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Assignment 6
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• Assignment 6:
• Deadline: May 11
• 1-2 students

• Assignment 8:
• Open: June 1
• Deadline: June 22
• 1-2 students
• ReqVis

http://www.student.tue.nl/Q/w.j.p.v.rave
nsteijn/index.html

• Try it!
• Give us feedback before June 1!
• Mac-fans: Talk to Wiljan!

http://www.student.tue.nl/Q/w.j.p.v.ravensteijn/index.html�
http://www.student.tue.nl/Q/w.j.p.v.ravensteijn/index.html�


Sources
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So far

• x
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Metrics

Size Length (S)LOC

Number of 
files, classes

Amount of 
functionality

Structure

Control flow

Data flow

Modularity



Complexity metrics: Halstead (1977)

• Sometimes is classified as size rather than  complexity
• Unit of measurement
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Line: LOC, 
SLOC, LLOC

Units, files, 
classes

Parts of a 
statement: 
operators
and operands

Packages, 
directories

• Operators:
• traditional (+,++, >), keywords (return, if, continue)

• Operands
• identifiers, constants



Halstead metrics
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• Length: N = N1 + N2
• Vocabulary: n = n1 + n2
• Volume: V = N log2n

• Insensitive to lay-out
• VerifySoft:
− 20 ≤ Volume(function) ≤ 1000
− 100 ≤ Volume(file) ≤ 8000

Total Unique
Operators N1 n1
Operands N2 n2

• Four basic metrics of Halstead



Halstead metrics: Example

void sort ( int *a, int n ) {
int i, j, t;

if ( n < 2 ) return;
for ( i=0 ; i < n-1; i++ )  {

for ( j=i+1 ; j < n ; j++ ) {
if ( a[i] > a[j] ) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}
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• Ignore the function definition
• Count operators and operands

Total Unique
Operators N1 = 50 n1 = 17
Operands N2 = 30 n2 = 7

V = 80 log2(24) ≈ 392
Inside the boundaries [20;1000]



Further Halstead metrics

• Volume: V = N log2n
• Difficulty: D = ( n1 / 2 ) * ( N2 / n2 )

• Sources of difficulty: new operators and repeated
operands

• Example: 17/2 * 30/7 ≈ 36
• Effort: E = V * D 
• Time to understand/implement (sec): T = E/18

• Running example: 793 sec ≈ 13 min
• Does this correspond to your experience?

• Bugs delivered: E2/3/3000
• For C/C++: known to underapproximate
• Running example: 0.19
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Total Unique
Operators N1 n1
Operands N2 n2



Halstead metrics are sensitive to…

• What would be your answer?

• Syntactic sugar:

• Solution: normalization (see the code duplication 
slides) 
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i = i+1 Total Unique
Operators N1 = 2 n1 = 2
Operands N2 = 3 n2 = 2

i++ Total Unique
Operators N1 = 1 n1 = 1
Operands N2 = 1 n2 = 1



Structural complexity

• Structural complexity:
• Control flow
• Data flow

• Modularity
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Commonly 
represented 
as graphs

Graph-
based 
metrics

• Number of vertices
• Number of edges
• Maximal length 
(depth)



McCabe complexity (1976)

In general
• v(G) = #edges - #vertices + 2

For control flow graphs
• v(G) = #binaryDecisions + 1, or 
• v(G) = #IFs + #LOOPs + 1

Number of paths in the control flow graph.
A.k.a. “cyclomatic complexity”

Each path should be tested!
v(G) – a testability metrics
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Boundaries
• v(function) ≤ 15
• v(file) ≤ 100



McCabe complexity: Example

void sort ( int *a, int n ) {
int i, j, t;

if ( n < 2 ) return;
for ( i=0 ; i < n-1; i++ )  {

for ( j=i+1 ; j < n ; j++ ) { 
if ( a[i] > a[j] ) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}
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• Count IFs and LOOPs

• IF: 2, LOOP: 2

• v(G) = 5

• Structural complexity



Question to you

• Is it possible that the McCabe’s complexity is higher 
than the number of possible execution paths in the 
program?

• Lower than this number?
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McCabe’s complexity in Linux kernel
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A. Israeli, D.G. Feitelson 2010

• Linux kernel
• Multiple 

versions and 
variants
• Production 

(blue dashed)
• Development 

(red)
• Current 2.6 

(green)



McCabe’s complexity in Mozilla [Røsdal 2005]

• Most of the modules have low cyclomatic complexity
• Complexity of the system seems to stabilize
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Summarizing: Maintainability index (MI) 
[Coleman, Oman 1994]

• MI2 can be used only if comments 
are meaningful

• If more than one module is 
considered – use average values 
for each one of the parameters

• Parameters were estimated by 
fitting to expert evaluation
• BUT: few not big systems!
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)ln(2.16)(23.0)ln(2.51711 LOCgVVMI −−−=
Halstead McCabe LOC

perCMMIMI 46.2sin5012 +=
% comments

85

65

0



McCabe complexity: Example

void sort ( int *a, int n ) {
int i, j, t;

if ( n < 2 ) return;
for ( i=0 ; i < n-1; i++ )  {

for ( j=i+1 ; j < n ; j++ ) { 
if ( a[i] > a[j] ) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}
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• Halstead’s V ≈ 392 

• McCabe’s v(G) = 5

• LOC = 14

• MI1 ≈ 96

• Easy to maintain!



Comments?

Peaks: 
• 25% (OK),
• 1% and 

81% - ??? 
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[Liso 2001]

Better: 
• 0.12 ≤ K ≤ 0.2

perCM46.2sin50



Another alternative:

• Percentage as a fraction 
[0;1] – [Thomas 2008, Ph.D. thesis]

• The more comments – the 
better?
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Evolution of the maintainability index in Linux

• Size, Halstead 
volume and 
McCabe 
complexity 
decrease

• % comments 
decreases as well
• BUT they use the 

[0;1] definition, so 
the impact is 
limited
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A. Israeli, D.G. Feitelson 2010



What about modularity?

• Squares are modules, lines are calls, 
ends of the lines are functions.

• Which design is better?
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Design A                       Design B                                   • Cohesion: calls 
inside the 
module

• Coupling: calls 
between the 
modules

A B
Cohesion Lo Hi
Coupling Hi Lo



Do you still remember?

• Many intra-package dependencies: high cohesion

• Few inter-package dependencies: low coupling 

• Joint measure
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Modularity metrics: Fan-in and Fan-out

• Fan-in of M: number of 
modules calling functions 
in M

• Fan-out of M: number of 
modules called by M

• Modules with fan-in = 0
• What are these modules?

• Dead-code
• Outside of the system 

boundaries
• Approximation of the “call” 

relation is imprecise
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Henry and Kafura’s information flow 
complexity [HK 1981]

• Fan-in and fan-out can be defined for procedures
• HK: take global data structures into account:
− read for fan-in, 
− write for fan-out

• Henry and Kafura: procedure as HW component 
connecting inputs to outputs

• Shepperd
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2)*( fanoutfanins =



Information flow complexity of Unix 
procedures

• Solid – #procedures within 
the complexity range

• Dashed - #changed 
procedures within the 
complexity range

• Highly complex procedures 
are difficult to change but 
they are changed often!

• Complexity comes the 
“most complex” 
procedures
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Evolution of the information flow complexity 

• Mozilla
• Shepperd

version
• Above: Σ

the metrics 
over all 
modules

• Below: 3 
largest 
modules

• What does 
this tell?
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Summary so far…

• Complexity metrics
• Halstead’s effort
• McCabe (cyclomatic)
• Henry Kafura/Shepperd

(information flow)

• Are these related?
• And what about bugs?

• Harry,Kafura,Harris 1981
• 165 Unix procedures

• What does this tell us?
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Bugs

Halstead

McCabeHK

0.95 0.960.89

0.84

0.36

0.38



From imperative to OO

• All metrics so far were designed for imperative 
languages
• Applicable for OO
− On the method level
− Also
− Number of files → number of classes/packages
− Fan-in → afferent coupling (Ca)
− Fan-out → efferent coupling (Ce)

• But do not reflect OO-specific complexity
− Inheritance, class fields, abstractness, …

• Popular metric sets
• Chidamber and Kemerer, Li and Henry, Lorenz and 

Kidd, Abreu, Martin
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Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C

• DIT – depth of inheritance tree
• java.lang.Object? Libraries? 

• NOC – number of children
• Direct descendents

• CBO – coupling between object classes
• A is coupled to B if A uses methods/fields of B
• CBO(A) = | {B|A is coupled to B} |

• RFC - #methods that can be executed in response to 
a message being received by an object of that class.
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Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C
• Popular metrics: McCabe’s complexity and unity
• WMC/unity = number of methods
• Statistically significant correlation with the number of 

defects 
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• WMC/unity
• Dark: Basili et al.
• Light: Gyimothy
et al. [Mozilla 1.6]
• Red: High-
quality NASA 
system 



Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C
• Popular metrics: McCabe’s complexity and unity
• WMC/unity = number of methods
• Statistically significant correlation with the number of 

defects 
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• WMC/unity
• Gyimothy et al. 
• Average



Depth of inheritance - DIT

• Variants: Were to start and what classes to include? 
• 1, JFrame is a library class, excluded
• 2, JFrame is a library class, included
• 7
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JFrame MyFrame

java.awt.F
rame

java.awt.
Window

java.lang.
Object

java.awt.C
omponent

java.awt.C
ontainer



DIT – what is good and what is bad?

• Three NASA systems
• What can you say about the use of inheritance in 

systems A, B and C?
• Observation: quality assessment depends not just 

on one class but on the entire distribution
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Average DIT in Mozilla

• How can you explain the decreasing trend? 
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Other CK metrics

• NOC – number of 
children

• CBO – coupling between 
object classes

• RFC - #methods that can 
be executed in response 
to a message being 
received by an object of 
that class.

• More or less 
“exponentially” 
distributed
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Significance of CK metrics to 
predict the number of faults 



Modularity metrics: LCOM

• LCOM – lack of cohesion of 
methods

• Chidamber Kemerer: 

where
• P  = #pairs of distinct methods 

in C that do not share variables
• Q = #pairs of distinct methods 

in C that share variables
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
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CLCOM

[BBM] 180 classes

Discriminative ability 
is insufficient

What about get/set?



First solution: LCOMN

• Defined similarly to LCOM but allows negative values
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QPCLCOMN −=)(

LCOM LCOMN



Still…
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• Method * method tables
• Light blue: Q, dark blue: P

• Calculate the LCOMs
• Does this correspond to your intuition?



Henderson-Sellers, Constantine and Graham 1996

• m – number of methods
• v – number of variables (attrs)
• m(Vi) - #methods that access Vi
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LCOM > 1?
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Evolution of LCOM [Henderson-Sellers et al.]

• Project 6 (commercial human resource system) 
suggests stabilization, but no similar conclusion can 
be made for other projects
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Sato, Goldman, 
Kon 2007



Shortcomings of LCOM [Henderson-Sellers ]

• Due to [Fernández, Peña 2006]
• Method-variable diagrams: dark spot = access
• LCOM( ) = LCOM( ) = LCOM( ) = 0.67

seems to be less cohesive than and !
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Alternative [Hitz, Montazeri 1995]

• LCOM as the number of strongly 
connected components in the 
following graph
• Vertices: methods
• Edge between a and b, if
− a calls b
− b calls a
− a and b access the same variable

• LCOM values
• 0, no methods
• 1, cohesive component
• 2 or more, lack of cohesion
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Experimental evaluation of LCOM variants

Cox, Etzkorn and 
Hughes 2006

Correlation with expert assessment
Group 1 Group 2

Chidamber Kemerer -0.43 (p = 0.12) -0.57 (p = 0.08)
Henderson-Sellers -0.44 (p = 0.12) -0.46 (p = 0.18)
Hitz, Montazeri -0.47 (p = 0.06) -0.53 (p = 0.08)
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Etzkorn, Gholston, 
Fortune, Stein, 
Utley, Farrington,
Cox

Correlation with expert assessment
Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)
Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)
Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)



LCC and TCC [Bieman, Kang 1994]

• Recall: LCOM HM “a and b access the same variable”
• What if a calls a’, b calls b’, and a’ and b’ access the 

same variable?
• Metrics

• NDP – number of pairs of methods directly 
accessing the same variable

• NIP – number of pairs of methods directly or 
indirectly accessing the same variable 

• NP – number of pairs of methods: n(n-1)/2
• Tight class cohesion TCC = NDP/NP
• Loose class cohesion LCC = NIP/NP
• NB: Constructors and destructors are excluded
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Experimental evaluation of LCC/TCC 
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Etzkorn, Gholston, 
Fortune, Stein, Utley, 
Farrington, Cox

Correlation with expert assessment

Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)
Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)
Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)
TCC -0.22 (rating 8/8) -0.057 (rating 8/8)
LCC -0.54 (rating 1/8) -0.73 (rating 1.5/8)



Conclusions: Metrics so far…
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Level Matrics
Method LOC, McCabe, Henry Kafura
Class WMC, NOC, DIT, LCOM (and 

variants), LCC/TCC
Packages ???

Next time: 
• Package-level metrics (Martin)
• Metrics of change
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