stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZW 91/77

FEBRUARI

ZS. BARANYAI & A.E. BROUWER

EXTENSION OF COLOURINGS OF THE EDGES OF A COMPLETE (UNIFORM HYPER) GRAPH

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research $(\mathsf{Z.W.O})$.

Extension of colourings of the edges of a complete (uniform hyper)graph

Ъу

Zs. Baranyai & A.E. Brouwer

ABSTRACT

Let $1 \le m < n$ and consider the complete graph on 2m points K_{2m} as a subgraph of K_{2n} . We prove that if an edge-colouring of K_{2m} (with 2m-1 colours) is given, this colouring can be extended to a colouring of K_{2n} (with 2n-1 colours) iff $2m \le n$. The corresponding problem for complete h-uniform hypergraphs is discussed, the case h=3 is solved completely and asymptotic results are given for arbitrary h.

KEYWORDS & PHRASES: parallelism

O. INTRODUCTION

Let X be a finite set and let $P_h(X)$ be the collection of all h-element subsets of X. A parallelism on $P_h(X)$ is an equivalence relation of $P_h(X)$ such that the members of each equivalence class form a partition of X. Obviously for the existence of a parallelism h | #X is necessary, and in Baranyai [1] it is shown that this condition suffices. A subset Y of X (provided with a given parallelism) is called a subspace when the restriction of the equivalence relation on $P_h(X)$ to $P_h(Y)$ yields a parallelism on Y [-in other words, when it never happens that H_1 // H_2 and H_1 \subset Y but H_2 intersects both Y and X\Y]. Cameron [5] remarked that if Y is a proper subspace of X then 2 $^{\#}Y \leq ^{\#}X$, and in Brouwer [3] it is shown that if $^{2h} \mid ^{\#}X$ then there exists a // ism on X with a subspace Y such that $\#Y = \frac{1}{2} \#X$. More generally it can be shown in the same way that if th | #X then there exists a // ism on X with a subspace Y such that $\#Y = \frac{1}{t} \cdot \#X$ (see [2], [4]). We conjecture that the requirements 2 $\#Y \le \#X$ and $\#Y \equiv \#X \equiv 0 \pmod{h}$ suffice in all cases for the existence of a // ism on X with subspace.Y. In this note we prove this conjecture for h = 2 or 3 and for h arbitrary, n sufficiently large.

OA. Graph theoretic terminology and upper bound.

These results can be phrased in the language of (hyper)graphs as follows:

A parallelism on $P_h(X)$, where ${}^{\#}X$ = n, is a colouring of the complete huniform hypergraph on n vertices with $\frac{h}{n}\binom{n}{h} = \binom{n-1}{h-1}$ colours, where edges with the same colour are disjoint. If Y is a subspace of X, where ${}^{\#}Y$ = m, then any such colouring of Y (with $\binom{m-1}{h-1}$) colours) can be extended to a colouring of X with $\binom{n-1}{h-1}$ colours. A necessary condition for this to be possible is that m $\leq \frac{1}{2}n$ [for: the $\binom{m-1}{h-1}$) colours used to colour the h-subsets of Y colour $\frac{n-m}{h}\binom{m-1}{h-1}$ h-subsets of X\Y, so that $\frac{n-m}{h}\binom{m-1}{h-1} \leq \binom{n-m}{h}$ hence $\binom{m-1}{h-1} \leq \binom{n-m-1}{h-1}$, and consequently m $\leq n-m$].

OB. A general existence theorem.

Define for fixed X and Y (where Y \subset X, #X = n, #Y = m) the weight of an h-subset H of X as #(HnY). In order to prove the existence of a parallelism on X with subspace Y it suffices to indicate a suitable weight distribution of the parallel classes (by the theorem quoted below). If the parallel classes are $\#_Z(z=1,\ldots,\binom{n-1}{h-1})$ and $\#_Z$ contains X_{gz} elements of weight g (0 \le g \le h) then obviously the X_{gz} satisfy

(2)
$$\sum_{g} gX_{gz} = m$$

Conversely, given a matrix (X_{gz}) satisfying these equations (where the X_{gz} are nonnegative integers), there exists a parallelism on X with this weight distribution. In particular if for $\binom{m-1}{h-1}$ values of z we have $X_{0z} = \frac{n-m}{h}$ and $X_{hz} = \frac{m}{h}$ and $X_{gz} = 0$ (1 \leq g \leq h-1), then Y will be a subspace of this parallelism.

That the above is true can be proved in the same way as it was proved in the case n = 2m in [3]; on the other hand, it is a special case of a very general theorem in [2].

1. THE CASE h = 2

By what was stated in section OB we have to find nonnegative integers X_{gz} such that for $z=1,\ldots,n-1$ we have

$$\sum_{g=0}^{2} X_{gz} = \frac{1}{2}n$$

$$\sum_{g=0}^{2} gX_{gz} = m$$

$$\sum_{z} X_{gz} = {m \choose g} {n-m \choose 2-g} \qquad (g=0,1,2)$$

and for m-1 values of z we have

$$X_{0z} = \frac{1}{2}(n-m)$$
, $X_{2z} = \frac{1}{2}m$ and $X_{1z} = 0$.

The unique solution is

$$X_{0z} = \frac{n}{2} - m$$
, $X_{1z} = m$, $X_{2z} = 0$ for n-m values of z

and

$$X_{0z} = \frac{1}{2}(n-m)$$
, $X_{1z} = 0$, $X_{2z} = \frac{1}{2}m$ for m-1 values of z.

In particular there is a solution.

2. THE CASE m | n

Suppose n = mt. Then (as already remarked in [2] and [4]) a solution exists. For any ordered t-tuple (h_1, \ldots, h_t) with $\sum_j h_j = h$ take $\frac{h}{n} \prod_j \binom{m}{h}$ columns z with $(X_{gz} = 0 \text{ if g does not occur among the } h_j \text{ and})$

$$X_{gz} = \sum_{g=h, i} \frac{m}{h}.$$

Obviously

$$\begin{split} & \sum_{g} \, x_{gz} = t \cdot \, \frac{m}{h} = \frac{n}{h}, \\ & \sum_{g} \, gx_{gz} = \sum_{j} h_{j} \, \frac{m}{h} = m; \text{ also} \\ & \sum_{z} \, x_{gz} = \sum_{(h_{1} \dots h_{t})} \, (\sum_{g=h_{j}} \, \frac{m}{h}) \cdot \, \frac{h}{n} \, \Pi_{j} \, (\frac{m}{h_{j}}) = \\ & = \frac{1}{t} \, \sum_{(h_{1}, \dots, h_{t})} \, (\sum_{g=h_{j}} 1) \cdot \, \Pi_{j} \, (\frac{m}{h_{j}}) = \\ & = \sum_{(h_{1}, \dots, h_{t})} \, \Pi_{j} \, (\frac{m}{h_{j}}) = (\frac{m}{g}) \, (\frac{n-m}{h-g}), \\ & = \sum_{(h_{1}, \dots, h_{t})} \, \Pi_{j} \, (\frac{m}{h_{j}}) = (\frac{m}{g}) \, (\frac{n-m}{h-g}), \end{split}$$

Hence this yields a solution of (1) - (3).

Perhaps you remark that

$$\frac{h}{n} \prod_{j} \binom{m}{h_{j}}$$

need not be an integer; but, since the t-tuples (h_1, \dots, h_t) , $(h_t, h_1, \dots, h_{t-1})$, \dots , (h_2, \dots, h_t, h_1) yield the same columns all we need is that

$$\frac{ho(\sigma)}{n}$$
 $\Pi_{j} \binom{m}{h_{j}}$

is an integer, where $o(\sigma)$ is the order of the cyclic permutation $(h_1, \dots, h_t) \rightarrow (h_t, h_1, \dots, h_{t-1})$. Now

$$\frac{h\sigma(\sigma)}{n} \prod_{j} \binom{m}{h_{j}} = \sum_{i=1}^{t} \frac{\sigma(\sigma)}{t} (\prod_{j \neq i} \binom{m}{h_{j}}) \cdot \binom{m-1}{h_{i}-1} = \sum_{i=j}^{\sigma(\sigma)} (\prod_{j \neq i} \binom{m}{h_{j}}) \cdot \binom{m-1}{h_{i}-1}, \text{ which is an integer.}$$

It remains to prove that for $\binom{m-1}{h-1}$ values of z we have $X_{hz} = \frac{m}{h}$ and $X_{gz} = 0$ (1 \leq g \leq h-1). We obtain such solutions from the t-tuples (0...h...0). The number of solutions of this type is $\frac{hc(\sigma)}{n}\prod_{j}\binom{m}{h_{j}}=\binom{m-1}{h-1}$ as required.

3. THE CASE h = 3

For arbitrary h we can somewhat simplify our equations: If we let $X_{0z}=\frac{n-m}{h}$, $X_{hz}=\frac{m}{h}$ and $X_{gz}=0$ (1 \leq g \leq h-1) for $z=\binom{n-1}{h-1}-\binom{m-1}{h-1}+1$, ..., $\binom{n-1}{h-1}$ then we have to solve

$$(1') \qquad \qquad \sum_{g=1}^{h-1} X_{gz} \leq \frac{n}{h}$$

(2')
$$\sum_{g=1}^{h-1} gX_{gz} = m$$

(3')
$$\sum_{z} X_{gz} = {m \choose g} {n-m \choose h-g} \qquad (1 \le g \le h-1)$$

where now z runs from 1 up to $\binom{n-1}{h-1}$ - $\binom{m-1}{h-1}$ [since for these z we can define X_{0z} and X_{hz} by $X_{0z} = \frac{n}{h} - \sum_{g=1}^{h-1} X_{gz}$ and $X_{hz} = 0$ and from the other equations it follows that (3) holds, that is, $\sum_{a11 \ z} X_{0z} = \binom{m}{0} \binom{n-m}{h-0}$].

Note that

(4')
$$\sum_{z=1}^{n-1} 1 = {n-1 \choose h-1} - {m-1 \choose h-1}$$

follows from (1') - (3').

Our solutions (X) will contain many identical columns say columns (Y gi) with multiplicity N . Rewriting (1') - (3') we get:

(1")
$$\sum_{g=1}^{h-1} Y_{gi} \leq \frac{n}{h}$$

(2")
$$\sum_{g=1}^{h-1} gY_{gi} = m$$

(3")
$$\sum_{i} N_{i} Y_{gi} = {m \choose g} {n-m \choose h-g}$$

(4")
$$\sum_{i} N_{i} = \binom{n-1}{h-1} - \binom{m-1}{h-1}.$$

In the special case h = 3 we need two different columns; in the table below we give N_1 and Y_{2i} (i=1,2) - then Y_{1i} = m - 2 Y_{2i} , and N_2 = $\binom{n-1}{2}$ - $\binom{m-1}{2}$ - N_1 .

Case	N ₁	Y ₂₁	Y ₂₂
$m \le \frac{n}{3}$, m even	$\frac{1}{2}$ (n-m)(n-m-1)	0	$\frac{\mathbf{m}}{2}$
$m \leq \frac{n}{3}$, m odd	$\frac{1}{2}$ (n-m) (n-2m)	0	$\frac{m}{3}$
$m \geq \frac{n}{3}$:			
$n \equiv m \equiv 0 \pmod{2}$	$\frac{3}{2} m(n-m-1)$	$\frac{1}{6}(4m-n)$	_
$n \equiv 1$, $m \equiv 0 \pmod{2}$	$\frac{3}{2}$ m(n-m)	$\frac{1}{6}(4m-n+1)$	$\frac{m}{2}$
$n \equiv m \equiv 1 \pmod{2}$	$\frac{3}{2}$ (m-1) (n-m-3)	$\frac{1}{6}$ (4m-n-3)	$\frac{m-1}{2}$
$n \equiv 0$, $m \equiv 1 \pmod{2}$	$\frac{3}{2}$ (m-1)(n-m)	$\frac{1}{6}(4m-n)$	$\frac{m-1}{2}$

That this is indeed a solution can be readily verified.

3. THE CASE h = 4

In this case we have an easy solution for $n \ge 4m$; we did not bother to look for solutions if 2m < n < 4m.

Here the matrices $(Y_{gi})_{1 \le g \le 3}$, $1 \le i \le 3$ can be taken as

$$\begin{bmatrix} m & 0 & 0 \\ 0 & \frac{1}{2}m & 0 \\ 0 & 0 & \frac{1}{3}m \end{bmatrix}$$
 if $3 | m$ and
$$\begin{bmatrix} m & 0 & \frac{1}{4}m \\ 0 & \frac{1}{2}m & 0 \\ 0 & 0 & \frac{1}{4}m \end{bmatrix}$$
 otherwise.

The multiplicaties N_i are uniquely determined from the (Y_{gi}) and (3"), (4").

5. ASYMPTOTIC RESULTS

For n large (for instance $n \ge mh^{3/2}$) we can give an explicit solution as follows:

We define the matrix (Y_{gi}) and multiplicities N_i $1 \le g \le h-1$, $1 \le i \le h-1$ with help of the numbers Y_g $2 \le g \le h-1$ which are to be chosen later. The matrix (Y_{gi}) will contain 0'-s except in the first row and the main diagonal - this explains why the indices g and i will be a little bit mixed.

Let
$$Y_{gi} = \delta_{gi} Y_{g}$$
 for $2 \le g \le h-1$ and $1 \le i \le h-1$

$$Y_{1i} = m - \sum_{g=2}^{h-1} gY_{gi} = m - iY_{i} \text{ (supposing } Y_{1} = 0)$$

$$N_{g} = \frac{1}{Y_{g}} {m \choose g} {n-m \choose h-g}$$

$$N_{1} = {n-1 \choose h-1} - {m-1 \choose h-1} - \sum_{i=2}^{h-1} N_{i}$$

For this to be a solution first of all the Y_{gi} and the N_{i} must be nonnegative integers, that is,

$$(5) 0 \leq Y_{\underline{i}} \leq \frac{m}{\underline{i}},$$

(6)
$$Y_{g} \mid {m \choose g} {n-m \choose h-g},$$

$$(7) \qquad {\binom{n-1}{h-1}} - {\binom{m-1}{h-1}} - {\sum_{g=2}^{h-1}} \frac{1}{Y_g} {\binom{m}{g}} {\binom{n-m}{h-g}} \geq 0$$

and in order to satisfy (1") we need $n \ge mh$, while (2") - (4") are satisfied automatically.

One possible choice would be to take Y = 1 for all g. This satisfies (5) and (6), and since (7) is a polynomial in n of degree h-1 with leading coefficient $\frac{1}{(h-1)!}$ > 0 this surely yields a solution when n is large enough. To get a bound that is linear in m we have to do some work: Choose Y₂ = $\lceil \frac{m}{2} \rceil$; note that this satisfies (5) and (6) (since $\lceil \frac{m}{2} \rceil \mid {m \choose 2}$). If g | m then choose Y_g = $\frac{m}{g}$; again this is OK. In the general case choose

$$Y_g = \frac{m(h,g)}{h(m,g)}$$
.

This choice satisfies (5) since $h \mid m$ so that

$$(h,g) \le (m,g) \text{ and } Y_g \le \frac{m}{h} < \frac{m}{g}$$

also (6) is satisfied, for if (m,g) = am + bg then

$$\frac{h}{m} \frac{(m,g)}{(h,g)}$$
 $\binom{m}{g} = a \frac{h}{(h,g)}$ $\binom{m}{g} + b \frac{h}{(h,g)}$ $\binom{m-1}{g-1}$

is integral.

Note that

$$Y_g \ge \frac{m}{h} \cdot \frac{1}{\frac{1}{2}g} = \frac{2m}{gh}$$

in this case (since if g \nmid m then (g,m) $\leq \frac{1}{2}$ g), while also if g \mid m then $Y_g = \frac{m}{g} \geq \frac{2m}{gh}$.

Now concerning (7) we find

$$\begin{split} & \binom{n-1}{h-1} - \binom{m-1}{h-1} - \sum_{g=2}^{h-1} \frac{1}{Y_g} \binom{m}{g} \binom{n-m}{h-g} \geq \\ & \binom{n-1}{h-1} - \binom{m-1}{h-1} - \frac{1}{Y_2} \binom{m}{2} \binom{n-m}{h-2} - \frac{h}{2} \sum_{g=3}^{h-1} \binom{m-1}{g-1} \binom{n-m}{h-g} \geq \\ & \binom{n-1}{h-1} - \binom{m-1}{h-1} - m\binom{n-m}{h-2} - \frac{h}{2} \binom{m-1}{2} \binom{n-m}{h-3} - \frac{h}{2} \binom{m-1}{3} \binom{n-m}{h-4} \\ & - \frac{h}{2} (h-5) \binom{m-1}{4} \binom{n-m}{h-5} \geq \\ & \binom{n-1}{h-1} \left\{ 1 - \frac{1}{2^{h-1}} - \frac{m(h-1)}{(n-1)} - \frac{h(h-1)(h-2)}{2} \binom{m-1}{2} \binom{m-1}{2} - \frac{1}{(n-1)(n-2)} - \frac{h(h-1)(h-2)(h-3)}{2} \binom{m-1}{3} \binom{m-1}{3} \frac{1}{(n-1)(n-2)(n-3)} - \\ & - \frac{h(h-1)(h-2)(h-3)(h-4)(h-5)}{2(n-1)(n-2)(n-3)(n-4)} \binom{m-1}{4} \right\} \\ & \geq \binom{n-1}{h-1} \left\{ 1 - \frac{1}{2^{h-1}} - \frac{mh}{n} - \frac{m^2h^3}{4n^2} - \frac{m^3h^4}{12n^3} - \frac{m^4h^6}{48n^4} \right\} \\ & \geq \binom{n-1}{h-1} \left\{ 1 - \frac{1}{8} - \frac{1}{2} - \frac{1}{4} - \frac{1}{24} - \frac{1}{48} \right\} = \binom{n-1}{h-1} \cdot \frac{3}{48} > 0 \end{split}$$

where we used n \geq mh $^{3/2}$ and h \geq 4 (and the facts that $\binom{m-1}{4}\binom{n-m}{h-5}$ is larger than $\binom{m-1}{g-1}\binom{n-m}{h-g}$ for g \geq 6, and that $\frac{a-1}{b-1}<\frac{a}{b}$ if a < b). This proves that a solution exists when n > mh $^{3/2}$.

REFERENCES

- [1] Zs. BARANYAI, On the factorization of the complete uniform hypergraph, pp. 91-108 in:

 Infinite and finite sets, Colloquia Math. Soc. János Bolyai, 1973.
- [2] Zs. BARANYAI, Some applications of equalized matrices, to appear.

- [3] A.E. Brouwer, A generalization of Baranyai's theorem, Math. Centre report ZW 81, Amsterdam, 1976.
- [4] A.E. Brouwer, stelling 2.(V) adjoined to thesis, Amsterdam, 1976.
- [5] P.J. Cameron, Parallelisms of Complete Designs, LMS Lecture Notes 23, Cambridge 1976 page 25.

Paris, 77 01 05.