
2IS55 Software Evolution

Software metrics (2)

Alexander Serebrenik

Assignment 6

/ SET / W&I PAGE 127-4-2011

• Assignment 6:
• Deadline: May 11
• 1-2 students

• Assignment 8:
• Open: June 1
• Deadline: June 22
• 1-2 students
• ReqVis

http://www.student.tue.nl/Q/w.j.p.v.rave
nsteijn/index.html

• Try it!
• Give us feedback before June 1!
• Mac-fans: Talk to Wiljan!

http://www.student.tue.nl/Q/w.j.p.v.ravensteijn/index.html�
http://www.student.tue.nl/Q/w.j.p.v.ravensteijn/index.html�

Sources

/ SET / W&I PAGE 227-4-2011

So far

• x

/ SET / W&I PAGE 327-4-2011

Metrics

Size Length (S)LOC

Number of
files, classes

Amount of
functionality

Structure

Control flow

Data flow

Modularity

Complexity metrics: Halstead (1977)

• Sometimes is classified as size rather than complexity
• Unit of measurement

/ SET / W&I PAGE 427-4-2011

Line: LOC,
SLOC, LLOC

Units, files,
classes

Parts of a
statement:
operators
and operands

Packages,
directories

• Operators:
• traditional (+,++, >), keywords (return, if, continue)

• Operands
• identifiers, constants

Halstead metrics

/ SET / W&I PAGE 527-4-2011

• Length: N = N1 + N2
• Vocabulary: n = n1 + n2
• Volume: V = N log2n

• Insensitive to lay-out
• VerifySoft:
− 20 ≤ Volume(function) ≤ 1000
− 100 ≤ Volume(file) ≤ 8000

Total Unique
Operators N1 n1
Operands N2 n2

• Four basic metrics of Halstead

Halstead metrics: Example

void sort (int *a, int n) {
int i, j, t;

if (n < 2) return;
for (i=0 ; i < n-1; i++) {

for (j=i+1 ; j < n ; j++) {
if (a[i] > a[j]) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}

/ SET / W&I PAGE 627-4-2011

• Ignore the function definition
• Count operators and operands

Total Unique
Operators N1 = 50 n1 = 17
Operands N2 = 30 n2 = 7

V = 80 log2(24) ≈ 392
Inside the boundaries [20;1000]

Further Halstead metrics

• Volume: V = N log2n
• Difficulty: D = (n1 / 2) * (N2 / n2)

• Sources of difficulty: new operators and repeated
operands

• Example: 17/2 * 30/7 ≈ 36
• Effort: E = V * D
• Time to understand/implement (sec): T = E/18

• Running example: 793 sec ≈ 13 min
• Does this correspond to your experience?

• Bugs delivered: E2/3/3000
• For C/C++: known to underapproximate
• Running example: 0.19

/ SET / W&I PAGE 727-4-2011

Total Unique
Operators N1 n1
Operands N2 n2

Halstead metrics are sensitive to…

• What would be your answer?

• Syntactic sugar:

• Solution: normalization (see the code duplication
slides)

/ SET / W&I PAGE 827-4-2011

i = i+1 Total Unique
Operators N1 = 2 n1 = 2
Operands N2 = 3 n2 = 2

i++ Total Unique
Operators N1 = 1 n1 = 1
Operands N2 = 1 n2 = 1

Structural complexity

• Structural complexity:
• Control flow
• Data flow

• Modularity

/ SET / W&I PAGE 927-4-2011

Commonly
represented
as graphs

Graph-
based
metrics

• Number of vertices
• Number of edges
• Maximal length
(depth)

McCabe complexity (1976)

In general
• v(G) = #edges - #vertices + 2

For control flow graphs
• v(G) = #binaryDecisions + 1, or
• v(G) = #IFs + #LOOPs + 1

Number of paths in the control flow graph.
A.k.a. “cyclomatic complexity”

Each path should be tested!
v(G) – a testability metrics

/ SET / W&I PAGE 1027-4-2011

Boundaries
• v(function) ≤ 15
• v(file) ≤ 100

McCabe complexity: Example

void sort (int *a, int n) {
int i, j, t;

if (n < 2) return;
for (i=0 ; i < n-1; i++) {

for (j=i+1 ; j < n ; j++) {
if (a[i] > a[j]) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}

/ SET / W&I PAGE 1127-4-2011

• Count IFs and LOOPs

• IF: 2, LOOP: 2

• v(G) = 5

• Structural complexity

Question to you

• Is it possible that the McCabe’s complexity is higher
than the number of possible execution paths in the
program?

• Lower than this number?

/ SET / W&I PAGE 1227-4-2011

McCabe’s complexity in Linux kernel

/ SET / W&I PAGE 1327-4-2011

A. Israeli, D.G. Feitelson 2010

• Linux kernel
• Multiple

versions and
variants
• Production

(blue dashed)
• Development

(red)
• Current 2.6

(green)

McCabe’s complexity in Mozilla [Røsdal 2005]

• Most of the modules have low cyclomatic complexity
• Complexity of the system seems to stabilize

/ SET / W&I PAGE 1427-4-2011

Summarizing: Maintainability index (MI)
[Coleman, Oman 1994]

• MI2 can be used only if comments
are meaningful

• If more than one module is
considered – use average values
for each one of the parameters

• Parameters were estimated by
fitting to expert evaluation
• BUT: few not big systems!

/ SET / W&I PAGE 1527-4-2011

)ln(2.16)(23.0)ln(2.51711 LOCgVVMI −−−=
Halstead McCabe LOC

perCMMIMI 46.2sin5012 +=
% comments

85

65

0

McCabe complexity: Example

void sort (int *a, int n) {
int i, j, t;

if (n < 2) return;
for (i=0 ; i < n-1; i++) {

for (j=i+1 ; j < n ; j++) {
if (a[i] > a[j]) {

t = a[i];
a[i] = a[j];
a[j] = t;

}
}

}
}

/ SET / W&I PAGE 1627-4-2011

• Halstead’s V ≈ 392

• McCabe’s v(G) = 5

• LOC = 14

• MI1 ≈ 96

• Easy to maintain!

Comments?

Peaks:
• 25% (OK),
• 1% and

81% - ???

/ SET / W&I PAGE 1727-4-2011

[Liso 2001]

Better:
• 0.12 ≤ K ≤ 0.2

perCM46.2sin50

Another alternative:

• Percentage as a fraction
[0;1] – [Thomas 2008, Ph.D. thesis]

• The more comments – the
better?

/ SET / W&I PAGE 1827-4-2011

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

percentage of comments
M

I c
on

tri
bu

tio
n

Evolution of the maintainability index in Linux

• Size, Halstead
volume and
McCabe
complexity
decrease

• % comments
decreases as well
• BUT they use the

[0;1] definition, so
the impact is
limited

/ SET / W&I PAGE 1927-4-2011

A. Israeli, D.G. Feitelson 2010

What about modularity?

• Squares are modules, lines are calls,
ends of the lines are functions.

• Which design is better?

/ SET / W&I PAGE 2027-4-2011

Design A Design B • Cohesion: calls
inside the
module

• Coupling: calls
between the
modules

A B
Cohesion Lo Hi
Coupling Hi Lo

Do you still remember?

• Many intra-package dependencies: high cohesion

• Few inter-package dependencies: low coupling

• Joint measure

/ SET / W&I PAGE 2127-4-2011

2
i

i
i N

A µ
= ()1−

=
ii

i
i NN

A µ
or

ji

ji
ji NN

E
2

,
,

ε
=

∑ ∑∑
−

= +== −
−=

1

1 1
,

1)1(
21 k

i

k

ij
ji

k

i
i E

kk
A

k
MQ k - Number of

packages

Modularity metrics: Fan-in and Fan-out

• Fan-in of M: number of
modules calling functions
in M

• Fan-out of M: number of
modules called by M

• Modules with fan-in = 0
• What are these modules?

• Dead-code
• Outside of the system

boundaries
• Approximation of the “call”

relation is imprecise
/ SET / W&I PAGE 2227-4-2011

Henry and Kafura’s information flow
complexity [HK 1981]

• Fan-in and fan-out can be defined for procedures
• HK: take global data structures into account:
− read for fan-in,
− write for fan-out

• Henry and Kafura: procedure as HW component
connecting inputs to outputs

• Shepperd

/ SET / W&I PAGE 2327-4-2011

2)*(* fanoutfaninslochk =

2)*(fanoutfanins =

Information flow complexity of Unix
procedures

• Solid – #procedures within
the complexity range

• Dashed - #changed
procedures within the
complexity range

• Highly complex procedures
are difficult to change but
they are changed often!

• Complexity comes the
“most complex”
procedures

/ SET / W&I PAGE 2427-4-2011

1e+00 1e+02 1e+04 1e+06

0
10

20
30

40

Henry-Kafura complexity

Fr
eq

ue
nc

y

Evolution of the information flow complexity

• Mozilla
• Shepperd

version
• Above: Σ

the metrics
over all
modules

• Below: 3
largest
modules

• What does
this tell?

/ SET / W&I PAGE 2527-4-2011

Summary so far…

• Complexity metrics
• Halstead’s effort
• McCabe (cyclomatic)
• Henry Kafura/Shepperd

(information flow)

• Are these related?
• And what about bugs?

• Harry,Kafura,Harris 1981
• 165 Unix procedures

• What does this tell us?

/ SET / W&I PAGE 2627-4-2011

Bugs

Halstead

McCabeHK

0.95 0.960.89

0.84

0.36

0.38

From imperative to OO

• All metrics so far were designed for imperative
languages
• Applicable for OO
− On the method level
− Also
− Number of files → number of classes/packages
− Fan-in → afferent coupling (Ca)
− Fan-out → efferent coupling (Ce)

• But do not reflect OO-specific complexity
− Inheritance, class fields, abstractness, …

• Popular metric sets
• Chidamber and Kemerer, Li and Henry, Lorenz and

Kidd, Abreu, Martin
/ SET / W&I PAGE 2727-4-2011

Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C

• DIT – depth of inheritance tree
• java.lang.Object? Libraries?

• NOC – number of children
• Direct descendents

• CBO – coupling between object classes
• A is coupled to B if A uses methods/fields of B
• CBO(A) = | {B|A is coupled to B} |

• RFC - #methods that can be executed in response to
a message being received by an object of that class.

/ SET / W&I PAGE 2827-4-2011

Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C
• Popular metrics: McCabe’s complexity and unity
• WMC/unity = number of methods
• Statistically significant correlation with the number of

defects

/ SET / W&I PAGE 2927-4-2011

• WMC/unity
• Dark: Basili et al.
• Light: Gyimothy
et al. [Mozilla 1.6]
• Red: High-
quality NASA
system

Chidamber and Kemerer

• WMC – weighted methods per class
• Sum of metrics(m) for all methods m in class C
• Popular metrics: McCabe’s complexity and unity
• WMC/unity = number of methods
• Statistically significant correlation with the number of

defects

/ SET / W&I PAGE 3027-4-2011

• WMC/unity
• Gyimothy et al.
• Average

Depth of inheritance - DIT

• Variants: Were to start and what classes to include?
• 1, JFrame is a library class, excluded
• 2, JFrame is a library class, included
• 7

/ SET / W&I PAGE 3127-4-2011

JFrame MyFrame

java.awt.F
rame

java.awt.
Window

java.lang.
Object

java.awt.C
omponent

java.awt.C
ontainer

DIT – what is good and what is bad?

• Three NASA systems
• What can you say about the use of inheritance in

systems A, B and C?
• Observation: quality assessment depends not just

on one class but on the entire distribution
/ SET / W&I PAGE 3227-4-2011

Average DIT in Mozilla

• How can you explain the decreasing trend?

/ SET / W&I PAGE 3327-4-2011

Other CK metrics

• NOC – number of
children

• CBO – coupling between
object classes

• RFC - #methods that can
be executed in response
to a message being
received by an object of
that class.

• More or less
“exponentially”
distributed

/ SET / W&I PAGE 3427-4-2011

Significance of CK metrics to
predict the number of faults

Modularity metrics: LCOM

• LCOM – lack of cohesion of
methods

• Chidamber Kemerer:

where
• P = #pairs of distinct methods

in C that do not share variables
• Q = #pairs of distinct methods

in C that share variables

/ SET / W&I PAGE 3527-4-2011



 >−

=
otherwise0

 if
)(

QPQP
CLCOM

[BBM] 180 classes

Discriminative ability
is insufficient

What about get/set?

First solution: LCOMN

• Defined similarly to LCOM but allows negative values

/ SET / W&I PAGE 3627-4-2011

QPCLCOMN −=)(

LCOM LCOMN

Still…

/ SET / W&I PAGE 3727-4-2011

• Method * method tables
• Light blue: Q, dark blue: P

• Calculate the LCOMs
• Does this correspond to your intuition?

Henderson-Sellers, Constantine and Graham 1996

• m – number of methods
• v – number of variables (attrs)
• m(Vi) - #methods that access Vi

/ SET / W&I PAGE 3827-4-2011

m

mVm
v

v

i
i

−

−






 ∑
=

1

)(1
1

• Cohesion is maximal: all methods access all variables
and

• No cohesion: every method accesses a unique variable
and

• Can LCOM exceed 1?

mVm i =)(0=LCOM

1)(=iVm 1=LCOM

LCOM > 1?

/ SET / W&I PAGE 3927-4-2011

• If some variables are not accessed at all, then

and

Hence
LCOM is undefined for m = 1
LCOM ≤ 2

1
11

11

)(1
1

−
+=

−
−

=
−

−






 ∑
=

mm
m

m

mVm
v

v

i
i

0)(=iVm

Evolution of LCOM [Henderson-Sellers et al.]

• Project 6 (commercial human resource system)
suggests stabilization, but no similar conclusion can
be made for other projects

/ SET / W&I PAGE 4027-4-2011

Sato, Goldman,
Kon 2007

Shortcomings of LCOM [Henderson-Sellers]

• Due to [Fernández, Peña 2006]
• Method-variable diagrams: dark spot = access
• LCOM() = LCOM() = LCOM() = 0.67

seems to be less cohesive than and !

/ SET / W&I PAGE 4127-4-2011

Variables

M
et
ho
ds

Variables

M
et
ho
ds

Variables

M
et
ho
ds

Alternative [Hitz, Montazeri 1995]

• LCOM as the number of strongly
connected components in the
following graph
• Vertices: methods
• Edge between a and b, if
− a calls b
− b calls a
− a and b access the same variable

• LCOM values
• 0, no methods
• 1, cohesive component
• 2 or more, lack of cohesion

/ SET / W&I PAGE 4227-4-2011

Variables

M
et
ho
ds

Variables

M
et
ho
ds

Question: LCOM?

Experimental evaluation of LCOM variants

Cox, Etzkorn and
Hughes 2006

Correlation with expert assessment
Group 1 Group 2

Chidamber Kemerer -0.43 (p = 0.12) -0.57 (p = 0.08)
Henderson-Sellers -0.44 (p = 0.12) -0.46 (p = 0.18)
Hitz, Montazeri -0.47 (p = 0.06) -0.53 (p = 0.08)

/ SET / W&I PAGE 4327-4-2011

Etzkorn, Gholston,
Fortune, Stein,
Utley, Farrington,
Cox

Correlation with expert assessment
Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)
Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)
Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)

LCC and TCC [Bieman, Kang 1994]

• Recall: LCOM HM “a and b access the same variable”
• What if a calls a’, b calls b’, and a’ and b’ access the

same variable?
• Metrics

• NDP – number of pairs of methods directly
accessing the same variable

• NIP – number of pairs of methods directly or
indirectly accessing the same variable

• NP – number of pairs of methods: n(n-1)/2
• Tight class cohesion TCC = NDP/NP
• Loose class cohesion LCC = NIP/NP
• NB: Constructors and destructors are excluded

/ SET / W&I PAGE 4427-4-2011

Experimental evaluation of LCC/TCC

/ SET / W&I PAGE 4627-4-2011

Etzkorn, Gholston,
Fortune, Stein, Utley,
Farrington, Cox

Correlation with expert assessment

Group 1 Group 2

Chidamber Kemerer -0.46 (rating 5/8) -0.73 (rating 1.5/8)
Henderson-Sellers -0.44 (rating 7/8) -0.45 (rating 7/8)
Hitz, Montazeri -0.51 (rating 2/8) -0.54 (rating 5/8)
TCC -0.22 (rating 8/8) -0.057 (rating 8/8)
LCC -0.54 (rating 1/8) -0.73 (rating 1.5/8)

Conclusions: Metrics so far…

/ SET / W&I PAGE 4727-4-2011

Level Matrics
Method LOC, McCabe, Henry Kafura
Class WMC, NOC, DIT, LCOM (and

variants), LCC/TCC
Packages ???

Next time:
• Package-level metrics (Martin)
• Metrics of change

	2IS55 Software Evolution
	Assignment 6
	Sources
	So far
	Complexity metrics: Halstead (1977)
	Halstead metrics
	Halstead metrics: Example
	Further Halstead metrics
	Halstead metrics are sensitive to…
	Structural complexity
	McCabe complexity (1976)
	McCabe complexity: Example
	Question to you
	McCabe’s complexity in Linux kernel
	McCabe’s complexity in Mozilla [Røsdal 2005]
	Summarizing: Maintainability index (MI) [Coleman, Oman 1994]
	McCabe complexity: Example
	Comments?
	Another alternative:
	Evolution of the maintainability index in Linux
	What about modularity?
	Do you still remember?
	Modularity metrics: Fan-in and Fan-out
	Henry and Kafura’s information flow complexity [HK 1981]
	Information flow complexity of Unix procedures
	Evolution of the information flow complexity
	Summary so far…
	From imperative to OO
	Chidamber and Kemerer
	Chidamber and Kemerer
	Chidamber and Kemerer
	Depth of inheritance - DIT
	DIT – what is good and what is bad?
	Average DIT in Mozilla
	Other CK metrics
	Modularity metrics: LCOM
	First solution: LCOMN
	Still…
	Henderson-Sellers, Constantine and Graham 1996
	LCOM > 1?
	Evolution of LCOM [Henderson-Sellers et al.]
	Shortcomings of LCOM [Henderson-Sellers]
	Alternative [Hitz, Montazeri 1995]
	Experimental evaluation of LCOM variants
	LCC and TCC [Bieman, Kang 1994]
	Experimental evaluation of LCC/TCC
	Conclusions: Metrics so far…

