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1sion of colourings of the edges of a complete (uniform hyper)graph

Jaranyai & A.E. Brouwer

ACT

Let 1 £ m < n and consider the complete graph on 2m points K
aph of K

as a
2m

We prove that if an edge-colouring of K, (with 2m-1

2n’ 2m
rs) is given, this colouring can be extended to a colouring of K2n

2n-1 colours) iff 2m < n. The corresponding problem for complete
form hypergraphs is discussed, the case h = 3 is solved completely

symptotic results are given for arbitrary h.

RDS & PHRASES: parallelism




NTRODUCTION

Let X be a finite set and let Ph(X) be the collection of all h-element
ts of X. A parallelism on Ph(X) is an equivalence relation of Ph(X)
that the members of each equivalence class form a partition of X.

1sly for the existence of a parallelism h | #X is necessary, and in
yai [1] it is shown that this condition suffices. A subset Y of X

ided with a given parallelism) is called a subspace when the restric-
»f the equivalence relation on Ph(X) to Ph(Y) yields a parallelism
_—in other words, when it never happens that H1 // H2 and H] c Y but
:ersects both Y and X\Y]. Cameron [5] remarked that if Y is a proper
ice of X then 2 #Y < #X, and in Brouwer [3] it is shown that if 2h | #X
chere exists a //ism on X with a subspace Y such that #Y = } #X.
jenerally it can be shown in the same way that if th | #X then there

« #X (see [2]1, [41).
#X = 0 (mod h) suf-

in all cases for the existence of a //ism on X with subspace.Y. In this

5 a //ism on X with a subspace Y such that #Y = %
1jecture that the requirements 2 #Y < #X and #Y =

ve prove this conjecture for h = 2 or 3 and for h arbitrary, n suf-

1itly large.

raph theoretic terminology and upper bound.

[hese results can be phrased in the language of (hyper)graphs as
7s:

1llelism on Ph(X), where #X = n, is a colouring of the complete h-
'm hypergraph on n vertices with E (E) = (E:

‘he same colour are disjoint. If Y is a subspace of X, where #Y = m,

:) colours, where edges

iny such colouring of Y (with (E:;) colours) can be extended to a

;ing of X with (E:i) colours. A necessary condition for this to be

>le is that m < in [for: the (ﬁ:i) colours used to colour the h-subsets

s (

n-m (m—l) n

:olour E%E (g:}) h -subsets of X\Y, so that o h=1

(n—m—l)’ and consequently m < n-m].
h-1 4

-m
h ) hence




A general existence theorem.

Define for fixed X and Y (where Y ¢ X, #X = n, #Y = m) the weight

subset H of X as #(HnY). In order to prove the existence of a para

n on X with subspace Y it suffices to indicate a suitable weight d

tion of the parallel classes (by the theorem quoted below). If the
_ n-1 .

lel classes are FZ(Z—l,----,(h_l))and Fz contains ng elements of

t g (0 <g<h) then obviously the ng satisfy

_n
g %gz T B

)}

Eg ngz =m

_ ,m, ,n-m
I, %, = @G-

rsely, given a matrix (ng) satisfying these equations (where the !
o>nnegative integers), there exists a parallelism on X with this we
n-m

. . -1
ibution. In particular if for (E_l) values of z we have XOz =5

= Ill = < < - . .
=R and ng 0 (1 £ g< h-1), then Y will be a subspace of thi
lelism.

That the above is true can be proved in the same way as it was pro
> case n = 2m in [3]; on the other hand, it is a special case of a

al theorem in [2].
iE CASE h = 2

3y what was stated in section OB we have to find nonnegative integ

ich that for =z

l,....,n-1 we have

2 1
Lg=0 fgz = 20

2 .
Zg=O ngz -n

_ ,m, ,n-m _
I, %, = QG (870,1,2)




or m—1 values of z we have

Nl

= ! (pn- = =
on ; (n—m), X2z m and Xlz 0.
nique solution is
=D _ = =
XOZ =5~ m Xlz m, XZZ 0 for n-m valu
= l(n- = =1 -
XOz ; (n-m), Xlz 0, XZz ;m for m-1 va
rticular there is a solution.
iE CASEm | n
se n = mt. Then (as already remarked in [2] and | ion ex
1y ordered t-tuple (hl"""ht) with Zhj = h tak column
|/ (ng = 0 if g does not occur among the hj and)
m
ng - zg=h. h'
J
isly
—.IE=I—I
Zg ng SR TR
m
X = ).h. = = m; also
zg &gz zJ ih
- m, h m. _
L, X5, Z(hl. h,) Qg &)° 3 m (hj)
Zhj=
=1 . my o
£ Lt ,eeny (gen D0 T )
1 ] ]
Lh.=
z J
= m m, ,n—m
(hyseeesh) T () = G,

this yields a solution of (1) - (3).




>s you remark that

)5

h m
n nj (h.)
10t be an integer; but, since the t-tuples (h],...,h ), (h _,h ""’ht—l
(hz,...,ht,h]) yield the same columns all we need is that
ho (o) m. (m )
n | hj

integer, where 0(o) is the order of the cyclic permutation (h],...,ht)

’hl""’ht—l)' Now

h(l(O’) n )_ 2 0(0) (n

-1
NG ) =
3 h. h.-1
n j j#i 3 :
20<0)( ( ))' ™ ! ), which is an integer.
J#l hi
i t rove that for (m—l) values of z we have =2 and
mains to prov h=-1 v Xhz T an
0 (1 < g < h-1). We obtain such solutions from the t-tuples
h...O).vThe number of solutions of this type is hC(G) ﬂ ( ) = (ﬁ::)
quired. J

HE CASE h = 3

For arbitrary h we can somewhat simplify our equations: If we let
n-m m n—1 m-1

— = - - < < - = -
. Xhz i and ng 0 (1 < g < h-1) for z (h—l) (h~l) + 1,

(E:l) then we have to solve

tall z "0z

g=1 gxgz -
_ ,m, ,n-m _
zz ng = (g) (h_g) (1 < g < h-1)
now z runs from 1 up to (E_%) (h l) [since for these z we can de-
h—
XOz and Xhz by XOz z oz and Xhz 0 and from t enom er
ions it follows that (3) holds,that is, ) X = ( ) ( )1



that
_ (=1 _ m-l‘
zz b= (h—]) (h—l)
ws from (1') - (3").

olutions (ng) will contain many identical columns say

multiplicity Ni. Rewriting (1') - (3') we get:

h-1 n
Lo=1 Yai <%
Zh—]
m
g=1 gl
m, ,n—m
N.Y . =
Zi igli (g)(h-g)

_ mn-1y _ m-1
zi Moo= G ™ Gop?e

e special case h = 3 we need two different columns; in

ve N1 and Y2i (i=1,2) - then Yli =m - 2Y2i’ and N2 =
C
ase N] Y21
m < g, m even 1 (n-m) (n-m~1) 0
m < g, m odd 1 (n-m) (n-2m) 0
m > o
> 3t
_ _ 3 1
n=m= O(mod 2) 3 m(n-m-1) 6(4m—n)
n =1, m= 0(mod 2) % m(n-m) %(4m—n+])
n=m= 1(mod 2) % (m-1) (n-m-3) é(4m—n—3)
n=0,mz 1(mod 2) % (m-1) (n-m) %(4m—n)

‘his is indeed a solution can be readily verified.
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HE CASE h = 4

In this case we have an easy solution for n 2 4m; we did not r
ok for solutions if 2m < n < 4m.

the matrices (Ygi)l <g<3,1<1ix< 3 can be taken as

r 3
1m O 0
0 %m 0
if 3|m and
0 O =m
N -
B 1]
m O ;0
1 otherwise.
0 Sm 0
1
0 O z0
L .
1ltiplicities Ni are uniquely determined from the (Ywi) and 4",
SYMPTOTIC RESULTS
. 3/2 . .. .
For n large (for instance n = mh ) we can give an explicit ion

llows:
fine the matrix (Ygi) and multiplicities Ni 1 <g<h-l,1¢% -1
nelp of the numbers Y 2 < g < h-1 which are to be chosen la

atrix (Ygi)will contain 0'-s except in the first row and the

nal - this explains why the indices g and i will be a little ixed.
Y .=6 .Y for2<g<h-land 1l £ 1i < h-1

g1 g1 g

v _ _ vh-l _ s . -

{li =m Zg=2 ngi m 1Yi (supposing Y1 0)

e MEM

g Yg ‘g ‘hg
_ u-ly _ m-1, _ th-l
YW= (h—l) (h-l) 2i=2 Ne

1is to be a solution first of all the Ygi and the Ni must be ga-

integers, that is,




n-1 m-1 h-1 1 m, ,N-m
- - - >
(h—l) (h—l) zg=2 Yg (g)(h-g) 0
a order to satisfy (1") we need n = mh, while (2") - (4") are sati
atically.

dne possible choice would be to take Yg = 1 for all g. This satisf
ad (6), and since (7) is a polynomial in n of degree h-1 with lead
icient (E:%T! > 0 this surely yields a solution when n is large en
t a bound that is linear in m we have to do some work:

2 Y2 = [?]; note that this satisfies (5) and (6) (since [§] i (?))
| m then choose Yg =

o 18

; again this is OK.

w

general case choose

_ m(h,g)
Ye ~ hlm,g) °

hoice satisfies (5) since h [ m so that

=pl §=1

m
h, < (m and Y < < =
(h,g) < (m,g) g s

]

(6) is satisfied, for if (m,g) am + bg then

h (m,g) m h my h m-1
2 im,g) =45 2 b —
m (h,g) (g) 2, 8) (g) (h,g) (g-l)
tegral.
that
y s @, 1 _2m
g  h g ¢gh

is case (since if g ¥ m then (g,m) < ig), while alsc if g | m then
>
gh

uvw 1




oncerning (7

h(h-1)

)- »Q )—-E
2

) mmo) =50, G) 305G,

n-m

_ h(h-

)(h-s) z
1 _m(h-1) _ h(b-1)(h-2) ™ 1y 1
h-1 (n-1) 2 (o=1) (n-2) ~
h-3) (m-l) 1 _
3 (n-1) (n-2) (n-3)

2(

h-1

[\
~

n-1
h-1

\%

(

we used n 2

m-1, ,n-m
Go1) Gy £
proves that
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