts:
I. for each \(t \in \mathbb{Z} \) is \(F^t(A) \) completely determined by \(X(t) \) and \(Y(t) \),
II. for each \(t \in \mathbb{Z} \) is \(X(t+n+2) = X(t) \) and \(Y(t+n+2) = Y(t) \).

Then, of course, for each \(t \in \mathbb{Z} \), \(F^{t+n+2}(A) = F^t(A) \) holds, and thus \(\tau^{n+2}(A) = A \).

Proof of I: \(\forall t \in \mathbb{Z} \) is \(|X(t)| = |Y(t)| \) (if \((x_1, y) \) and \((x_2, y) \in F^t(A) \), then \(x_1 = x_2 \)).

Suppose \(X(t) = \{ x_1, \ldots, x_k \} \) with \(0 \leq x_1 < \cdots < x_k \leq \ell \),

and \(Y(t) = \{ y_1, \ldots, y_k \} \) with \(m \geq x_1 > \cdots > x_k \geq 0 \).

Then \(F^t(A) = \{ (x_1, y_1), \ldots, (x_k, y_k) \} \), so \(F^t(A) \) is determined by \(X(t) \) and \(Y(t) \).

Proof of II: We first prove:
\[
\forall t \in \mathbb{Z} \quad X(t+1) = \{ x \in \vec{\ell} \mid x + 1 \in X(t) \} \cup \{ \ell \mid 0 \notin Y(t) \}
\]
and
\[
Y(t+1) = \{ y \in \vec{m} \mid y + 1 \in Y(t) \} \cup \{ m \mid 0 \notin X(t) \}. \quad (\ast)
\]

For suppose \(x \in \vec{\ell} \) and \(x + 1 \in X(t) \). Then, by definition of \(X(t) \), for some \(y \) \((x+1, y) \in F^t(A) \), so \((x, y) \notin F^t(A)^\dagger \), i.e. \((x, y) \in F^t(A)^{\dagger c} \). Then there exists \((u, v) \in F^t(A)^{\dagger \max} \) so that \((x, y) \leq (u, v) \). But \((x+1, y) \in F^t(A) \), so \(x = u \) and
(x,v) ∈ F^t(A)_{cmax}, hence x ∈ X(t+1). If 0 ∉ Y(t), then for all x ∈ X(t+1), there exists (ℓ,0) ∈ F^t(A)_{cmax} and consequently (ℓ,0) ∉ F^t(A)^{cmax}, i.e. (ℓ,0) ∈ F^t(A)_{cmin}. So there exists (u,v) ∈ F^t(A)_{cmax} such that (ℓ,0) ≤ (u,v). But then ℓ = u and (ℓ,v) ∈ F^t(A)_{cmax}, thus ℓ ∈ X(t+1).

Conversely (follows from the above by considering the reverse order on L): if x ∈ X(t+1) and x ≠ ℓ then there exists y so that (x,y) ∈ F^{t+1}(A), then (x+1,y) ∉ F^{t+1}(A)^{cmin}, i.e. (x+1,y) ∈ F^{t+1}(A)^{cmax}. Then for some (u,v) ∈ F^{t+1}(A)^{cmin}. (u,v) ≤ (x+1,y). But (x,y) ∈ F^{t+1}(A), so u = x + 1 and (x+1,v) ∈ F^{t+1}(A)^{cmax}, hence x + 1 ∈ X(t). Finally, if ℓ ∈ X(t+1), then for some y, (ℓ,y) ∈ F^{t+1}(A), so (ℓ,0) ∈ F^{t+1}(A)^{cmax} and (ℓ,0) ∉ F^{t+1}(A)^{cmin}. Thus ∀x ∈ X(t+1), x ∉ F^{t+1}(A)^{cmin} = GF^{t+1}(A) = F^{t}(A), i.e. 0 ∉ X(t). This proves (*).

The proof of II is then as follows: for each t ∈ Z

x ∈ X(t) ↔ 0 ∈ X(t+x) ↔ m ∉ Y(t+x+1) ↔ 0 ∉ Y(t+x+1+m) ↔

ℓ ∈ X(t+x+1+m+1) ↔ x ∈ X(t+x+1+m+1+(ℓ-x)) = X(t+ℓ+m+2) = X(t+n+2).

Similarly: y ∈ Y(t) ↔ y ∈ Y(t+n+2). □

Finally we prove the following

Theorem 3.7. The conjecture is false.

Proof. Take X = {a,b,c,d,e} and A = {{a,b},{b,c},{c,d},{d,e},{e,a}}; n = 5.

Then F(A) = {{a,c},{b,d},{c,e},{d,a},{e,b}},

and F^2(A) = {{a,b},{b,c},{c,d},{d,e},{e,a}} = A,

therefore F^7(A) = F(A) ≠ A. □

4. SOME NUMERICAL RESULTS

For n ≤ 5 the integers which occur as the period of the F-operator on antichains in 2^N are completely known.

For n > 5 we only have some incidental results.
<table>
<thead>
<tr>
<th>n</th>
<th>periods occurring in 2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2 and 4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2, 3 and 6</td>
</tr>
<tr>
<td>5</td>
<td>2, 3, 7, 16 and 27</td>
</tr>
<tr>
<td>6</td>
<td>among others: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 34, 36, 38, 40, 42, 48, 54, 64, 68, 72, 76, 78, 81, 82, 86, 90, 92, 94, 98, 102, 104, 106, 108, 120, 124, 128, 132, 134, 144, 168, 188, 204, 216, 219, 222, 228, 234, 252, 256, 270, 288, 348, 368, 380, 384, 396, 414, 616, 1026, 1032</td>
</tr>
</tbody>
</table>

For $n = 5$ and $n = 6$ the period $n + 2$ is by far the most frequent one.

Below the output of a conversational program on the PDP8/I computer is reproduced. Input is the value of n and an antichain in 2^n. Output is the length of the period and if desired the entire period. Note that all numbers are in octal notation.

Antichain notation: $\{\{a, b, c\}, \{a, b, d\}, \{c, d\}\}$ is printed ABC/ABD/CD/,

$$\emptyset$$ is printed /,

\emptyset is printed .
INPUT ANTI-CHAIN: DE/CE/CD/EE/AD/AE/

./C2.8 DE/CE/CD/E/E/AD/AE/

1.1 M THE ENTIRE CYCLE?

./C3.1 LD/TC/AE/AC/
./C3.2 CDE/EE/AD/AA/
./C3.3 DE/CD/ACE/
./C3.4 ECE/ACD/E/EE/ADE/AEC/
./C3.5 CDE/A DE/ED/C/AD/ACD/ACE/AF/
./C3.6 DE/EL/CE/EE/AC/ACD/
./C3.7 CE/CD/E/AD/AEC/
./C3.9 DE/LD/E/CE/AA/E/AC/AB/
./C3.11 CE/CD/E/AD/
./C3.12 DE/EL/EE/AD/
./C3.13 ECL/ACD/AF/
./C3.14 CDE/EE/CD/AD/AC/ACE/
./C3.15 DE/LCE/ACD/EE/AED/AEC/
./C3.16 DE/ECD/AD/AC/EE/
./C3.17 CDE/L/E/EE/C/AC/AA/
./C3.21 DE/CE/CD/E/EE/AD/AE/

./C5.3 DE/CE/DE/EE/AD/AE/

INPUT ANTI-CHAIN: DE/CE/EF/BCD/AD/

./C3.3 DE/CE/DE/EE/AD/AE/

D A T THE ENTIRE CYCLE?

./C3.1 CD/LT/AE/AEC/
./C3.2 DE/CL/AD/AC/AA/
./C3.3 CE/LE/EC/DE/AE/
./C3.4 FE/ACD/AD/AA/AEC/
./C3.5 LCE/CD/AD/AC/EE/AE/
./C3.6 CDE/DE/AF/AE/
./C3.7 DE/LCE/DE/C/ACD/AED/
./C3.11 CE/ED/AD/ACE/AAE/AEC/
./C3.11 TE/LC/AD/E/AE/
./C3.12 CE/L/EE/ED/AC/
./C3.16 DE/CE/EE/AD/AAE/
./C3.17 CE/L/EE/ED/AC/
./C3.18 CE/LE/ED/AC/AF/
./C3.19 CDE/LE/EC/EE/AE/
./C3.15 PE/CE/ACD/ALD/AE/
./C3.17 CDE/AD/ACF/AE/
./C3.20 CDE/DE/CL/AE/AC/
./C3.21 DE/CL/E/EE/LCD/ACD/ALD/
./C3.22 CDE/LE/EE/AD/AC/AC/
./C3.22 LE/CE/AC/AL/
./C3.24 CE/LD/E/CD/AD/AD/
./C3.25 DE/ED/CL/AD/AE/
./C3.26 LE/CE/AD/ACE/AE/
./C3.28 ICE/AD/ACE/AF/
Applying Ramsey's theorem M.M. Krieger has proved in [1] that for each
n with 11 = N(3,4;2)+2 ≤ n < N(4,4;3) there exists an antichain A ∈ A(2^n)
with F²(A) = A. By a result of Isbell [2] it is known that N(4,4;3) ≥ 13.

Furthermore, for each even n there exists an A ∈ A(2^n) with F²(A) = A.
(If X = {0.1,...,k,k+1,...,2k}, then set
A = {Y ∈ X| |Y| = k and |Y ∩ {1,...,k}| is even}).

[1] M.M. Krieger, On permutations of Antichains in Boolean lattices:
 An application of Ramsey's Theorem; preprint Computer Science
 Dept., University of California, Los Angeles.