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Abstract—Early identification of emotions of software develop-

ers can enable timely intervention in order to support developers’

well-being and prevent burnout. We present a machine learning

experiment aimed at recognizing emotions during programming

tasks using wearable biometric sensors, tracking electrodermal

activity and heart-related metrics. As a gold standard for

supervised learning, we rely on a state-of-the-art tool for emotion

recognition based on facial expression analysis. We design, imple-

ment and evaluate an approach that combines the output of two

classifiers for neutral valence recognition and positive/negative

polarity classification. Our findings suggest that biometric sensors

in a wristband can be used to identify emotions whose recognition

would otherwise need an intrusive webcam.

Index Terms—Emotion awareness, emotion detection, biomet-

ric sensors, empirical software engineering, human factors, facial

expression analysis

I. INTRODUCTION

Recent years have seen an increasing interest in investigat-
ing the role played by emotions on software engineers’ produc-
tivity and well-being [1]–[7]. Indeed, software development
is an intellectual activity requiring creativity and problem-
solving skills, which are known to be influenced by emo-
tions [8]. In recent years, companies have adopted strategies
to support emotion awareness [9]–[11], e.g., by enriching
agile retrospective meetings with self-reported information
on perceived emotions so as to better identify what are the
activities and events associated with them. However, self-
report might provide a partial or biased perspective because the
communication of emotions might be influenced by cognitive
processing as well as by emotion regulation tendencies [12],
[13]. Along this line, we envisage the adoption of sensor-based
emotion recognition as a way to enrich emotion awareness
beyond self-reporting, both at an individual and the team level.

Emotion recognition through facial expression analysis has
reached the required level of maturity for commercialization.
State-of-the-art approaches are implemented in commercial
tools such as Affectiva1 or Face Reader,2 available at accessi-
ble costs. However, using facial recognition involves capturing
video through webcam, which might be perceived as highly
intrusive by developers. Hence we ask:

RQ To what extent can we use biometric sensors embedded
in non-invasive wearable devices, such as wristbands, as a

1www.affectiva.com
2www.noldus.com/facereader

proxy for emotions that would be otherwise recognized through
facial expression analysis during programming tasks?

To address our research question, we performed a study
with 23 participants engaged in a programming tasks while
wearing a wristband equipped with biometric sensors. We
used a webcam to capture the participants’ emotions based
on the analysis of their facial expressions, which we used as a
gold standard for training a sensor-based supervised classifier
for emotional valence, e.g. the positive, negative, or neutral
pleasantness of the emotion stimulus.

As a main contribution, this is the first study propos-
ing facial expression analysis as a gold standard to train
a sensor-based emotion classifier for software development.
Our findings complements empirical evidence provided by
previous research investigating approaches to sensor-based
emotion detection using developers’ self-reported emotions
as gold standard. Specifically, we experiment with different
experimental settings to provide a better understanding of the
impact of several factors, – including imbalanced train data
and the choice of algorithm for machine learning – on the
emotion recognition performance. As a further contribution,
we release a lab package to replicate and build upon this study.

II. BACKGROUND

A. Sensor-based Emotion Recognition
The link between emotions and physiological feedback—

measured using biometric sensors—has been widely investi-
gated in the field of affective computing [14]–[16] demonstrat-
ing association of several physiological measures with emo-
tions. Changes in the electrical activity of the brain (EEG) act
as a successful predictor for pleasantness of the emotion stim-
ulus [16], [17] and can be used to identify discrete emotions,
such as happiness and sadness [18]. The electrical activity of
the skin (EDA) is an indicator for emotional intensity [19]
and has been used for identifying excitement, stress, interest,
attention as well as anxiety and frustration [20], [21]. Heart-
related metrics such as blood volume pressure (BVP), heart
rate (HR) and its variability (HRV) have been successfully
used for emotion detection [22], [23]. Facial electromyography
(EMG) was also used [15], [24], as it captures the movements
of facial muscles due to facial expressions of emotions.

In recent years, software engineering research has investi-
gated the feasibility of emotion detection using lightweight
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biometric sensors that can be comfortably worn in a natural
setting such as the work environment [2]–[4], [25]. In our
study we consider EDA, BVP, and HR metrics as they can
be collected using low-cost non-invasive sensors [3], [4],
[25], [26] that can be comfortably used by developers during
programming tasks (see Section III-A). This choice is in
line with current research investigating the use of lightweight
biometric sensor for emotion recognition in software develop-
ment. Müller and Fritz [3] attempted to recognize emotional
valence of 17 programmers. They use self-report collected
while coding as gold-standard to train a sensor-based classifier
able to distinguish between positive and negative emotions
with an accuracy of .71. They use multiple sensors including
EEG, EDA, HR, and eye tracking metrics. Along the same
line, Girardi et al. [2] use biometrics to classify developers
emotional valence and arousal. They trained two supervised
classifiers for valence and arousal using as a gold standard
the emotions self-reported by the participants during a Java
programming task. They identify a minimum set of sensors
including EDA, BVP, and HR measured using the Empatica
E4 wristband, which they also employ in a field study [4].

B. Facial Expression Analysis for Emotion Recognition

Facial expression analysis (FEA) studies the task of
analysing facial expressions to infer affective and cognitive
mental states. FEA models facial expression using Facial Ac-
tion Coding System (FACS), originally defined by Ekman [27].
FACS defines the facial expressions by coding them into
small action units corresponding to facial muscles that usually
contribute to create the various expression patterns associated
to the emotion experienced by an individual [28]–[30]. Nowa-
days, this research field has reached maturity and available
tools are capable to reliably identify people’s emotions based
on FACS analysis [31].

As for software engineering, recent studies proposed to
use FACS-based emotion recognition for usability studies.
Johanssen et al. [32] propose EmotionKit, a framework for
identification of user emotions through facial expression analy-
sis that interprets negative emotion as an indication of usability
problems. Schmitd at al. [33] investigate the relationship
between emotions and usability metrics. Specifically, they
perform a study in a multi-modal setting where emotions
are assessed through text-based sentiment analysis, speech-
based emotion analysis, and FACS-based emotion analysis
using OpenFace [34], an open source tool for face analysis.
Filho et al. [35] propose an approach to automated usability
tests for mobile devices that leverages live emotion logging
using the device front camera. To recognize the user emotions
they rely on the Intel RealSense SDK.3 To the best of our
knowledge, this is the first study proposing to use the facial
emotion recognition as a gold standard for training a classifier
of software developers’ emotions while programming. Among
the tools currently available, in this study we rely on emotion

3https://software.intel.com/en-us/intel-realsense-sdk

labels provided by Affectiva [28], which is widely used for
labeling facial expressions of emotions [36].

III. STUDY DESIGN

A. Instrumentation and Participants
Development Task. The task, originally designed by Mueller

and Fritz [3], consisted in implementing a Java program to
retrieve all answers posted by a StackOverflow user and sum
up the scores the user earned for them. Participants could use
the StackExchange API4 and were provided with a skeleton
code to start with.

Measurement Tools and Devices. We use the Empatica E4
wristband to collect EDA- and hearth-related biometrics, a
webcam to collect the video of participants during the pro-
gramming task, and Affectiva for emotion recognition using
facial expression analysis.5 The choice of using a minimal set
of sensors, i.e., the EDA sensor and the plethysmograph for
heart-related metrics embedded in the E4 device, is justified by
the results of previous work identifying this as the minimal set
of non-invasive biometric sensors for reliable emotion recog-
nition while programming [2]. Empatica E4 measures EDA
with a sample frequency of 4Hz. It features a plethysmograph
for collecting BVP sampled at a frequency of 64Hz. BVP
is used to derive the HR and HRV. Following the Empatica
guidelines,6 we excluded HRV as it is unreliable in dynamic
conditions (i.e., when typing).

In line with our long-term research goal, i.e., enabling the
early recognition of negative feelings impairing software en-
gineers’ well-being, we focus on the valence of emotions, i.e.
the (un)pleasantness of the emotion stimulus [37]. Affectiva
uses the Facial Action Coding Systems and implements a
supervised classifier based on deep-learning, trained on million
data points extracted from webcam videos recorded in real-
world conditions [28], [36]. It takes as input raw videos and
provides as output, for each second of the video, a set a score
for valence in the range [�100, 100] as well as a timestamp
which we can be used to synchronize with other data sources
such as the raw signal collected by the biometric sensors.
At the time of the study, Affectiva offered a free six-months
license for academia.

Participants. We recruited 23 CS students following a con-
venience sampling strategy [38] by inviting participants from
a pool of volunteers. We recruited only volunteers that could
provide evidence they cleared exams where Java programming
was used for capstone projects. By doing so, we could mitigate
any threats to validity due to the lack of familiarity with the
language adopted for the programming task.

B. Experimental Protocol
The experimental protocol is organized in four phases.

Pre-experimental briefing. The experimenter invites the par-
ticipant to enter the laboratory, sit in a comfortable position

4https://api.stackexchange.com
5www.affectiva.com
6https://support.empatica.com/hc/en-us/articles/

360030058011-E4-data-IBI-expected-signal



and adjust the monitor height. The experimenter summarizes
the study steps and explains the programming task. Then, the
participant is invited to sign the consent form to allow anony-
mous treatment of the data collected through the biometric
sensors and the webcam.

Acquisition of neutral baseline. The participant wears the
Empatica E4 and the experimenter checks that the wristband
correctly acquires and record the raw EDA and heart-related
signals. Then, we collect the participant’s biometrics in a
neutral condition. To this aim, the participant watches a 2-
minute relaxing video of a nature scenery capable of induc-
ing relaxation and a neutral emotional state [39]. The raw
biometrics collected in the neutral emotional condition, i.e.
in absence of emotions, are used for normalization of the
biometrics during the preprocessing, for each participant (see
Section IV-B). By doing so, we mitigate the threats to validity
due to the differences between participants’ biometrics that
might affect the performance of the emotion classifiers, in line
with previous research [2], [40]

Software development task. The core of the study is a 30-
minute coding session. We collect the subjects’ biometrics and
record their videos while programming. Upon completing the
coding task, the participants are invited to watch again the
relaxing video to ward-off possible induced negative emotions
that could arise, for example, from not being able to solve the
programming task. At the end of the experiment, we award
the participants a meal voucher.

Data Cleaning. Once the experiment is completed, but
before analyzing the data, we check the quality of the collected
data. We manually search for possible malfunctioning of the
wristband that could have introduced noise. Also, we check for
any possible discontinuity in the raw data due to interruption
of the recording by the device. Furthermore, we discard those
participants for which we could not rely on a good quality
for the video. From the original pool of 23 participants, we
removed three videos. As a result, after this data-cleaning step,
our dataset includes 20 raw videos that we used for study
described in the following (see Section IV-C).

IV. MACHINE LEARNING

A. Gold Standard Dataset
After the data-cleaning step described in the previous Sec-

tion, our initial dataset included 20 raw videos. In fact for
two participants, the quality of the video captured by the
webcam was not good enough to ensure a reliable labeling
of emotions because their face was only partially captured
as the participants changed their position after the initial
setting. A third participant was discarded because we could
not synchronize the webcam and sensors timestamps.

For each participant, we manually isolated the part of the
raw video regarding the programming tasks by removing the
initial part including the briefing and the acquisition of the
neutral baseline. Thus, we ran Affectiva to obtain a valence
score for each second of the videos recorded during the
programming task. We used the Affectiva SDK for analysing
our videos [41]. The only limit imposed by the tool was the

overall duration of the input raw videos that could be no longer
than 3 minutes. As such, we segmented the raw videos in
chunks of 3 minutes each, using a video editor. We discretize
the valence scores in order to distinguish between the positive,
negative, and neutral valence. To this aim, we used the k-
means clustering algorithm on the continuous valence scores
as implemented by the a-rules R package [42], [43].

Whenever reusing machine-learning classifiers off-the-shelf,
we might experience a drop in performance as we run them
on new unseen data collected in different conditions with
respect to the training set. Hence, we performed a basic
check to assess the reliability and suitability of the valence
annotation provided by Affectiva with respect to our research
goals. To this aim, two researchers manually inspected a
sample of videos from our dataset to check for correctness of
valence labels. For each of the 20 participants, we extracted
five 10-second video excerpts (100 segments overall). The
two researchers independently verified the consistency of the
valence label with the facial expression shown in the video.
The two researchers achieved full agreement on this labeling
task. As a result of this step, 8 videos were removed because
of clear disagreement between Affectiva and human labels.
Problems were due to the presence of elements disturbing
the facial expression analysis such as dark glasses, long hair
bangs covering the eyes or the eyebrows, and dark beard and
mustache erroneously identified as an open mouth.

As a results of this step, the gold standard dataset finally
includes videos of 12 participants corresponding to 17,710
labeled video-chunks of 1 second, of which 1,581 (9%) were
labeled as positive, 1,420 (8%) as negative, and the remaining
14,709 (83%) items as neutral. We use these labels as gold
standard for training our valence classifier and we align them
with the biometrics measurements using the Empatica E4
timestamps.

Given the unbalanced distribution of the valence label,
we experiment with different datasets resulting from random
sampling neutral cases, as reported in Table I. Specifically,
we consider the full dataset (the first line of Table I) as well
as a balanced dataset (the second line). To further investigate
the impact of the unbalanced data distribution on the training,
we experiment with four additional settings with increasing
number items for the neutral class. All the scripts used for
the creation of the gold standard dataset and for sampling the
neutral cases are included in our replication package.7

TABLE I
THE GOLD STANDARD DATASET WITH DISTRIBUTION OF VALENCE

LABELS. Line 1: THE FULL DATASET DISTRIBUTION. LINES 2–6: VARIOUS
ROUNDS OF THE MACHINE LEARNING STUDY.

Neutral Positive Negative Total

14709 (83%) 1581 (9%) 1420 (8%) 17710
1400 (32%) 1581 (36%) 1420 (32%) 4401
2800 (48%) 1581 (27%) 1420 (24%) 5801
4200 (58%) 1581 (22%) 1420 (20%) 7201
5600 (65%) 1581 (18%) 1420 (17%) 8601
7000 (70%) 1581 (16%) 1420 (14%) 10001

7https://figshare.com/s/0dff61db72be2bde3292



B. Preprocessing and Features extraction

The raw biometric signals were recorded during the entire
experimental session for all the participants. However, for the
purpose of reliably capturing biometrics associated to emo-
tional valence labels, we only consider the signals recorded
in proximity of the stimuli of interest, i.e., the biometrics
collected in the 10 seconds before the valence label is assigned
by Affectiva. This choice is in line with consolidated practices
in related research on sensor-based classification of affective
states of software developers [2]–[4], although the aforemen-
tioned studies use self-reports as gold standard. To synchronize
the measurement of the biometric signals with the labeled
emotion, we (i) save the timestamp of the label provided
by Affectiva (t_label), (ii) calculate the timestamp for
relevant timeframe for each interruption—i.e., 10 seconds
before the labeled frame (t_start), and (iii) select each
signal samples recorded between t_start and t_label.

For each participant, we normalize the signals to their
baseline calculated based on the last 30 seconds of the video
used to elicit a neutral state before starting the task, in line
with previous research [2], [40]. To maximize the signal in-
formation and reduce noise caused by movements, we applied
multiple filtering techniques, by reusing the script distributed
in the replication package by Girardi et al. [2]. Regarding BVP,
we extract frequency bands using a band-pass filter algorithm
at different intervals [22]. The EDA signal consists of a tonic
component (i.e., the level of electrical conductivity of the skin)
and a phasic one representing phasic changes in electrical
conductivity or skin conductance response (SCR) [44]. We
extract the two components using the cvxEDA algorithm [45].

TABLE II
MACHINE LEARNING FEATURES.

Signal Features

EDA
- mean tonic
- phasic AUC
- phasic min, max, mean, sum peaks amplitudes

BVP - min, max, sum peaks amplitudes
- mean peak amplitude (diff. between baseline and task)

HR -mean (diff . between baseline and task)
- heart-rate variance (diff . between baseline and task)

After signal pre-processing, we extracted the features pre-
sented in Table II, which we use to train the classifier. We
select features based on previous studies using the same
signals [2]–[4], [26], [46] and reuse publicly available scripts
for feature extraction [2].

C. Modeling

We experiment with a pipeline approach, depicted in Fig-
ure 1, which combines the output of two classifiers: the first
one distinguishes neutral vs. non-neutral items. Then, the non-
neutral items are provided in input to the second classifiers that
distinguishes negative vs. positive polarity. Figure 1.b). The
two classifiers in the pipeline approach are trained indepen-
dently using the training set. In particular, for training the first
classifier (neutral vs. non-neutral) the positive and negative

items are mapped to the non-neutral class. We train the clas-
sifiers using supervised machine learning. Based on previous
findings [2], [47], we select the two best-performing machine
learning algorithms on sensor-based emotion recognition, that
is Random Forest (RF) and Support Vector Machine (SVM).

We train and evaluate the pipeline for the valence clas-
sifier in several different settings corresponding to various
combinations of different parameters. Specifically, we tested
with different train-test splits (70-30,80-20,90-10), the two
machine learning algorithms (RF and SVM), and different
size of the neutral class including an increasing number of
neutral valence cases, randomly sampled from the full dataset
described in Section IV-A. To split the gold standard into
train and test sets we used the stratified sampling strategy
implemented in the R package caret [48]. For each setting,
we search for the optimal hyper-parameters using 10-fold
cross-validation The resulting model is then evaluated on the
hold-out test set to assess its performance on unseen data. We
repeat this process 10 times to further increase the validity of
the results. The performance is evaluated by computing the
mean for precision, recall, F-measure, over the different runs.
This setting is directly comparable to the one implemented by
Müller and Fritz [3] and Girardi et al. [2].

Fig. 1. The valence classifier as a pipeline of two supervised classifiers.

D. Evaluation Metrics
We assess the performance of our valence classifier in

terms of precision, recall, and F1. Given the unbalanced
distribution of the gold standard dataset, we rely on the macro-
average i.e., precision and recall are first evaluated locally for
each class, and then globally by averaging the results of the
different categories. For comparison with related work, we also
report the Accuracy, computed as the percentage of correctly
classified cases. In line with previous research [49] we also
compute the weighted kappa () [50], [51] to distinguish
between mild disagreement, that is the disagreement between
negative/positive and neutral valence, and severe disagreement,
that is the disagreement between positive and negative valence.
We assign weight = 1 to mild disagreement cases and a weight
= 2 to severe disagreement. Following a consolidated prac-
tice [51], we interpret  as follows:  values less or equal to
zero indicate that agreement is less than chance; the agreement
is slight if 0.01    0.20, fair if 0.21    0.40, moderate
if 0.41    0.60, substantial if 0.61    0.80 and almost
perfect if 0.81    1.

V. RESULTS

In Table III, we report the performance achieved in all
settings by the valence classifier. Due to space constraint, we



only report the performance obtained with Random Forest as
we observed it outperforms SVM in all settings. In line with
consolidated research practice [2], we use as a baseline the
trivial classifier that always predict the majority class, i.e., the
classifier predicting neutral valence for all settings except the
one with 1400 neutral cases, for which positive is the majority
class. In Table IV we report the baseline performance.

TABLE III
PERFORMANCE OF THE CLASSIFIERS (BEST PERFORMANCE IN BOLD).

#neu. Prec Rec F1 Acc.  Perfect Disagreement

agreem. Severe Mild

Split: 70% train (10-fold) - 30% test
1400 .61 .62 .60 .63 .54 63% 6% 31%
2800 .59 .60 .59 .60 .44 60% 3% 37%
4200 .61 .57 .59 .65 .4 65% 2% 33%
5600 .62 .54 .57 .69 .36 69% 1% 29%
7000 .62 .52 .55 .72 .33 72% 1% 27%
14709 .65 .41 .44 .84 .18 84% <1% 16%

Split: 80% train (k-fold) - 20% test
1400 .67 .66 .64 .67 .60 67% 5% 28%
2800 .61 .61 .61 .62 .46 62% 4% 35%
4200 .66 .62 .63 .69 .47 69% 1% 30%
5600 .63 .54 .57 .69 .37 69% 1% 30%
7000 .65 .52 .56 .73 .35 73% 1% 26%
14709 .61 .44 .47 .83 .22 83% <1% 17%

Split: 90% train (k-fold) - 10% test
1400 .66 .67 .66 .68 .61 68% 4% 28%

2800 .63 .64 .64 .64 .49 64% 3% 33%
4200 .61 .57 .59 .64 .40 64% 1% 35%
5600 .62 .55 .58 .68 .38 68% 1% 31%
7000 .68 .56 .60 .75 .41 75% 1% 24%
14709 .61 .44 .48 .83 .22 83% <1% 17%

TABLE IV
MAJORITY CLASS BASELINES FOR EACH RUN.

# neutral Prec Rec F1 # neutral Prec Rec F1
1400 .12 .33 .18 5600 .19 .33 .25
2800 .16 .33 .22 7000 .22 .33 .26
4200 .19 .33 .25 14709 .23 .33 .27

In all settings and runs we observe a substantial improve-
ments over the baseline classifiers (see Table IV). In particular,
we obtain the best performance in the 90-10 split condition.
The best performance (precision = .66, recall = .67, f1 = .66,
accuracy = .68) is obtained using 1400 neutral cases. As for
weighted , we observe a substantial agreement ( = .61)
between the gold label and the predictions of the pipeline
classifier. A low percentage of severe disagreement (4%) is
observed, which indicates that confusion between positive
and negative emotion rarely occurs, compared to confusion
between neutral and positive or neutral and negative (mild
disagreement = 28%).

To compare the performance of the two approaches, we
provide the confusion matrix and the class-based performance
for the best run (see Table V). In line with the mild and
severe disagreement rates observed for the two best performing
classifiers (see Table III), the performance by class suggests
that the pipeline classifier is able to distinguish between
positive from negative valence, thus rarely introducing a severe
disagreement.

TABLE V
PERFORMANCE BY CLASS.

Confusion matrix Performance by class
Classifier prediction

Class neg neu pos Prec Rec F1
neg 120 (85%) 14 (10%) 8 (6%) .69 .85 .76
neu 45 (31%) 52 (37%) 43 (31%) .58 .37 .45
pos 9 (6%) 23 (15%) 126 (80%) .71 .80 .75

VI. DISCUSSION

A. Comparison with Related Studies
Valence classifier performance. Our study is built on

top of two studies that used self-reports rather than facial
expression analysis as a gold standard to classify developers’
emotions [2], [3] along the valence dimension. Specifically,
we use the same Java programming task used by Girardi et
al [2] and originally defined by Müller and Fritz [3] and
we leverage the Empatica E4 wristband used in their studies.
Our best performing classifier achieves performance (f1 = .66
and accuracy = .68) comparable to the one achieved by the
valence classifiers of the two studies. In particular, Müller
and Fritz [3] report a classification accuracy of .71% while
Girardi et al. [2] report an accuracy = .71 and f1 = .59).
This is a very promising result especially considered that this
performance is obtained by a classifiers that predict valence
in {positive, neutral, negative}. Conversely, the two previous
studies trained binary classifiers that were able to distinguish
between positive and negative cases, without modeling the
neutral condition in absence of emotions. The study of Girardi
et al. [2] conducted in the ab setting has been further extended
in a study of 21 professional developers at their workplace [4].

Richer sensor settings. The topic of sensing developers’
emotions was also investigated by field studies involving
professional developers at the workplace. Vrzakova et al. [25]
leveraged EDA and eye gaze for classifying developers’
valence and arousal of 37 developers performing code re-
view during an in-situ experiment. They trained a supervised
machine-learning classifiers considering features of each sig-
nal separately and features of all signals in combination.
Again, as a ground truth, they relied on binarized self-reported
scores for valence (positive vs. negative) and arousal (low vs.
high). Their findings show that the eye gaze is the most predic-
tive measurement for emotional valence, achieving accuracy
of 85.8%. When combining both eye-gaze and EDA, authors
achieve 90.7% accuracy for valence and 83.9% for arousal. We
are not including measures based on eye-tracking because too
much invasive for being considered in the workplace except
for experimental purposes.

Need for individual training? Girardi et al. [4] investigated
the use of sensors for classifying the self-reported emotions of
21 software developers from 5 different companies, as reported
over a time span of 2 or 3 weeks, depending on the duration
of the agile iteration. They attempt to distinguish negative
from non-negative emotions based on EDA- and heart-related
metrics using the Empatica E4 wristband. While achieving
promising performance (f1=.75 for the best run), their valence



classifier reported lower average performance in the leave-
one-subject-out condition (f1 = .46), i.e. its performance
vary depending on the individual’s biometrics. Thus, they
suggest strengthening the approach through future replications
involving further data collection and fine-tuning of emotion
models on an individual basis, to account for differences in
biometrics between study participants. Due to the restricted
pool of participants we could not investigate further in such
direction, which we plan to explore in future studies.

B. Implications
Sensor-based recognition of developers’ emotion: self-

report vs. facial emotion recognition. Findings from affective
computing research suggest that multiple emotion assessment
methods (e.g., self-report vs. recognition of emotions based on
facial expressions) might not necessarily align at a particular
moment in time [52]. In his study on the role of emotion
in learning and cognitive development, Pekrun [12] describes
the emotional as a coherent response among different com-
ponents. At the cognitive level, the emotion is triggered by
the assessment of a situation (i.e., worrying about something
threatening my goals). At a physical level, emotions reflect in
biometrics changes (e.g, EDA changes due to sweating and
heart rate rising in presence of anxiety) and might be also
visible through facial expressions.

In the context of software development, the self-reported
emotions might be influenced by cognitive processing as well
as by emotion regulation tendencies. It is the case of emotional
labor, that is the “process by which workers are expected
to manage their feelings in accordance with organizationally
defined rules and guidelines” [53], which might reduce the
disclosure of negative emotions considered not acceptable in
collaborative software development [13].

To fully support emotion awareness during software de-
velopment a combination of multiple approaches for emotion
assessment is needed. Specifically, we envisage the emergence
of tools and practices including both self-reporting through
experience sample and emotion recognition through facial
expression analysis, as they might provide complementary
information on the emotional status of an individual. However,
this could not be always feasible in practice: continuously
asking to self-report emotions might be perceived as annoying
and might interfere with daily activities while video recording
is problematic in terms of privacy.

This study represents the first attempt to assess the emotions
of software developers using facial expression analysis as a
gold standard. Previous studies investigated and demonstrated
the feasibility of sensor-based emotion detection using non-
invasive biometric devices while programming [2], [3], code-
review [25], or during a wider range of developers’ daily
activities performed at the workplace [4], [25]. What these
studies have in common is that they rely on self-reported emo-
tions as gold standard, i.e. such classifiers enable recognizing
the emotions developers explicitly reported during the data
collection stage. In this study, we advance and complement
the state of the art by providing evidence that it is possible to

build sensor-based classifiers to predict also the emotions that
would be identified through facial analysis.

Supporting the developers’ emotional awareness at the
individual and at the team level. Happy developers solve
problems better [54]. Recent research demonstrated that a
relationship exists between developers’ productivity and their
well-being [55], [56]. Indeed, companies are recently imple-
menting strategies to support emotion awareness [9], [10]
of developers both at an individual and at the team level.
For example, during agile retrospective meetings, developers
could self-report their emotions and use them as a proxy for
problems and triggers for discussion [11], [57].

Along the same line, we envision the emergence of tools that
combine multiple approaches to support emotional awareness
at the team level, e.g. by including the emotional feedback in
agile meetings, as well as at the individual level, e.g. by identi-
fying negative emotions and suggesting just-in-time corrective
actions to restore positive mood and focus. The findings of
our machine learning experiment suggest that biometrics can
be used to identify emotions that would be recognized by a
state-of-the-art tool for facial expression analysis. As such, we
envision the adoption of sensor-based emotion classifiers based
on wearable devices because less invasive than webcams and
less annoying than self-reporting.

C. Threats to Validity
Construct validity. Our study suffers from threats to con-

struct validity that is the reliability of our measures in captur-
ing emotions. In this study, we employed lightweight, low-
cost sensors in line with our long-term vision of enabling
emotional awareness at the work place using sensors that are
comfortable to wear during the developers’ daily activities.
This might have lowered the quality of data collected by the
sensors with respect to those collected in a controlled setting
as in previous lab studies in the affective computing field. To
mitigate this threat, we performed a careful quality assessment
of the collected data for all participants.

Internal validity. Threats to internal validity concern con-
founding factors that can influence the results. Factors existing
in our laboratory settings, such as the absence of real con-
sequences when failing or succeeding in the task compared
to real task professional developers deal with while at work,
can influence the triggered emotions. Also the choice of the
programming task might have an impact on richness and
variety of emotions experienced by the participants during the
task. In line with our long-term goal of supporting emotion
awareness and well being of software developers, the test
should have been feasible but also difficult enough to elicit
both positive and negative emotions. To ensure feasibility, we
selected only volunteers that successfully cleared exams where
Java was used for capstone projects.

Further threats might be due to the choice of the Affectiva
tool for creating the gold standard. When re-using supervised
classifiers, we should be aware that the classifiers are built for
specific goals and the datasets might reflect different concep-
tualizations of affect. To mitigate this threat, two researcher



independently evaluate the correctness of the emotions pre-
dicted by Affectiva by manually inspecting a subset of labeled
video frames. Finally, due to constraints on the input format
posed by the tool, we segmented the raw videos in chunks of
3 minutes each, which might have introduced the risk of data
loss. However, Affectiva uses frames of 1 second as unit of
analysis, which mitigates this risk.

External validity Threats to external validity relate to the
generalizability of the results. To enable fair comparison with
related work, we chose the same task used in a previous
study [2], [3]. Regarding participants, given the limited amount
of participants included in our gold standard, we cannot claim
a large generalization power. Nevertheless, we covered dif-
ferent levels of academic experience (by including Bachelors,
Masters, and PhD students). Further replications should en-
gage more participants, including also professional developers
as they might experience a different range of emotions com-
pared to students. Moreover, our previous study of biometric
recognition of emotions [2] has been successfully confirmed in
the industrial setting [4]. However, the application of sensor-
based emotion recognition in industrial practice can be limited
by the ability of the companies to purchase suitable wearable
devices for their employers.

Conclusion validity The validity of our conclusions relies
on the robustness of machine learning models. We mitigated
this threat by running two different algorithms (Random Forest
and SVM) addressing the same classification task, applying
hyper-parameters tuning, and reporting results from different
evaluation settings. However, we acknowledge the validity of
our findings can be limited by the sample size.

VII. CONCLUSIONS

We investigated to what extent we can use non-invasive
biometric sensors embedded in a wristband as a proxy for
the identification of emotions of software developers while
programming. Specifically, we experimented with machine
learning using biometric features to predict the gold labels
for emotions assigned by a tool that implements emotion
recognition through facial expression analysis. We achieved
a performance comparable to the one reported by a previous
study relying on self-report as a gold standard. This study rep-
resents the first attempt to recognize the developers’ emotions
using facial expression recognition as a gold standard. Our
findings represents a further step towards the implementation
of tools that support emotion awareness and well-being of
software developers at the workplace.

ETHICAL IMPACT STATEMENT

Potential negative applications. We acknowledge the poten-
tial misuse of emotion detection classifiers when embedded in
technology to monitor people’s behavior. We do not advocate
in favor of the implementation of a monitoring technology that
might have an impact on privacy. Conversely, we advocate in
favor of using sensor-based emotion detection to gain self-
awareness of developers’ own emotions. In the context of
software development, the emotional feedback could be shared

with the colleagues, e.g. during retrospective meetings in Agile
development, on a voluntary basis.

Deceptive applications and failure modes. While demon-
strating promising performance, we are aware that our clas-
sifier is not yet robust enough to be deployed for daily use
without running the risk of incorrect classification. Neverthe-
less, the effect of misclassifying emotions is limited to loosing
users’ confidence that the classifier can serve their emotion
awareness goals.

Risks to privacy. The protocol we use to collect data
was carefully explained to the participants at the beginning
of the experiment. According to the rules at the university
that hosted the data collection procedure, participants were
requested to sign a consent form where they give consent to
the anonymous storage and treatment of the data collected
during the experimental session. We are not releasing the data
and we are not planning to do so in the next future.

Generalizability and biases. Due to the restricted size of
the pool of participants, we cannot claim the generalizability
of the classifier performance or the absence of biases due to
differences in the individual biometrics.
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