
2IW80 Software specification and architecture

Software architecture:

Domain-Specific

Software Architecture

and Architectural

Patterns
Alexander Serebrenik

Before we start…

• A way of looking at a system from the position of a

certain stakeholder with a particular concern is called

 A. view B. viewpoint C. model D. architecture

/ SET / W&I PAGE 1 13-3-2014

Before we start…

• A way of looking at a system from the position of a

certain stakeholder with a particular concern is called

 A. view B. viewpoint C. model D. architecture

• In Kruchten’s 4+1 components, functions, subsystems,

modules and packages are discussed in the

 A. logical view B. development view

 C. process view D. deployment view

 E. scenarios

/ SET / W&I PAGE 2 13-3-2014

Before we start…

• A way of looking at a system from the position of a

certain stakeholder with a particular concern is called

 A. view B. viewpoint C. model D. architecture

• In Kruchten’s 4+1 components, functions, subsystems,

modules and packages are discussed in the

 A. logical view B. development view

 C. process view D. deployment view

 E. scenarios

/ SET / W&I PAGE 3 13-3-2014

Before we start

• Correspondence records relations between …

architecture description elements

a) at least two

b) two

c) at most two

d) any number of

e) I have no clue

/ SET / W&I PAGE 4 13-3-2014

• Correspondence records relations between …

architecture description elements

a) at least two

b) two

c) at most two

d) any number of

e) I have no clue

Before we start

/ SET / W&I PAGE 5 13-3-2014

This week sources

Slides by

Dietmar Pfahl Johan Lukkien Rudolf Mak

Recall

• Architecture decisions are important

• Depend on the stakeholders’ concerns

• How to make right decisions?

• Learn from successes/failure of other engineers

/ SET / W&I PAGE 7 13-3-2014

Learning from Others:

Patterns, Styles, and DSSAs

8
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Experience is

crystallized as

guidelines, best

practices, do’s

and don’ts

• Best practices

have different

forms.

2IPC0

How to solve a problem

• Solve the problem (design architecture)

from scratch

• Unexpected solutions can be found

• Labor-intensive and error-prone

• Apply a generic solution/strategy

(style/pattern) and adapt it to the

 problem at hand

• Reuse, less work and less errors

• Generic solution might be ill-fitting or too generic,

requiring rework

• Apply a solution specific for your domain (DSSA)

• Highest amount of reuse

• What if such solution does not exist?

/ SET / W&I PAGE 9 13-3-2014

Domain-Specific Software Architecture

• Highest reuse: Domain-Specific Software Architecture

• Naïve: architecture recommended for software in a certain

domain

• Examples of domains

• Compilers

• Consumer electronics

• Electronic commerce system/Web stores

• Video game

• Business applications

• Subdivision of a domain:

• Avionics systems -> Boeing Jets -> Boeing 747-400

 / SET / W&I PAGE 10 13-3-2014

Domain-Specific Software Architectures

• Formally:

A Domain-Specific Software Architecture (DSSA) is an

assemblage of software components

• specialized for a particular domain,

• generalized for effective use across that domain, and

• composed in a standardized structure (topology) effective

for building successful applications.

• DSSAs are the pre-eminent means for maximal reuse of

knowledge and prior development.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Domain-Specific Software Architecture

• A domain-specific software architecture comprises:

• a reference architecture, which describes a general

computational framework for a significant domain of

applications;

• a component library, which contains reusable chunks of

domain expertise; and

• an application configuration method for selecting and

configuring components within the architecture to meet

particular application requirements.

• Examples:

ADAGE for avionics, AIS for adaptive intelligent systems, and

MetaH for missile guidance, navigation, and control systems

(Hayes-Roth)

Reference architecture

Reference architectures is

the set of principal design

decisions that are

simultaneously applicable to

multiple related systems,

typically within an application

domain, with explicitly

defined points of variation.

/ SET / W&I PAGE 13 13-3-2014

Reference architecture

Reference architectures is

the set of principal design

decisions that are

simultaneously applicable to

multiple related systems,

typically within an application

domain, with explicitly

defined points of variation.

/ SET / W&I PAGE 14 13-3-2014

Architecture, hence can

be described through

multiple views.

Should all follow those

principal decisions.

Cover all expected

variation aspects.

Reference architecture

Reference architectures is

the set of principal design

decisions that are

simultaneously applicable to

multiple related systems,

typically within an application

domain, with explicitly

defined points of variation.

/ SET / W&I PAGE 15 13-3-2014

Data Integration and

Business Process

Management

Which models exactly, what

integration mechanisms…

http://www.microsoft.com/enterprise/industry/manufacturing-and-resources/oil-and-gas-

mining/reference-architecture.aspx#fbid=xHz3EgzvwCb

Domain-Specific Software Architecture also

includes…

A component library contains

reusable chunks of domain

expertise.

 Component: a modular unit with well-

defined interfaces that is replaceable within

its environment (UML Superstructure

Specification, v.2.0, Chapter 8)

REMINDER

Domain-Specific Software Architecture also

includes…

A component library contains

reusable chunks of domain

expertise.

 Component: a modular unit with well-

defined interfaces that is replaceable within

its environment (UML spec)

REMINDER

A software component is an architectural entity that

• encapsulates a subset of the system’s functionality

and/or data

• restricts access to that subset via an explicitly defined

interface

• has explicitly defined dependencies on its required

execution context (Taylor, Medvidovic, Dashofy)

Domain-Specific Software Architecture also

includes…

A component library contains

reusable chunks of domain

expertise.

An application configuration

method for selecting and

configuring components within the

architecture to meet particular

application requirements.

/ SET / W&I PAGE 18 13-3-2014

BizTalk (integration), SQL

Server (data store), …

Mapping MURA Guiding

Principles to Microsoft

Technology

 Reference architectures @TU/e

/ SET / W&I PAGE 19 13-3-2014

Extreme case of Domain-Specific Software

Architecture

• What happens when the domain becomes narrower?

• Consumer Electronics  Sony WEGA TVs

• Avionics  Boeing 747 Family

• …

• Engineering Product Line: a set of products that have

substantial commonality from a technical/engineering

perspective

/ SET / W&I PAGE 20 13-3-2014

Engineering PL vs Business PL

• Engineering Product Line: a set of products that have

substantial commonality from a technical/engineering

perspective

• Business Product Line: A set of products marketed

under a common banner to increase sales and market

penetration through bundling and integration

• Business product lines usually are engineering product

lines and vice-versa, but not always

• Applications bundled after a company acquisition

• Chrysler Crossfire & Mercedes SLK V6

/ SET / W&I PAGE 21 13-3-2014
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Product lines – why?

/ SET / W&I PAGE 22 13-3-2014

Product-line-based

engineering

Traditional

engineering

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

A Product-Line Architecture

• A product-line architecture captures the architectures

of many related products simultaneously

• Explicit variation points

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

• Common: features common to all products

• A: features specific to product A

• Product A = Common + A

• B: features specific to product B

• Product B = Common + B

How do product lines come to be?

• Design: expected variation points (now) / evolution

scenarios (future)

• List current or envisioned features of the product

− If features are not explicit, list components and group

them to (mostly) orthogonal features, or features that

would be beneficial in different products/for different

customers

• Identify which combinations of features form feasible and

marketable products

− Only some combinations are meaningful!

/ SET / W&I PAGE 24 13-3-2014

How do product lines come to be?

• Unification: after several products have been

implemented and commonality is noticed

• No product line

− It may be more expensive to create a product line or there may

not be enough commonality

• One master product

− One product architecture becomes the basis for the product line

• Hybrid

− A new product line architecture emerges out of many products

− Seems ideal but can be hard in practice

/ SET / W&I PAGE 25 13-3-2014
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

The Lunar Lander: A Running Example

• Computer game that first appeared in the 1960’s

• You control the descent rate of the Lunar Lander

• Throttle setting controls descent engine

• Limited fuel

• Initial altitude and speed preset

• If you land with a descent rate of < 5 fps: you win
(whether there’s fuel left or not)

• “Advanced” version: joystick controls attitude &
horizontal motion

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

The Lunar Lander: A Running Example

• Computer game that first appeared in the 1960’s

• You control the descent rate of the Lunar Lander

• Throttle setting controls descent engine

• Limited fuel

• Initial altitude and speed preset

• If you land with a descent rate of < 5 fps: you win
(whether there’s fuel left or not)

27
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Product lines in the Lunar Lander

• We have a basic version

• Components: data store, game logic, text-based UI

/ SET / W&I PAGE 28 13-3-2014

Product lines in the Lunar Lander

• We have a basic version

• Components: data store, game logic, text-based UI

• We want to add a graphical UI and earn a lot of money

• Free “Demo” with “Buy me” reminder when the game time

expired

• Components: data store, game logic, text-based UI,

graphical UI, demo reminder, system clock

/ SET / W&I PAGE 29 13-3-2014

Product lines in the Lunar Lander

• We have a basic version

• Components: data store, game logic, text-based UI

• We want to add a graphical UI and earn a lot of money

• Free “Demo” with “Buy me” reminder when the game time

expired

• Components: data store, game logic, text-based UI,

graphical UI, demo reminder, system clock

/ SET / W&I PAGE 30 13-3-2014

Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Basic X X X

Demo X X X X X

Purchased X X X

Product lines: Components, Features, Products

/ SET / W&I PAGE 31 13-3-2014

Components Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Basic X X X

Demo X X X X X

Purchased X X X

1) List

components

Product lines: Components, Features, Products

/ SET / W&I PAGE 32 13-3-2014

Components Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Basic X X X

Demo X X X X X

Purchased X X X

1) List

components

Features Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Core X X

Text UI X

Graphical UI X

Time-limited X X

2) Identify

features

Product lines: Components, Features, Products

/ SET / W&I PAGE 33 13-3-2014

Components Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Basic X X X

Demo X X X X X

Purchased X X X

1) List

components

Features Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Core X X

Text UI X

Graphical UI X

Time-limited X X

2) Identify

features

Products Core Text

UI

Graphical

UI

Time-

limited

Basic X X

Demo X X X

Purchased X X

3) Construct

intended

products

Product lines: Components, Features, Products

/ SET / W&I PAGE 34 13-3-2014

Components Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Basic X X X

Demo X X X X X

Purchased X X X

1) List

components

Features Data

Store

Game

Logic

Text-

based UI

Graphical

UI

Demo

Reminder

System

Clock

Core X X

Text UI X

Graphical UI X

Time-limited X X

2) Identify

features

Products Core Text

UI

Graphical

UI

Time-

limited

Basic X X

Demo X X X

Purchased X X

Demo Text X X X

3) Construct

intended

products

4) Identify

new

opportunities

A better representation: variability model

/ SET / W&I PAGE 35 13-3-2014

Products Core Text

UI

Graphical

UI

Time-

limited

Basic X X

Demo X X X

Purchased X X

Demo Text X X X

Lunar Lander

Core UI Time-Limited

Text UI Graphical UI

mandatory

optional

and

xor

or

requires

excludes

DSSA and Product Lines?

• Product lines

• Explicit set of related products with common aspects

• Domain-Specific Software Architectures

• Domain specific; includes elaborate domain model

and specific reference architecture

• Architectural Styles and Patterns

• Design Patterns (2IPC0)

/ SET / W&I PAGE 36 13-3-2014

R

e

u

s

e

D

o

m

a

i

n

k

n

o

w

l

e

d

g

e

Architectural Patterns

• An architectural pattern is a set of architectural design

decisions that are applicable to a recurring design

problem, and parameterized to account for different

software development contexts in which that problem

appears.

• Similar to DSSAs but applied “at a lower level” and within

a much narrower scope.

• Examples:

• State-Logic-Display: Three-Tiered Pattern

• Model-View-Controller

• Sense-Compute-Control

State-Logic-Display (a.k.a. Three-Tiered Pattern)

• “Business logic”

• Tax calculation rules

• Game rules

• …

• Application Examples

• Business applications

• Multi-player games

• Web-based applications

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Tiers and Layers

• Tiers: physical distribution of components of a system on

separate servers, computers, or networks (nodes)

• Layers: logical grouping of components

• Components may or may not be located on the same node

• The middle tier may be multi-tiered itself (resulting in an

"n-tier architecture")

/ SET / W&I PAGE 39 13-3-2014

http://upload.wikimedia.org/wikipedia/commons/5/51/Overview_of_a_three-tier_application_vectorVersion.svg

State-Logic-Display (a.k.a. Three-Tiered Pattern)

• Fundamental rule:

• No direct communication

between Display and State

• Display, Logic and State

• are developed and maintained

as independent modules,

• most often on separate

platforms

• often using different

technologies

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

State-Logic-Display in Web development

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Static or cached dynamic content

rendered by the browser.

JavaScript, Ajax, Flash, jQuery…

Dynamic content processing and

generation level application server

Java, .NET, ColdFusion, PHP, Perl,

Rails…

Database + connection (e.g., ORM like

Hibernate, Java Persistence API, …)

Model-View-Controller (MVC)

• Objective: Separation between information, presentation

and user interaction.

• When a model object value changes, a notification is

sent to the view and to the controller.

• view updates itself

• controller modifies the view if its logic so requires.

• User input is sent to the controller

• If a change is required, the controller updates the model.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Model-View-Controller

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Do you recall?

• Boundary objects interface with actors.

• Entity objects represent system data, often

from the domain.

• Control objects glue boundary elements

and entity elements, implementing the logic

required to manage the various elements

and their interactions.

/ SET / W&I PAGE 44 13-3-2014

?

Do you recall?

• Boundary objects interface with actors.

• Entity objects represent system data, often

from the domain.

• Control objects glue boundary elements

and entity elements, implementing the logic

required to manage the various elements

and their interactions.

/ SET / W&I PAGE 45 13-3-2014

Boundary = View

Entity = Model

Control = Controller

Two flavors of MVC: Passive model

• Passive model

• Model is completely

controlled by the Controller

and cannot change

independently

• Model change is always a

reaction to user’s actions.

/ SET / W&I PAGE 46 13-3-2014

• Example: HTTP

• The browser displays the view and responds to user input,

but it does not detect changes in the data on the server.

Two flavors of MVC: Active model

• Active model

• Model can change without

involving Controller

− e.g., other sources are

changing the data and

the changes must be

reflected in the views.

/ SET / W&I PAGE 47 13-3-2014

Two flavors of MVC: Active model

• Active model

• Model can change without

involving Controller

− e.g., other sources are

changing the data and

the changes must be

reflected in the views.

• However, Model should

not be aware of its Views!

• Software Science

students: which design

pattern can solve this

problem?

/ SET / W&I PAGE 48 13-3-2014

Two flavors of MVC: Active model

• Active model

• Model can change without

involving Controller

− e.g., other sources are

changing the data and

the changes must be

reflected in the views.

• However, Model should

not be aware of its Views!

• Software Science

students: which design

pattern can solve this

problem?

/ SET / W&I PAGE 49 13-3-2014

Observer

Observer pattern

/ SET / W&I PAGE 50 13-3-2014

http://upload.wikimedia.org/wikipedia/commons/8/8d/Observer.svg

• Java: Observer as an interface, Observable as a class.

• Model inherits from Observable, View/Controller implement

Observer.

Benefits of MVC

/ SET / W&I PAGE 51 13-3-2014

• Supports multiple views

• Users can individually change the appearance of the web-

pages based on the same model

• Well-suited for evolution

• User interface requirements change faster than the models

• Changes are limited to the views only

Liabilities of MVC

• Complexity

• new levels of indirection

• behavior becomes more event-driven complicating

debugging

• Communication

• If model is frequently updated, it could flood the views with

update requests.

/ SET / W&I PAGE 52 13-3-2014

Sense-Compute-Control

Objective: Structuring embedded control applications

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

send information

from various

sources

decide how to control

various devices.

Sense-Compute-Control Lunar Lander

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

/ SET / W&I PAGE 56 13-3-2014
http://www.labri.fr/perso/sutre/ENS-Cachan-Bretagne-2011/Slides/Consel.pdf

Architectural patterns vs. Architectural styles

vs. Design patterns

Next time:

• Architectural styles define the

components and connectors

(‘what?’)

• Less domain specific

• Architectural patterns define the

implementation strategies of those

components and connectors (‘how?’)

• More domain specific

• Difference pattern/style is not too

sharp

/ SET / W&I PAGE 57 13-3-2014

2IPC0

STOP!

• “Architectural styles define the components and

connectors”

• A software connector is an architectural building block

tasked with effecting and regulating interactions among

components (Taylor, Medvidovic, Dashofy)

• Procedure call connectors

• Shared memory connectors

• Message passing connectors

• Streaming connectors

• Distribution connectors

• Wrapper/adaptor connectors

• …

/ SET / W&I PAGE 58 13-3-2014

/ SET / W&I PAGE 59 13-3-2014

