2IW80 Software specification and archi

Software architecture: } l
[&\
\

Domain-Specific
Software Architecture
and Architectural
Patterns

Alexander Serebrenik

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Before we start...

- A way of looking at a system from the position of a
certain stakeholder with a particular concern is called

A.view B.viewpoint C. model D. architecture

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 1 Un sty of Technology

Before we start...

- A way of looking at a system from the position of a
certain stakeholder with a particular concern is called

A.view B.viewpoint C. model D. architecture

* In Kruchten’s 4+1 components, functions, subsystems,
modules and packages are discussed in the

A. logical view B. development view
C. process view D. deployment view
E. scenarios

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 2 Un sty of Technology

Before we start...

- A way of looking at a system from the position of a
certain stakeholder with a particular concern is called

A.view B.viewpoint C. model D. architecture

* In Kruchten’s 4+1 components, functions, subsystems,
modules and packages are discussed in the

A. logical view B. development view
C. process view D. deployment view
E. scenarios

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 3 Un sty of Technology

Before we start

» Correspondence records relations between ...
architecture description elements

a) atleasttwo
b) two

c) at mosttwo
d) any number of
e) | have no clue

Techni h Un
T U i nihov
/ SET / W&I 13-3-2014 PAGE 4 sty of Technology

Before we start

» Correspondence records relations between ...
architecture description elements

4 specifies
a) at IeaSt tWO Correspondence Corres:;:dence
b) two "
defines
c) at mosttwo relates relation
about ¥
d) any number of 2.

e) | have no clue AD Element

Technische Universiteit
e Eindhoven
/ SET / W&I 13-3-2014 PAGE 5 University of Technology

This week sources

Copyriatisd tixeral

SOFTWARE ARCHITECTURE Slides by

FOUNDATIONS, THEORY, AND PRACTICE

Dietmar Pfahl Rudolf Mak Johan Lukkien

Techni hU
Edh
styfTh ology

Recall

Architecture
Rationale

raises P

justifies

1.* 0.*
1.7 Architecture 0.~ pertainsto »
AD Element - _
< affects 0..* i
0.:*
o

depends upon

Concern

* Architecture decisions are important
« Depend on the stakeholders’ concerns

* How to make right decisions?
« Learn from successes/failure of other engineers

| SET / W&l

13-3-2014 PAGE 7

TU/e

Technische Universiteit
Eindhoven
University of Technology

Learning from Others:

Patterns, Styles, and DSSAs

* Experience is

) Deep
crystallized as
guidelines, best
practices, do’s Eq
’ 0 g
and don’ts 5%
2
* Best practices
have different
Shallow

forms.

Domain-specific

s/w archs.
Architectura
patterns

2I1P(Q
>
Scope
LS > &
e &S &
S @ > & N
L S ¢ & >3
S O & & 2
o° <& 5 &
< S o & S
T S o x$
N4 O 0 L
& 2 1%9)
&
K S
< &
&G
A\

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

How to solve a problem

- Solve the problem (design architecture)
from scratch i
« Unexpected solutions can be found £
* Labor-intensive and error-prone < __

- Apply a generic solution/strategy ___ Crograr)
(style/pattern) and adapt it to the s ., -
problem at hand Q§@ gf? ;‘

* Reuse, less work and less errors) -«ff ?

« Generic solution might be ill-fitting or too generic,
requiring rework

* Apply a solution specific for your domain (DSSA)
« Highest amount of reuse
« What if such solution does not exist?

Technische Universiteit
e Eindhoven
/ SET / W&I 13-3-2014 PAGE 9 University of Technology

Domain-Specific Software Architecture

* Highest reuse: Domain-Specific Software Architecture

 Nalve: architecture recommended for software in a certain
domain

- Examples of domains
« Compilers
« Consumer electronics
« Electronic commerce system/Web stores
* Video game
* Business applications
* Subdivision of a domain:
« Avionics systems -> Boeing Jets -> Boeing 747-400

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 10 Un sty of Technology

Domain-Specific Software Architectures

* Formally:

A Domain-Specific Software Architecture (DSSA) is an
assemblage of software components

 specialized for a particular domain,
« generalized for effective use across that domain, and

« composed in a standardized structure (topology) effective
for building successful applications.

* DSSAs are the pre-eminent means for maximal reuse of
knowledge and prior development.

Technische Universiteit
I U e Eindhoven
niversity of Technology
with permission.

u
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprint ith permis

Domain-Specific Software Architecture

Hayes-Roth)
* A domain-specific software architecture comprises:

- areference architecture, which describes a general
computational framework for a significant domain of
applications;

« acomponent library, which contains reusable chunks of
domain expertise; and

« an application configuration method for selecting and
configuring components within the architecture to meet
particular application requirements.

« Examples:

ADAGE for avionics, AlS for adaptive intelligent systems, and
MetaH for missile guidance, navigation, and control systems

Techni hU
Edh
sty of Technology

Reference architecture

Reference architectures is
the set of principal design
decisions that are
simultaneously applicable to
multiple related systems,
typically within an application
domain, with explicitly
defined points of variation.

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 13 Un sty of Technology

Reference architecture

Reference architectures is Architecture, hence can
the set of principal design > be described through
decisions that are TuljplE s,
simultaneously applicable to

multiple related systems, , Should all follow those
typically within an application principal decisions.
domain, with explicitly
defined points of variation.

, Cover all expected
variation aspects.

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 14 sty of Technology

Reference architecture

Reference architectures is Data Integration and

the set of principal design » Business Process
decisions that are Management
simultaneously applicable to

multiple related systems,

typically within an application

domain, with explicitly Which models exactly, what
defined points of variation. >integration mechanisms...

MURA

- anagement
Real ‘l’im; Historian Work Mgmt Equipment Spatial Production Financial
System Data Data Data Data

Complex Event Processing

http://mww.microsoft.com/enterprise/industry/manufacturing-and-resources/oil-and-gas-
mining/reference-architecture.aspx#fbid=xHz3EgzvwChb

Domain-Specific Software Architecture also

includes...

A component library contains
reusable chunks of domain
expertise.

REMINDER Component: a modular unit with well-
defined interfaces that is replaceable within

ItS environment (UML Superstructure
Specification, v.2.0, Chapter 8)

Techni hU
eEdh
u rsity of Technology

Domain-Specific Software Architecture also

includes...

A component library contains
reusable chunks of domain
expertise.

REMINDER Component: a modular unit with well-
defined interfaces that is replaceable within
ItS environment (UML spec)

A software component is an architectural entity that

* encapsulates a subset of the system’s functionality
and/or data

* restricts access to that subset via an explicitly defined
Interface

* has explicitly defined dependencies on its required
execution context (Taylor, Medvidovic, Dashofy) TU /e Technische Universitl

Eindhoven
University of Technology

Domain-Specific Software Architecture also

includes...

A component library contains
reusable chunks of domain
expertise.

An application configuration
method for selecting and

BizTalk (integration), SQL
> Server (data store), ...

configuring components within the Mapping MURA Guiding
architecture to meet particular Principles to Microsoft
application requirements. >Technology

MURA

y - Management
Real Tim; Historian Work Mgmt Equipment Spatial Production Financial

System Data Data Data Data
Complex Event Processing

/ SET

Technische Universiteit
e Eindhoven
University of Technology

Department of Industrial Engineering & Innovation Sciences
Department of Mathematics & Computer Science

A Multi-aspect Reference Architecture for
a Business Process Cloud Platform

Vassil Stoitsev

EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MASTER'S THESIS

Towards a Big Data Reference Architecture

13th October 2013

Author: Markus Maier ’AGE 19
m.maier@student. tue.nl

EINDHOVEN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MASTER'S THESIS

Evaluation of the E-contracting
reference architecture

Towards a reference architecture for
context-aware recommender systems

January 28, 2014

Authar:

Su pervisor:

Tutor:

ing. B.M. Keijers
b m Jeesjeerssl st et e

dr. M. Pechenizkiy
1. e iy B e il

eference architectures @TU/e

Samuil Angelov
WP-226

108-2

i

,Yk'\f“qu‘“r Technische Universiteit
Eindhoven
i University of Technology

Extreme case of Domain-Specific Software

Architecture

- What happens when the domain becomes narrower?
e Consumer Electronics = Sony WEGA TVs
« Avionics = Boeing 747 Family

* Engineering Product Line: a set of products that have
substantial commonality from a technical/engineering
perspective

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 20 Un sty of Technology

Engineering PL vs Business PL

* Engineering Product Line: a set of products that have
substantial commonality from a technical/engineering
perspective

* Business Product Line: A set of products marketed
under a common banner to increase sales and market
penetration through bundling and integration

* Business product lines usually are engineering product
lines and vice-versa, but not always

« Applications bundled after a company acquisition
e Chrysler Crossfire & Mercedes SLK V6

Technische Universiteit
I U e Eindhoven
[SET /W&l 13-3-2014 PAGE 21 University of Technology
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. R€printed with permission.

Product lines —why?

Traditional
engineering

money

Product-line-based
engineering

money

/| SET / W&I 13-3-2014 F. .o

Software Architecture: Foundations, Theory, and Practice; Richard N. Ta?lorTT\lenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Soﬁs, Inc. R!prir;t—ed \/‘\'/i't'h-ﬁé?fﬁ’isvs-idﬁ.w

Product 1 Product 1 Product 2 Product 2
Expense Income Expense Income

A S S

time >

Product 1 Product 1

Expense Income o quct2 Product 2

l l Expense Income

Product 3
Expense

Product 3
Income

time >

=31

A Product-Line Architecture

« A product-line architecture captures the architectures
of many related products simultaneously

« Explicit variation points

(7 (e

Common

&) NK) =e

 Common: features common to all products
» A: features specific to product A
* Product A=Common + A

» B: features specific to product B
* Product B=Common + B

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. R€printed with permission.

How do product lines come to be?

* Design: expected variation points (now) / evolution

scenarios (future)
 List current or envisioned features of the product

— |f features are not explicit, list components and group

them to (mostly) orthogonal features, or features that
would be beneficial in different products/for different

customers
* Identify which combinations of features form feasible and
marketable products
— Only some combinations are meaningful!

Techni hU
Edh
styfTh ology

/| SET / W&I 13-3-2014 PAGE 24

How do product lines come to be?

- Unification: after several products have been
Implemented and commonality is noticed

* No product line

- It may be more expensive to create a product line or there may
not be enough commonality

* One master product
— One product architecture becomes the basis for the product line
» Hybrid
— A new product line architecture emerges out of many products
— Seems ideal but can be hard in practice

Technische Universiteit
I U e Eindhoven
[SET / W&l 13-3-2014 PAGE 25 University of Technology
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. R€printed with permission.

The Lunar Lander: A Running Example

- Computer game that first appeared in the 1960’s

* You control the descent rate of the Lunar Lander
« Throttle setting controls descent engine
* Limited fuel
* Initial altitude and speed preset

 If you land with a descent rate of < 5 fps: you win
(whether there's fuel left or not)

» “Advanced” version: joystick controls attitude &
horizontal motion

Technische Universiteit
I U e Eindhoven

University of Technology
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprintél with permission

The Lunar Lander: A Running Example

LANDER © 2005 dunnbupaytnet

Technische Universiteit
e Eindhoven
University of Technology

27
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

Product lines in the Lunar Lander

* We have a basic version
« Components: data store, game logic, text-based Ul

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 28 sty of Technology

Product lines in the Lunar Lander

* We have a basic version
« Components: data store, game logic, text-based Ul

« We want to add a graphical Ul and earn a lot of money
* Free “Demo” with “Buy me” reminder when the game time
expired
« Components: data store, game logic, text-based Ul,
graphical Ul, demo reminder, system clock

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 29 Un sty of Technology

Product lines in the Lunar Lander

* We have a basic version
« Components: data store, game logic, text-based Ul

« We want to add a graphical Ul and earn a lot of money
* Free “Demo” with “Buy me” reminder when the game time
expired
« Components: data store, game logic, text-based Ul,
graphical Ul, demo reminder, system clock

Data | Game | Text- Graphical | Demo System
Store | Logic based Ul | Ul Reminder | Clock
Basic X X X
Demo X X X X X
Purchased X X X

echnische Universiteit
Eindhoven
/ SET /[W&l 13-3-2014 PAGE 30 University of Technology

Product lines: Components, Features, Products

Components | Data | Game | Text- Graphical | Demo System
Store | Logic | based Ul | Ul Reminder | Clock
1) List Basic X X X
components Demo X X X X X
Purchased X X X

Technische Universiteit
e Eindhoven
/ SET / W&I 13-3-2014 PAGE 31 University of Technology

Product lines: Components, Features, Products

1) List
components

2) ldentify
features

| SET / W&l

Components | Data | Game | Text- Graphical | Demo System
Store | Logic | based Ul | Ul Reminder | Clock

Basic X X X

Demo X X X X X

Purchased X X X

Features Data | Game | Text- Graphical | Demo System
D o Store | Logic | based Ul | Ul Reminder | Clock

Core X X

Text Ul X

Graphical Ul X

Time-limited X X

13-3-2014 PAGE 32

TU/e

Technische Universiteit
Eindhoven
University of Technology

Product lines: Components, Features, Products

1) List
components

2) ldentify
features

3) Construct
intended
products

| SET / W&l

Components | Data | Game | Text- Graphical | Demo System
Store | Logic | based Ul | Ul Reminder | Clock
Basic X X X
Demo X X X X X
Purchased X X X
Features Data | Game | Text- Graphical | Demo System
D o Store | Logic | based Ul | Ul Reminder | Clock
Core X X
Text Ul X
Graphical Ul X
Time-limited X X
Products Core | Text Graphical | Time-
S = Ul Ul limited
Basic X X
Demo X X X
Purchased X X

13-3-2014 PAGE 33

TU/e

Technische Universiteit
Eindhoven
University of Technology

Product lines: Components, Features, Products

1) List
components

2) ldentify
features

3) Construct
intended
products

4) ldentify
new
opportunities

| SET / W&l

Components | Data | Game | Text- Graphical | Demo System
Store | Logic | based Ul | Ul Reminder | Clock
Basic X X X
Demo X X X X X
Purchased X X X
Features Data | Game | Text- Graphical | Demo System
D o Store | Logic | based Ul | Ul Reminder | Clock
Core X X
Text Ul X
Graphical Ul X
Time-limited X X
Products Core | Text Graphical | Time-
S = Ul Ul limited
Basic X X
Demo X X X
Purchased X X
Demo Text X X X Technische Universiteit

13-3-2014 PAGE 34

TU/e

Eindhoven
University of Technology

A better representation: variability model

@® mandatory

Products Core Text Graphical | Time- _
ul ul limited O optional

Basic X X /\ and

Demo X X X

Purchased X X A xor

Demo Text X X X A or

----> requires

<-->
Lunar Lander excludes

./N

Core Ul Time-Limited

/\
— T~

Text Ul Graphical Ul
T U Technische Universiteit

Eindhoven
/ SET / W&I 13-3-2014 PAGE 35 e University of Technology

DSSA and Product Lines?

Product lines

D
0 « Explicit set of related products with common aspects
m
a
i+ Domain-Specific Software Architectures
5 : Domain specific; includes elaborate domain model
n and specific reference architecture
5 n
: \c,)\, * Architectural Styles and Patterns
|
e .
d ° Design Patterns (2IPCO0)
g
e

Techni h Un
TU/e i
/ SET / W&I 13-3-2014 PAGE 36 Un sty of Technology

Architectural Patterns

* An architectural pattern is a set of architectural design
decisions that are applicable to a recurring design
problem, and parameterized to account for different
software development contexts in which that problem
appears.

« Similar to DSSAs but applied “at a lower level” and within
a much narrower scope.

« Examples:
« State-Logic-Display: Three-Tiered Pattern
* Model-View-Controller
« Sense-Compute-Control

Techni h Un
e Ei dh
Un Sty of Technology

State-Logic-Display (a.k.a. Three-Tiered Pattern)

Front end

- “Business logic”
 Tax calculation rules

Display
(User interface)

 Game rules Sends data; Returns
Requests values for
° services display

"Business Logic"

- Application Examples

. i i i Requests
Business applications Requests Valtes
« Multi-player games retrieved or returned
stored

« Web-based applications

State
(Database)

Back end

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

Tiers and Layers

Presentation tier p——
The top-most level of the application TomL

is the user interface. The main function

of the interface is to translate tasks

Display
(User interface)

and results to something the user can

— ==
4 TOTAL SALES
r

understand.
3
Sends data; Returns
Logic tier Reqyests v_alues for
This layer coordinates the services dlSP' ay
application. processes commands,
makes logical decisions and . GETLISTOFALL ® - ADDALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and LAST YEAR » A "Business Logic“
processes data between the two
surrounding layers.
) SALET Requests

. e SALE 3 values be Values
Data tier SALE 4 : t d
Here information is stored and retrieved retrleved or returne
from a database or file system. The stored
information is then passed back to the e

logic tier for processing, and then

eventually back to the user.

l State
= J (Database)
Storage
Database

http://upload.wikimedia.org/wikipedia/commons/5/51/Overview_of_a_three-tier_application_vectorVersion.svg

» Tiers: physical distribution of components of a system on
separate servers, computers, or networks (nodes)

« Layers: logical grouping of components
« Components may or may not be located on the same node

* The middle tier may be multi-tiered itself (resulting in an
"n-tier architecture” TU /e Eindnowen

/ SET / W&I 13-3-2014 PAGE 39 University of Technology

State-Logic-Display (a.k.a. Three-Tiered Pattern)

* Fundamental rule:

 No direct communication
between Display and State

 Display, Logic and State

 are developed and maintained

as independent modules,

* most often on separate
platforms

 often using different
technologies

Display
(User interface)

Sends data; Returns
Requests values for
services display

"Business Logic"

Requests
values be Values
retrieved or returned

stored

State
(Database)

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

State-Logic-Display in Web development

Static or cached dynamic content
rendered by the browser.
JavaScript, Ajax, Flash, jQuery...

Display
(User interface)

Sends data; Returns
Requests values for
services display

Dynamic content processing and
generation level application server
Java, .NET, ColdFusion, PHP, Perl,

"Business Logic"

Requests Rails...
values be Values

retrieved or returned

stored

Database + connection (e.g., ORM like
Hibernate, Java Persistence API, ...)

State
(Database)

Technische Universiteit
Eindhoven

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. !per Lgem#é‘é?b%{?‘fy of Technology

Model-View-Controller (MVC)

« Objective: Separation between information, presentation
and user interaction.

- When a model object value changes, a notification is
sent to the view and to the controller.

* view updates itself
 controller modifies the view if its logic so requires.
« User input is sent to the controller
 If a change is required, the controller updates the model.

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprintél with permission.

Model-View-Controller

View
(Encapsulation of
display choices)

Graphical
Display

Controller
(Encapsulation of
interaction
semantics)

User-interface
Events

Model
(Encapsulation
of information)

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

Do you recall?

O O O

Boundary Entity Control
object ohject object
“ , * Boundary objects interface with actors.

* Entity objects represent system data, often
from the domain.

« Control objects glue boundary elements
and entity elements, implementing the logic
required to manage the various elements
and their interactions.

View
(Encapsulation of
display choices)

Graphical
Display

Model
(Encapsulation
of information)

User-interface (Encapsulation of
Events) P .
interaction e ———
semantics)

Technische Universiteit
e Eindhoven
/ SET /[W&l 13-3-2014 PAGE 44 University of Technology

Do you recall?

Boundary = View @ Q @

Boundary Entity Control

Entity = Model - Boundary objects interface with actors.
Controk ller - Entity objects represent system data, often

from the domain.

« Control objects glue boundary elements
and entity elements, implementing the logic
required to manage the various elements
and their interactions.

View
(Encapsulation of
display choices)

Graphical
Display

Model
(Encapsulation
of information)

Controller

(Encapsulation of
interaction —
semantics)

User-interface
Events

Technische Universiteit
e Eindhoven
/ SET /[W&l 13-3-2014 PAGE 45 University of Technology

Two flavors of MVC: Passive model

2

 Passive model REUELS

* Model is completely handieEvent _*
controlled by the Controller service

‘Model
and cannot change ﬂ
iIndependently

* Model change is always a . >
reaction to user’s actions. |T getData

}-------

- Example: HTTP ' ' '

* The browser displays the view and responds to user input,
but it does not detect changes in the data on the server.

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 46 sty of Technology

Two flavors of MVC: Active model

£) Home (@ Connect #+ Discover | B

¢ A Ct I V e m O d eI Alexander Serebrenik Tweets

* Model can change Without [e s s | = s s
. . HAHIA - axé sur le dialogue entre Communautés pic_twitter.com/rT0JoxP6ub
Involving Controller

- €.¢., other sources are ~ yeoo e e
changing the dataand @27
the changes must be ;X
reflected in the views. 1

Program Board and Committee for their hard work! ow.ly/if4gVGM
Hide photo

™
' 34

Trends - Change

#kvognk

The Broken Circle Breakdown
#0scars
#BrokenCircleBreakdown [| . i..] RE
#cerzwa
Thorgan Hazard
Werchter

#LRT

VRT

Zulte Waregem

Technische Universiteit
e Eindhoven
/ SET / W&I 13-3-2014 PAGE 47 University of Technology

Two flavors of MVC: Active model

* Active model

* Model can change without
Involving Controller

- e.g., other sources are
changing the data and
the changes must be
reflected in the views.

« However, Model should
not be aware of its Views!

- Software Science
students: which design
pattern can solve this
problem?

/| SET / W&I 13-3-2014 PAGE 48

Tweets

' Belgian Royal Palace MonarchieB 58
S Réunion de travail @WIELS_Brussi e\s un centre d'art contempo ain
ST axé sur le dialogue ent re Communautés pic_twitter.com/rT0JoxP6ub

Who to follow - Refresh - View all

Carl Friedri hBl cfoolz
| & Followed by Felienne Hermans a
4 W Follo w
h% Joel Gascoigne (joelgascoigne
=«
E W Follo w

Daniel Rodriguez ©danrodgar
Followed b IEEE ICSM and others
W Follos w

Popular accounts - Find friends a ICSE @ICSEconf
- 3
'.»1 Thanks to #icse14 PC chairs Lionel Briand, André van der Hoek. the
e <@ i@ Program Board and Committee for their hard work! ow.ly/i/l4gVGM
hang

& Hide photo
#kvognk

RS

Technische Universiteit
e Eindhoven
University of Technology

Two flavors of MVC: Active model

* Active model

* Model can change without
Involving Controller

- e.g., other sources are
changing the data and
the changes must be
reflected in the views.

« However, Model should
not be aware of its Views!

- Software Science
students: which design
pattern can solve this

problem?
Observ_e_r_.

/| SET / W&I . A\GE 49

Tweets

' Belgian Royal Palace MonarchieB 58
S Réunion de travail @WIELS_Brussi e\s un centre d'art contempo ain
ST axé sur le dialogue ent re Communautés pic_twitter.com/rT0JoxP6ub

Who to follow - Refresh - View all

Carl Friedri hBl cfoolz
| & Followed by Felienne Hermans a
4 W Follo w
h% Joel Gascoigne (joelgascoigne
=«
E W Follo w

Daniel Rodriguez ©danrodgar
Followed b IEEE ICSM and others
W Follos w

Popular accounts - Find friends a ICSE @ICSEconf
- 3
'.»1 Thanks to #icse14 PC chairs Lionel Briand, André van der Hoek. the
e <@ i@ Program Board and Committee for their hard work! ow.ly/i/l4gVGM
hang

& Hide photo
#kvognk

RS

Technische Universiteit
e Eindhoven
University of Technology

Observer pattern

<_t+observerCollection

Subject

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

notifyObservers()
for observer in observerCollection
call observer.notify()

Observer

+notify()
ConcreteObserverA ConcreteObserverB
+notify() +notify()

http://upload.wikimedia.org/wikipedia/commons/8/8d/Observer.svg

« Java: Observer as an interface, Observable as a class.
* Model inherits from Observable, View/Controller implement

Observer.

| SET / W&l

13-3-2014 PAGE 50

Technische Universiteit
e Eindhoven
University of Technology

Benefits of MVC

« Supports multiple views

« Users can individually change the appearance of the web-
pages based on the same model

* Well-suited for evolution

« User interface requirements change faster than the models
« Changes are limited to the views only

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 51 sty of Technology

Liabilities of MVC

« Complexity
* new levels of indirection

* behavior becomes more event-driven complicating
debugging

« Communication

 If model is frequently updated, it could flood the views with
update requests.

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 52 sty of Technology

Sense-Compute-Control

Objective: Structuring embedded control applications

Sensor Sensor Sensor Sensor Sen d | nfo m atio n
1 2 3 4 from various
sources

Logic:
loop
Computer read all sensor values

compute control outputs
Actuator Actuator
A B
Technische Universiteit
I U e Eindhoven
University of Technology

send controls to all actuators
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

end loop

decide how to control
various devices.

Sense-Compute-Control Lunar Lander

Attitude
joystick

Engine
Control
Switch

Altimeter

Logic:
loop
read all sensor values
compute control outputs
send controls to all actuators
end loop

Flight Control Computer

Cockpit
Displays

Engine
Controller

Attitude Control
Thruster 1

Technische Universiteit
e Eindhoven
University of Technology

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinté with permission.

Example: Intrusion/Access Management

--Legend------------ 4 Fg
:' \ Screen Alarm ‘ Locker Door = S
[:] Taxonomy ! Displa OnOf Lock Lock S8
i S
C] Architecture | N\ /L
.......................... i"’.
Intrusion Secure Access IS
Manager Manager Controller ‘g
A
............ Lo e S
Image Boolean
l|ffatiﬂn] [Iocatlfnn]
User
| HCnS | Intrusion i flocation]
Ima 5
b
Boolean
(location] E"”“"&‘: é
Secure Authenticated
Imege {"”“““] [BundingJ { Access J
... B.n.n‘l-aza‘-n".}oa:a:aﬁ""“'
Boolean Bosienn [location,user] [user ")
o
/“image detection isLock /authorizedAccess\, /userDetected\ % g
Motion Authorization (T
Camera Detector Locker Database Identifier ‘ -,

canire de recherche

BORDEAUX - BUD-OUEST

/lwww labri.fr/perso/sutre/ENS-Cachan-Bretagne-2011/Slides/Consel.pdf

Architectural patterns vs. Architectural styles

vs. Design patterns

Domain-specific

Next time:

Knowledge

* Architectural styles define the
components and connectors

Application Domain

(‘what?’)
» Less domain specific o . g
- Architectural patterns define the Q.%ﬁ _ﬁ? 5
Implementation strategies of those {f >
components and connectors (‘how?’) €

* More domain specific

 Difference pattern/style is not too
sharp

Techni h Un
TU i nihov
/ SET / W&I 13-3-2014 PAGE 57 sty of Technology

- “Architectural styles define the components and
connectors”

- A software connector is an architectural building block
tasked with effecting and regulating interactions among
components (Taylor, Medvidovic, Dashofy)

| SET / W&l

Procedure call connectors
Shared memory connectors
Message passing connectors
Streaming connectors
Distribution connectors
Wrapper/adaptor connectors

Technische Universiteit
e Eindhoven
13-3-2014 PAGE 58 University of Technology

Learningfrom Others:
Patterns, Styles,and DSSAs

Domain-Specific Software Architecture

+ Experience is
crystallized as
guidelines, best
practices, do's
and don’ts

Appication Domain
Krerlacge

+ Best practices
have different
forms.

Shalloe

) View
F ront en d Graphical (Encapsulation of
Display display choices)
Model
(Encapsulation
of information)
Sends data; Returns yserinterface B Oomr?"ef f
ncapsulation o
ReqyeSts V_alues for Events interaction
services display semantics)
Sensor Sensor Sensor Sensor
1 2 3 4

Requests

values be Values

retrieved or returned Logic:

Stored Computer read all sensor values
compute control outputs
send controls to all actuatc

State endloop
(Database)
Back end
Actuator Actuator Actuator
A B C

| SET / W&l

+ A domain-specific software architecture comprises:

« areference architecture, which describes a general
computational framework for a significant domain of
applications;

« a component library, which contains reusable chunks of
domain expertise; and

« an application configuration method for selecting and

configuring components within the architecture to meet
particular application requirements.

« Examples:

ADAGE for avionics, AlS for adaptive intelligent systems, and
MetaH for missile guidance, navigation, and control systems

TU/

Componentsand connectors

fyPeniabop
[T

+ A software component is an architectural entity that

« encapsulates a subset of the system’s functionality and/or
data

+ restricts access to that subset via an explicitly defined
interface

» has explicitly defined dependencies on its required
execution context

+ A software connector is an architectural building block
tasked with effecting and regulating interactions among
compaonents

1 SET /') A s PUGE 5T

gt

Unbrendty o Tethalagy

T]
TU/e i
U bruiy of Tet by

