
2IW80 Software specification and architecture

Activity diagrams &

State machines

Alexander Serebrenik

This week sources

Slides by

David Meredith,

Aalborg University, DK

Site by

Kirill Fakhroutdinov

GE Healthcare, USA

Before we start…

/ SET / W&I PAGE 2 24-2-2014

True or False?

1. A web server can be an actor in a use case diagram.

2. Guarantee is an action that initiates the use case.

3. Use case “Assign seat” includes the use case “Assign

window seat”.

4. Generalization is represented by an arrow with a

hollow triangle head.

5. Every use case might involve only one actor.

Before we start…

/ SET / W&I PAGE 3 24-2-2014

True or False?

1. A web server can be an actor in a use case diagram.

2. Guarantee is an action that initiates the use case.

3. Use case “Assign seat” includes the use case “Assign

window seat”.

4. Generalization is represented by an arrow with a

hollow triangle head.

5. Every use case might involve only one actor.

T, unless it is a

part of the system

you want to model

Guarantee is a postcondition.

An action that initiates the use

case is called “trigger”.

Before we start…

/ SET / W&I PAGE 4 24-2-2014

True or False?

1. A web server can be an actor in a use case diagram.

2. Guarantee is an action that initiates the use case.

3. Use case “Assign seat” includes the use case “Assign

window seat”.

4. Generalization is represented by an arrow with a

hollow triangle head.

5. Every use case might involve only one actor.

No, the correct relation here is extension (<<extend>>);

<<include>> suggests that “Assign window seat” is

always called whenever “Assign seat” is executed.

Yes
No, why?

Phone call use case

/ SET / W&I

Phone call use case

/ SET / W&I

Disadvantages

1. To understand alternatives, one has to

read them simultaneously with the

main scenario.

2. Missing alternatives are difficult to

spot.

3. Main scenario enforces sequential

execution, missing potential for

concurrent execution.

Activity diagram: Let us start

/ SET / W&I PAGE 7 24-2-2014

[the line

 is free]

[else]

initial node or start marker

final node or stop marker

decision

…

 The user picks up the telephone

 hook connected to the telephone

line “A”.

accept signal

Provide the user

with a dial tone.

Connect the user

to the ongoing

conversation

send signal

The next step

• Main scenario: The user dials number “B”.

• Alternative step: If the user does not dial a number for a

certain amount of time, a permanent tone is emitted by

the switch center, no further call will be accepted and the

user has to replace the hook.

• Two processes:

− wait for the user to dial a number (“main scenario”)

− wait for certain amount of time, say 5 sec;

• When 5 seconds passed, abort the “main scenario” waiting

/ SET / W&I PAGE 8 24-2-2014

Modeling timeout

/ SET / W&I PAGE 9 24-2-2014

 The user dials

number “B”
Wait for 5 sec

Emit a

permanent tone

interruptible

activity region

interrupting edge

Continuing…

/ SET / W&I PAGE 10 24-2-2014

 The user dials

number “B”
Wait for 5 sec

Emit a

permanent tone

interruptible

activity region

interrupting edge

Forward the call request

to the switch center.

(internal) action

[line B

 is busy]

[else]

Step e [B has call

waiting]

[else]

Send a busy tone

Step e-2

Step e

• If line “B” is not busy, the call request is forwarded to “B”

and a tone is sent to “A”.

• No indication whether the call request should first be

forwarded, and the tone sent next, or vice versa.

• We should not disallow any of these options.

• Execute both in parallel

• Wait till both call request forwarding

 and tone setting are successful.

/ SET / W&I PAGE 11 24-2-2014

Forward the call

request to “B”

Set tone

to “A”

fork

join

Step e-2

• The user at “A” will receive a “call waiting” tone from the

switch center. When the line “B” becomes free, sub-

scenario (e-g) follows.

/ SET / W&I PAGE 12 24-2-2014

Send “call

waiting” to A

[B busy] [else]

Sub-scenario (e-g)

decision

merge
• Merge is needed to allow

multiple data flows in the

same point.

• What would happen if B stays busy all the time?

• Omission in the use case.

Step e-2

• The user at “A” will receive a “call waiting” tone from the

switch center. When the line “B” becomes free, sub-

scenario (e-g) follows.

/ SET / W&I PAGE 13 24-2-2014

Send “call

waiting” to A

[B busy] [else]

Sub-scenario (e-g)

decision

merge

Send a busy tone

Wait

1 min

[line free] [else]

 The user picks up the telephone hook connected to the telephone line “A”.

Provide the user

with a dial tone.

Connect the user to the

ongoing conversation

 The user dials

number “B”

Forward the call request

to the switch center.

[B busy] [else] [B call

waiting] [else]

Send a busy tone

Wait

5 sec

Emit a

permanent tone

Forward the call

request to “B”
Set tone

to “A”

“B”’s telephone rings.

Send “call waiting” to A

[B busy] [else]

Wait

1 min

Send a busy tone

Steps a - f

Summary of activity diagram elements (so far)

/ SET / W&I PAGE 15 24-2-2014

Graphical

representation

Description “Keywords”

Action

Control

flow

start / stop markers

decision if

merge loops, end-if

fork / join and, parallel

Signals incoming (accept),

outgoing (send)

user

time-based when, time

Interrupts interruptible activity

region, interrupting edge

cancel,

interrupt

an alternative notation

for an interrupting edge

Send invoice

[line free] [else]

 The user picks up the telephone hook connected to the telephone line “A”.

Provide the user

with a dial tone.

Connect the user to the

ongoing conversation

 The user dials

number “B”

Forward the call request

to the switch center.

[B busy] [else] [B call

waiting] [else]

Send a busy tone

Wait

5 sec

Emit a

permanent tone

Forward the call

request to “B”
Set tone

to “A”

“B”’s telephone rings.

Send “call waiting” to A

[B busy] [else]

Wait

1 min

Send a busy tone

Issues?

Disadvantages?

[line free] [else]

 The user picks up the telephone hook connected to the telephone line “A”.

Provide the user

with a dial tone.

Connect the user to the

ongoing conversation

 The user dials

number “B”

Forward the call request

to the switch center.

[B busy] [else] [B call

waiting] [else]

Send a busy tone

Wait

5 sec

Emit a

permanent tone

Forward the call

request to “B”
Set tone

to “A”

“B”’s telephone rings.

Send “call waiting” to A

[B busy] [else]

Wait

1 min

Send a busy tone

Issues?

Disadvantages?

Too complex!

The diagram became quite complex

• Reorganize links to reduce the number of self-crossings,

links between different cases of the activity

• Fosters reuse similarly to labels

• Reorganize the activity using subactivities

• Fosters reuse similarly to subroutines

/ SET / W&I PAGE 18 24-2-2014

Reorganize links

• Use connectors instead of uninterrupted lines

“B”’s telephone rings. Send a busy tone

Reorganize links

• Use connectors instead of uninterrupted lines

[else]

Send a busy tone

Forward the call

request to “B”
Set tone

to “A”

“B”’s telephone rings.

Send “call waiting” to A

[B busy] [else]

Wait

1 min

Send a busy tone

Reorganize links

• Use connectors instead of uninterrupted lines

[else]

Send a busy tone

Forward the call

request to “B”
Set tone

to “A”

“B”’s telephone rings.

Send “call waiting” to A

[B busy] [else]

Wait

1 min

Send a busy tone

A

A

• Beware: Too many connectors hinder comprehension!

Reorganize the activity using subactivities

/ SET / W&I PAGE 22 24-2-2014

• Use subactivities to reuse or simplify the structure

Forward the call

request to “B”

“B”’s telephone rings.

Set tone

to “A”

Start successful

communication

Forward the call request

to the switch center.

[B busy] [else]

Start

successful

communication

…

…

Callee Caller

name of the

subactivity

rake

Example of a subactivity: processing an order

/ SET / W&I PAGE 23 24-2-2014

activity containing

actions, etc

input

parameter

object passed from

one action to another

input parameter

and its type

all invocations use the

same execution, like

static in Java

Parameters

• Activities can have parameters,

• what about individual actions?

/ SET / W&I PAGE 24 24-2-2014

Parameters

• Activities can have parameters,

• what about individual actions?

• Pins represent action parameters

• Optional: use only for data produced

and used

/ SET / W&I PAGE 25 24-2-2014

Send a notification

recipient message

Parameters

• Activities can have parameters,

• what about individual actions?

• Pins represent action parameters

• Optional: use only for data produced

and used

• Data can be also produced by

transforming “output pin” data to

“input pin” data

/ SET / W&I PAGE 26 24-2-2014

Send a notification

recipient

Send a notification

message recipient

Cancel appointmnt

message

appointment

Pins can also be used for expansion regions

• We’ve seen an example of a loop

• But what if a loop is used to

traverse a collection?

/ SET / W&I PAGE 27 24-2-2014

Send “call waiting” to A

[B busy] [else]

void reviewSubmissions(Collection<Submission> c) {

 for (Submission s : c)

 s.review();

 …

}

Pins can also be used for expansion regions

• We’ve seen an example of a loop

• But what if a loop is used to

traverse a collection?

/ SET / W&I PAGE 28 24-2-2014

Send “call waiting” to A

[B busy] [else]

void reviewSubmissions(Collection<Submission> c) {

 for (Submission s : c)

 s.review();

 …

} Review paper

expansion

region

• Upper pins: collection of submitted papers

• Lower pins: collection of reviewed papers

Expansion regions

• How do we traverse the collection?

/ SET / W&I PAGE 29 24-2-2014

Review paper Review paper

a) Sequentially b) Concurrently

<<concurrent>>

• Reviewing scientific papers is done concurrently, so we

chose solution b)

Expansion regions

/ SET / W&I PAGE 30 24-2-2014

Review paper

<<concurrent>>

• Each paper is reviewed and either rejected or accepted.

• If paper is rejected no further processing is needed

• If paper is accepted it is included in the proceedings volume

[reject]

[accept]

Activity final vs Flow final

/ SET / W&I PAGE 31 24-2-2014

ActivityFinal:

Termination of the

entire activity

FlowFinal:

Termination of one of the

parallel flows, e.g., in the

expansion region

Still, who is responsible for what?

/ SET / W&I PAGE 32 24-2-2014

• Indicate who is responsible for each group of activities

• Solution 1a: hierarchical swimlanes (UML 1)

Partitions

/ SET / W&I PAGE 33 24-2-2014

• Indicate who is responsible for each group of activities

• Solution 1b: multidimensional swimlanes (UML 2)

Partitions

/ SET / W&I PAGE 34 24-2-2014

• Indicate who is responsible for each group of activities

• Solution 2: annotations (UML 2)

Partitions

/ SET / W&I PAGE 35 24-2-2014

• Indicate who is responsible for each group of activities

• Advantages / disadvantages?

Solution 1:

swimlanes

Solution 2:

annotations

Partitions

/ SET / W&I PAGE 36 24-2-2014

• Indicate who is responsible for each group of activities

• Advantages / disadvantages?

Solution 1:

swimlanes

Solution 2:

annotations

Advantage of swimlanes: easy to

identify which activities belong

together

Disadvantage: we can have only one

axis in the hierarchical swimlanes/two

in multidimensional swimlanes

Exercise [Bernd Bruegge, Allen H. Dutoit]

• Draw an activity diagram representing each step of the

pizza ordering process, from the moment you pick up the

phone to the point where you start eating the pizza.

• Do not represent any exceptions.

• Include activities that others need to perform.

− Use an appropriate partition mechanism

/ SET / W&I PAGE 37 24-2-2014

Pizza

/ SET / W&I PAGE 38 24-2-2014

Summary of activity diagram elements

/ SET / W&I PAGE 39 24-2-2014

Graphical representation Description

Action action with three inputs

Control flow start / stop markers

decision, merge

fork / join

Signals incoming (accept), outgoing

(send), time-based

Interrupts interruptible activity region,

interrupting edge

Subactivity activity with input/output

parameters, activity invocation

Collection expansion region

Send invoice

Which one of the executions is impossible?

a) A,B,C

b) B,A,C

c) A simultaneously with C, B

d) B simultaneously with A, C

/ SET / W&I PAGE 40 24-2-2014 Example due to Ivanov and Novikov



What would be the execution order?

/ SET / W&I PAGE 41 24-2-2014 Example due to Ivanov and Novikov

A B

C

A B

C

[p][else]

A parallel with B,

followed by C (twice)

A or B depending

on the condition,

then blocked

Activity diagrams as a specification technique?

Unambiguous?

Realistic?

Verifiable?

Evolvable?

/ SET / W&I PAGE 42 24-2-2014

Activity diagrams as a specification technique?

Unambiguous?

• Becomes better with more recent versions of UML

(formal semantics via Petri nets)

• Still, we might like to verify the activity diagram itself!

Realistic?

• Yes (up to some level)

Verifiable?

• Parallelism might be difficult to observe

Evolvable?

• See discussion of the diagram complexity

/ SET / W&I PAGE 43 24-2-2014

State machines

• State machines – a different way of modeling behavior

in UML

• Activity diagrams focus on actions (stories, narratives)

• first A, then B, …

• State machines focus on state of the object and

transitions between them (description)

• H2O:

− States: water, vapor, ice

− Transitions: melting, freezing, vaporization, condensation, …

• Can give complementary views on the system

/ SET / W&I PAGE 44 24-2-2014

Activities or states

• Activities:

• How to get to Covent Garden

from St. James’s park?

• States (example):

• States = stations

• Transitions = direct train

connection

/ SET / W&I PAGE 45 24-2-2014

Fragment of the London’s tube map

Library

/ SET / W&I PAGE 46 24-2-2014

On loan
On the

shelf

returned()

borrowed()

• A UML state machine diagram shows how the messages

that an object receives change its state

• The state is determined by the values in its attributes

• Object: Book

• Boolean attribute: onShelf

• States: “On the shelf” (onShelf=true) and “On loan”

(onShelf=false)

• Transition: change of state

• Event: message received by an object, causing change of

state

Library

/ SET / W&I PAGE 47 24-2-2014

On loan
On the

shelf

returned()

borrowed()

• A UML state machine diagram shows how the messages

that an object receives change its state

• The state is determined by the values in its attributes

• This diagram does not indicate what happens if

“returned()” is received when the book is already on the

shelf.

• Probably, an error should be reported.

Library

/ SET / W&I PAGE 48 24-2-2014

On loan
On the

shelf

returned()

borrowed()

• A UML state machine diagram shows how the messages

that an object receives change its state

• The state is determined by the values in its attributes

• When a new book is being purchased by the library, it should

be “On the shelf”

initial pseudo-state,

or start marker

Library

/ SET / W&I PAGE 49 24-2-2014

On loan
On the

shelf

returned()

borrowed()

• A UML state machine diagram shows how the messages

that an object receives change its state

• The state is determined by the values in its attributes

• When a new book is being purchased by the library, it should

be “On the shelf”

• Recall: event – message received by an object, causing

change of state.

• Action: message sent by an object, when changing a state

initial pseudo-state,

or start marker

/books++

/books--

action

Entry and exit actions

/ SET / W&I PAGE 50 24-2-2014

On loan
On the

shelf

returned()

borrowed()

/books++

/books--

On loan
entry/books--

On the shelf
entry/books++

returned()

borrowed()

On loan
exit/books++

On the shelf

exit/books--

returned()

borrowed()

• Three equivalent representations

• When would you prefer to use entry/exit actions instead

of actions on arrows, and why?

Closer look at a state

/ SET / W&I PAGE 51 24-2-2014

• entry/behavior performed upon

entry to the state

• do/ongoing behavior, performed

as long as the element is in the

state

• exit/behavior performed upon

exit from the state

• behaviors can be added

On loan

entry/books--

do/search for the book

in a different library

help/open Help page

do and internal behaviors do not change state!

Closer look at a state

/ SET / W&I PAGE 52 24-2-2014

• Once do-activity completed,
transition without a label is taken

• If “cancel” event occurs during
the do-activity, then it is aborted

• Do-activities can be interrupted
but regular activities (actions)
cannot

On loan

entry/books--

do/search for the book

in a different library

help/open Help page

cancel

Library revisited

• A book is borrowable if at least one copy is available

• How can we know whether copyBorrowed() should

change the state or not?

• If the copy borrowed was the last one…

• We need a mechanism to distinguish between the two

situations

/ SET / W&I PAGE 53 24-2-2014

Not

borrowable
Borrowable

copyBorrowed()

copyReturned()

copyReturned()

copyBorrowed()

Library revisited

• A book is borrowable if at least one copy is available

• How can we know whether copyBorrowed() should

change the state or not?

• If the copy borrowed was the last one…

• We need a mechanism to distinguish between the two

situations

• Guard: any unambiguous boolean expression

/ SET / W&I PAGE 54 24-2-2014

Not

borrowable
Borrowable copyBorrowed()[last copy]

copyReturned()

copyReturned()

copyBorrowed()[not last copy]

What would happen if…

• Current state: 1

a) Event: e1, both x1

and x2 hold

b) Event: e1, neither

x1 nor x2 holds

c) Event: e2, neither

x1 nor x2 holds

/ SET / W&I PAGE 55 24-2-2014 Example due to Ivanov and Novikov

1 2

e1 [x2]

e1 [else]

e2 [x1]

e1 [x1]

e2 [x2]

What would happen if…

• Current state: 1

a) Event: e1, both x1

and x2 hold

b) Event: e1, neither

x1 nor x2 holds

c) Event: e2, neither

x1 nor x2 holds

/ SET / W&I PAGE 56 24-2-2014 Example due to Ivanov and Novikov

1 2

e1 [x2]

e1 [else]

e2 [x1]

e1 [x1]

e2 [x2]

The state changes to 2 but it is

unpredictable which transition

will be taken

The state changes to 2.

Transitions that have a guard

which evaluates to false are

disabled. State does not change.

Exercise

• Dutch statistics office recognizes the following marital

statuses: never married, married, widowed, divorced

• Describe human life from birth to death

/ SET / W&I PAGE 57 24-2-2014

Exercise

• Dutch statistics office recognizes the following marital

statuses: never married, married, widowed, divorced

/ SET / W&I PAGE 58 24-2-2014

Never

married (1)

Never

married (2)
Married

Divorced

Widowed

birth

birthday

[age < 18]

birthday

[age ≥ 18]

marry

marry

marry

divorce

death of

the partner

death

death

death

death death

Another example: ATM

/ SET / W&I PAGE 59 24-2-2014

h
tt

p
:/
/w

w
w

.u
m

l-
d

ia
g

ra
m

s
.o

rg
/b

a
n

k
-a

tm
-u

m
l-
s
ta

te
-m

a
c
h

in
e
-d

ia
g

ra
m

-e
x
a

m
p

le
.h

tm
l

composite state

• failure and

cancel are

applicable to all

states within

Serving

Customer

• cardInserted

leads to the start

marker

• transition without

a label is

followed by the

stop marker

composite state

with a hidden

decomposition

indicator icon

ATM and more

• If an ATM operation is cancelled, the card

is ejected and if it is reinserted, the

“Serving Customer” should restart.

• Sometimes we would like to resume where

we have stopped:

• Closing the door of the washing machine

/ SET / W&I PAGE 60 24-2-2014

History state H

remembers the state

“Operating” was last

time when it was exited.

Arrow from H indicates

the state that should be

entered if no previous

history is available.

http://www.zicomi.com/pseudoStateHistoryShallow.jsp

http://www.zicomi.com/pseudoStateHistoryShallow.jsp
http://www.zicomi.com/pseudoStateHistoryShallow.jsp

What state would be reached from State 1 after

a) e1, e2, e2, e1

b) e1, e1, e2, e2

c) e1, e1, e2, e2,

e1, e1, e2, e2

/ SET / W&I PAGE 61 24-2-2014 Example due to Ivanov and Novikov

What state would be reached from State 1 after

a) e1, e2, e2, e1

b) e1, e1, e2, e2

c) e1, e1, e2, e2,

e1, e1, e2, e2

/ SET / W&I PAGE 62 24-2-2014 Example due to Ivanov and Novikov

State 3

State 3

State 2

History and nested states

• Composite states can contain composite states that can

contain composite states etc

• What if Washing, Rinsing, Spinning were composite

states?

• In which of their substates should the execution resume?

/ SET / W&I PAGE 63 24-2-2014
http://www.zicomi.com/pseudoStateHistoryShallow.jsp

http://www.zicomi.com/pseudoStateHistoryShallow.jsp
http://www.zicomi.com/pseudoStateHistoryShallow.jsp

Shallow and deep history

• Shallow history H remembers only one nesting level

• Deep history H* remembers all nesting levels

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

Shallow and deep history

• What would happen if H* would be replaced by H?

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

H

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

Shallow and deep history

When door is closed the phase(s) [washing, rinsing,

spinning] that have been completed will remain completed,

while the current phase will be restarted from the beginning.

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

H

http://www.zicomi.com/pseudoStateHistoryDeep.jsp

Another example: alarm clock

• Orthogonal, concurrent state machine diagrams

• Diagrams cannot share states

• The choices CD/Radio and Time/Alarm time are orthogonal

/ SET / W&I PAGE 67 24-2-2014

Off

On

Alarm time

displayed

Time

displayed

alarm

time

CD on Radio on radio H
CD

turn on turn off

region

State machines: summary

• State machine: state, transition, guard/event/action

• Composite state

• Regions and concurrent execution

• Shallow history vs. deep history

/ SET / W&I PAGE 68 24-2-2014

State machines as a specification technique?

Similarly to activity diagrams.

/ SET / W&I PAGE 69 24-2-2014

/ SET / W&I PAGE 70 24-2-2014

