Noname manuscript No.
(will be inserted by the editor)

An interview study about the use of logs in
embedded software engineering*

Nan Yang - Pieter Cuijpers - Dennis
Hendriks - Ramon Schiffelers - Johan
Lukkien - Alexander Serebrenik

the date of receipt and acceptance should be inserted later

Abstract Contert: Execution logs capture the run-time behavior of software
systems. To assist developers in their maintenance tasks, many studies have
proposed tools to analyze execution information from logs. However, it is as yet
unknown how industry developers use logs in embedded software engineering.

Objective: In this study, we aim to understand how developers use logs
in an embedded software engineering context. Specifically, we would like to
gain insights into the type of logs developers analyze, the purposes for which
developers analyze logs, the information developers need from logs and their
expectation on tool support.

* This paper extends a published paper [93]

Nan Yang
Eindhoven University of Technology, The Netherlands
E-mail: n.yangl@tue.nl

Pieter Cuijpers

Eindhoven University of Technology, The Netherlands
Aalborg University, Denmark

E-mail: p.j.l.cuijpers@tue.nl

Dennis Hendriks

ESI (TNO), The Netherlands

Radboud University, The Netherlands

E-mail: dennis.hendriks@tno.nl, dennis.hendriks@ru.nl

Ramon Schiffelers

ASML, The Netherlands

Eindhoven University of Technology, The Netherlands
E-mail: r.r.h.schiffelers@Qtue.nl

Johan Lukkien
Eindhoven University of Technology, The Netherlands
E-mail: j.j.lukkien@tue.nl

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

2 Yang et al.

Method: In order to achieve the aim, we conducted these interview studies.
First, we interviewed 25 software developers from ASML, which is a lead-
ing company in developing lithography machines. This exploratory case study
provides the preliminary findings. Next, we validated and refined our find-
ings by conducting a replication study. We involved 14 interviewees from four
companies who have different software engineering roles in their daily work.

Results: As the result of our first study, we compile a preliminary taxonomy
which consists of four types of logs used by developers in practice, 18 purposes
of using logs, 13 types of information developers search in logs, 13 challenges
faced by developers in log analysis and three suggestions for tool support
provided by developers. This taxonomy is refined in the replication study with
three additional purposes, one additional information need, four additional
challenges and three additional suggestions of tool support. In addition, with
these two studies, we observed that text-based editors and self-made scripts are
commonly used when it comes to tooling in log analysis practice. As indicated
by the interviewees, the development of automatic analysis tools is hindered
by the quality of the logs, which further suggests several challenges in log
instrumentation and management.

Conclusions: Based on our study, we provide suggestions for practition-
ers on logging practices. We provide implications for tool builders on how to
further improve tools based on existing techniques. Finally, we suggest some
research directions and studies for researchers to further study software log-

ging.
Keywords log analysis practice, embedded software enigineering

1 INTRODUCTION

Execution logs, produced by software systems at runtime, capture the dynamic
aspects of the software. Log analysis tools have been proposed to aid devel-
opers in such software engineering tasks as program comprehension [78], test
generation [73, 21], and change comprehension [4, 10, 63]. However, researchers
have provided empirical evidence that log analysis tools are not necessarily ef-
fective and applicable when dealing with real-world problems [64]. Legunsen et
al. [52] studied the effectiveness of specifications mined from execution traces
in the context of bug-finding. The authors manually analyzed runtime viola-
tions of the specifications for 200 open-source projects and found that most
of the violations to the specifications are false alarms (i.e., not real bugs).
Another problem reported by Mashhadi et al. is that state-of-art log analysis
tools failed in processing the large volume of logs produced by a large-scale
embedded system [64].

We believe that understanding how engineers analyze logs and what infor-
mation they need is essential to design better log analysis tools and logging
process. Li et al. [56] studied the benefits and costs of logging from developers’
perspectives in the context of open-source software development, suggesting
better automated logging tools. Barik et al. [11] identified the tensions that
emerge in data-driven cultures as event logs are used by a variety of roles in-
cluding non-engineering roles (e.g., a program manager) at Microsoft, calling

An interview study about the use of logs in embedded software engineering* 3

for tools that assist non-technical team members in analyzing logs. However,
there is no empirical study on developers’ log analysis practices in embedded
software engineering. Often, embedded software engineering needs specifically
targeted tools [35]. Embedded systems are often implemented as concurrent
systems, have real-time constraints and are mapped directly on real hardware.
These features of embedded systems have raised challenges in software test-
ing [86], modeling [83], and architecture design [5], which opens up questions
of how these features influence log analysis practices, what kind of challenges
are raised in practices and how developers deal with these raised challenges.

Therefore, we focus on how developers analyze logs in embedded software
engineering, with the aim of identifying developers’ needs for future research
on the techniques that are applicable to aid developers in performing their
maintenance tasks.

In order to understand how we can improve analysis tools for embedded
software engineering, we need to understand what information developers need
from execution logs (RQ3) and what tool support could be useful (RQ4). We
believe that if the required information could be easily provided by tools,
developers could focus their effort and time on the maintenance tasks, rather
than on searching for the information. However, the expectations developers
have about tools also depend on the context of use. Therefore, first, we need
to understand the types of logs developers use (RQ1) and the purposes for
which developers analyze logs (RQ2).

To answer our research questions, in our previous conference paper [93]
we reported on an exploratory case study at ASML, a company that develops
lithography systems for the semiconductor industry. We conducted a series of
semi-structured interviews with 25 software developers. We observed that de-
velopers use four types of execution logs that record high-level machine actions
and errors, low-level execution details, performance data as well as business-
critical data (RQ1). We confirmed that logs are primarily used for analyzing
software issues [11, 56]. In addition, we observed the use of logs, e.g., for test
code development and requirement reverse-engineering (RQ2). We identified
13 types of information developers search for in the execution logs. We found
that the most frequently mentioned types of information are propagation of
errors across systems, timestamps associated with log lines, data flow, inter-
action of software components, and differences between multiple executions
(RQ3). In addition to the common challenges related to log quality [99, 56],
we observed that the lack of domain knowledge, lack of familiarity with code
base and software design and presence of concurrency raise major challenges
in log analysis for such complex and multidisciplinary systems. Particularly,
developers shared that obtaining a high-level picture of component interac-
tions is useful for developing global comprehension on the behavior of such
systems. Such abstraction is particularly hard to obtain with currently used
tools (e.g., text-based tools). Thus, developers expect tools to help them han-
dle the complexity by adding multi-level abstractions to logs and comparing
multiple logs on different levels of abstraction (RQ4).

4 Yang et al.

The exploratory case study at ASML is a case study. As any other case
studies, it inherently suffers from threats to external validity. Hence, to in-
crease the external validity, in the current work we extend our previous study
by replicating it at four other companies. With this replication study, we aim
at understanding to what extent our findings at ASML can be confirmed at
other companies (RQ5). We would like to not only confirm our previous find-
ings, but also explore the scope of the results. To achieve the confirmatory
and exploratory goals, we conducted 14 interviews with engineers from three
embedded software companies and one company which develops general appli-
cations. By involving these two types of companies, we attempted to identify
aspects that are specific to embedded software companies and juxtapose them
with findings for companies from other domains. The results show that the
practices at ASML are not company-specific (RQ5). We found that most find-
ings obtained at ASML (e.g., the challenges raised by concurrency) largely
resonate with engineers at other embedded software companies, while some
findings are shared by all the companies (e.g., challenges related to log qual-
ity) including the company which develops general applications.

We have also collected new insights from this replication study. To address
the challenges in log analysis, most of the interviewees shared that it is im-
portant to resolve several trade-offs in logging. For example, formalized and
automatic logging on one hand can help companies govern log quality, and
subsequently facilitate the analysis of logs and the evolution of logging code,
but on the other hand, it reduces the freedom of developers in logging what
they need and want. Moreover, with this replication study, we collected em-
pirical evidence that the evolution of logging code has raised challenges for
maintaining the artifacts that depend on the generated logs (e.g., analytical
tools or a knowledge database based on logs).

Based on our results from the study at ASML and its replication, we syn-
thesize the main scenario of software logging, discuss the contextual factors
(e.g., programming languages), and formulate implications for practitioners,
researchers and tool builders about log analysis and logging practice. For exam-
ple, we suggest researchers to study the co-evolution of logs and log-dependent
entities to ease any software engineering activities and techniques that depend
on the generated logs (e.g., log-based testing, pattern recognition and match-
ing, and log analysis and differencing). For tool builders, we suggest developing
tools that can help developers comprehend systems in an abstract way, cate-
gorize log differences for providing actionable insights and link different types
of logs to provide a complete picture of executions. For practitioners, we sug-
gest a series of logging guidelines, such as defining logged information with the
stakeholders of logs.

The remainder of this paper is organized as follows. In Section 2, we present
our exploratory study at ASML. Next, in Section 3, we report on our replica-
tion study at four companies. Based on these two studies, we synthesize the
findings in Section 4. We then discuss the implication of our work in Section 5.
We discuss threats to validity in Section 6. Finally, we conclude in Section 7.

An interview study about the use of logs in embedded software engineering* 5

2 Use of logs at ASML

In this section, we present our exploratory study at ASML about log analysis.
We start with our methodology (Section 2.1). The results of this study that
answer our research questions are then presented in Sections 2.2 (RQ1), 2.3
(RQ2), 2.4 (RQ3) and 2.5 (RQ4).

2.1 Methodology

To understand how software developers use logs in the embedded systems
industry, we conducted a case study [77]. As our research questions differ from
previous work [11, 56], we opted for an exploratory rather than a confirmatory
study.

2.1.1 Context

Our study is part of an ongoing collaboration with ASML which develops high-
tech production systems for the semiconductor industry. The division that we
work with is responsible for components implementing the supervisory con-
trol and metrology of the manufacturing process. Control and metrology have
become the backbone of many high-tech systems (e.g., optical measurement
systems and autonomous vehicles) due to the growing complexity and the
demanding precision [50].

The software components developed by this division form a paradigmatic
subsystem [29] that coordinates machine actions and measurements, as well
as calibration of the systems based on the performed measurements. The sub-
system consists of multiple processes collaborating with each other via inter-
process communication.

The division provides a typical context of embedded software engineering;
the (sub)system is implemented not only by software engineers but also en-
gineers from different disciplines (e.g., mechanical or electrical engineering).
Similar to other complex embedded systems [7], the execution of such software
systems requires the physical layers to be present or simulated. The in-house
execution of such software systems requires either a simulator called DevBench,
or an environment called TestBench in which physical layers are present.

The system is implemented with several languages. The interviewees use
general purpose programming languages C/C++ and Python. In addition, the
division has been adopting model-driven engineering (MDE) to design the com-
ponents that are responsible for controlling machine actions and production
processes. Developers design these components using a state-machine-based
modeling language called ASD [16]. The correctness of software components is
verified using a built-in model checker. The source code of these components
is automatically generated from these state machine models.

2.1.2 Semi-structured Interviews

We opt for semi-structured interviews as they allow us to discuss prepared
questions and ask follow-up questions exploring interesting topics that emerge
during interviews [15]. Table 1 shows our interview guide. In adherence to best
interviewing practices [15], we conducted a pilot interview with a developer

6 Yang et al.

from the same division to examine our interview settings and questions. The
pilot interview took one hour and led to the rephrasing of several questions.
The study design was approved by the ethical review board of the Eindhoven
University of Technology and ASML.

Table 1: Interview guide

Background

1. What is your job title?

2. What kind of systems is your group responsible for? What is your role and respon-
sibility within the group?

Type of logs (RQ1)

3. Do you use any execution logs that capture the run-time behavior of software?
4. How are these logs commonly called in your team?

5. How do you obtain these execution logs?

Purpose of log analysis (RQ2)

6. For what purposes do you use them?

7. How often do you analyze logs for your purposes?

Information needs (RQ3)

8. What information is in log X (i.e., the log the developer has mentioned)?

9. What information in log X helps you for your work?

10. How does the information in log X help you?

11. Can you describe the procedure of a task in which log X is used?

Tool support (RQ4)

12. What tools do you use for analyzing execution logs?

13. How do you use these tools?

14. What are the most challenging steps in your log analysis practices?

15. How do you cope with these challenges?

16. What kind of tools would you like to have for helping you analyze logs?

17. How would you like to use these tools?

Ending

18. Having discussed some topics about log analysis, would you like to add some
thoughts?

19. What is your year’s of experience as a software developer?

20. What is your education background?

2.1.3 Interview participants

The selected division has seven software development groups. Each group is re-
sponsible for the development of multiple components. We contacted the group
leads from these seven groups to recruit software developers. We encouraged
the group leads to take into account the diversity of developers’ education
background, development role and gender. Our invitation was accepted by 25
software developers (see Table 2). In the beginning of the interviews, to es-
tablish mutual trust, we stressed that the interviewees’ identity will not be
disclosed, and their answers will not be shared with their supervisors.

2.1.4 Data collection and analysis

We collected data by recording the audio and making the transcripts. We
coded the transcripts [15] using the ATLAS.ti data analysis software. Our
coding process consists of three steps. First, we performed open coding. We

An interview study about the use of logs in embedded software engineering* 7

Table 2: Background of interviewees

Group Participant ID Years of experience Current role! Gender? Education

D background?
1 7 D M GCS
1 2 10 D M GCS
3 7 A M GCS
4 6 A M GCS
5 11 D w GCS
9 6 5 D M GCS
7 30 A M UOth
8 24 T M GOth
9 15 A M UcCs
3 10 5 D M GCS
11 5 A M GCS
12 13 T M UOth
4 13 1.5 D M GCS
14 25 P M UcCs
15 2.5 D M UCs
5 16 4.5 D M UOth
17 9.5 A&P M GCS
18 3.5 D M GCS
6 19 2 D M UcCs
20 10.5 A M GCS
21 20 A&P M GOth
22 3 D M GCS
7 23 13 D M GCS
24 9 D M GOth
25 2.5 D \WY GCS
1. D: developer, A: architect, T: tester, P: product owner 2. M: man, W: woman, none
of the participants identified as non-binary. 3. GCS: graduate degree in computer sci-

ence, UCS: undergraduate degree in computer science, GOth: graduate degree in other
science subjects (e.g., electrical engineering, physics and mechanical engineering), UOth:
undergraduate degree in other science subjects.

constantly compared and refined codes that emerge from this process. Similar
codes were then grouped into categories. Second, we conducted axial coding
to make connections between codes or categories. Finally, these codes and
categories were grouped into the topics derived from our research questions.
According to Strauss and Corbin [87], theoretical saturation is reached when
no new insights emerge. Hence, instead of having a strict sequential order
of data collection and analysis, we interleaved these steps. The codes and
categories emerged as the data is analyzed and helped us to examine whether
theoretical saturation was reached. We consider that the saturation is reached
when no new codes are found. With these 25 participants, we reached the
saturation as we did not observe new codes in the last four interviews. We
present our explanation of the derived codes in the following sections. The
codes are explained with quotes of developers. We give an ID for each quote
to help readers link these codes and the explanations. An ID has a format of
PX-Y where PX indicates the participant ID and Y indicates the sequence
number of quotes from the corresponding particiapnt.

8 Yang et al.

Table 3: Four types of logs (RQ1)

Type Information Enabled by default Presence of physi-

cal layers Quote ID
Event log Machine event & v Not necessary
(EL) error message P20-1
Function trace Order of functions & x Not necessar
(FT) values of parameters Y P18-1
Performance data Duration of software & v Necessar
(PD) hardware actions y P7-1
Functional data Business-critical data v Not necessary
(FD) P8-1

2.1.5 Member checking

Coding is an interpretative process and as such there is always a risk of mis-
interpretation [43]. In order to reduce this risk, we performed member check-
ing [17], i.e., request interviewees’ feedback to improve the accuracy of the
derived theory. We emailed each participant two artifacts, the transcript of
the interview to remind the participant what was discussed in the interview,
and the codes derived from the transcript together with the description of
the codes. We encouraged participants to correct us if they disagree with our
interpretation, and add new ideas if they would like to do so. We received 20
replies of the participants, of which two required minor changes to the descrip-
tion of the code and two added additional thoughts which did not result in
new codes.

2.2 Type of logs (RQ1)

The types of execution logs are summarized in Table 3.

Event logs contain regular events created when a machine action such as
initialization has been executed as well as error messages of the systems: “you
will see errors, but also all kinds of events indicating in what state the system is
or what phase of execution is being entered” (P20-1). Developers obtain event
logs either from field productions or from in-house test executions. Interviewees
use “event log” and “error log” interchangeably.

Function trace contains the details of the program execution. The start
and the end of a function call inside components as well as the values of
parameters are logged. Compared to event logs, function traces show more
details of the execution:-“In the event log you have a higher level view of
the system, whereas with component tracing you have a finer level [view] of
the system” (P18-1). Due to performance concerns, function tracing is not
enabled by default. Developers can enable it before executing in-house tests.
It can be time-consuming to obtain function traces because developers need
to set up the simulation environment for test executions and wait for their
completion: “so you have to set up DevBench plans, and they have to run
the test, and sync your code. It’s already quite some work... sometimes the
tests take hours to complete” (P21-1). To obtain function traces from field
productions, developers need to negotiate with customers: “in order to see
this I need tracing from these processes and then you look into if we can at

An interview study about the use of logs in embedded software engineering* 9

the customer site turn on traces for such a process” (P9-1). Interviewees use
“tracing”, “function trace” or “component tracing” interchangeably.

Since the performance (e.g., production throughput) is a key business
driver of the machines, performance data logs the sequence of function
calls at component interface: “for every component interface, you can spec-
ify throughput tag, on entry of a function or an exit of the function, both on
the client and on the server side, so you see the start and end points of real
function calls 7 (P7-1). The performance data logs the duration and sequence
of software and hardware actions, showing the speed of execution. Obtaining
performance data is not trivial because in order to accurately capture the
duration of software and hardware actions, the software needs to run on the
Testbench: “You need these Testbenches, which are kind of real machines. For
getting access to them you need to arrange it. And you’re competing with other
people that want to do the same thing. There’s only one person who can use
the machine at a given moment in time” (P16-1). Interviewees also refer to
“performance data” as “throughput trace”.

Functional data logs the business-critical data that represents the func-
tional aspects of the systems: “it contains details like what is the average heat
of wafer” (P8-1). It can be obtained from field productions and test executions.

RQ1 summary: Developers use different types of execution logs that record
high-level machine actions, low-level execution details, throughput informa-
tion as well as bushiness-critical data. Developers need to go through a non-
trivial process to obtain the logs because the execution of software for such
systems requires hardware to be available or simulated.

2.3 Purpose of log analysis (RQ2)

We identified 18 purposes and classified them into four categories. Our find-
ings are complementary to the prior studies [56, 11, 98]. Consistent with the
prior studies, we found that developers primarily use logs for the purposes of
analyzing issues. We also identified purposes (e.g., developing test scenario &
code, reverse-engineering requirements for legacy software and identifying root
cause of flaky executions) not previously discussed in the literature.

2.3.1 Software comprehension

This category covers two purposes related to comprehending behavior of a
system. P3, P9, P14 and P22 use execution logs to complement the source
code when familiarizing with the software: “One of the most important things
that you need to understand [is] what the software does, you do that partially
based on tracing” (P9-2). Execution logs also complement the documentation:
“The software is not very well documented. We have to do reverse engineering
to get requirements... I can choose to run the current software and enable
tracing, and from that tracing, it shows me all the interaction between different
components” (P3-1).

10 Yang et al.

Table 4: The purposes of log analysis and the used logs for those purposes. “#I1” indicates
the number of interviewees who mention the purpose during interviews.

Purposes Used logs #I Quote ID
Software comprehension
Familiarizing with existing software FT 4 P9-2
Reverse-engineering software requirements FT 1 P3-1
Test development
Developing test scenarios and code FT,EL 2 P9-3
Verification and improvement
Verifying executed behavior vs expected behavior All 15 P13-1
Performance verification and improvement PD, FT
Verifying timing (throughput) performance 3 P16-2
Identifying opportunities of throughput improvement 5 P7-2
Log-quality qualification All
Identifying log pollution 1 P19-1
Verifying correctness of the logged information 3 P14-1
Test documentation FT 2 P16-3
Issue analysis
Classifying the type of issues All 3 P21-2
Identifying responsibilities EL 2 P4-1
Localizing problems All 12 P1-1
Confirming reproduced field issues EL, FD, FT 8 P3-2
Identifying root cause All
Identifying root cause of field issues 16 P1-2
Identifying root cause of regression test 11 P13-2
Identifying oot cause of flaky (test) executions 2 P12-2
Analyzing occurrence and prevalence of issues EL 2 P22-1
Supporting customers EL, FD 3 P22-2

2.3.2 Test development

When developing test cases, developers adopt an incremental approach using
logs: “We analyze the trace... Normally we will start with a very basic scenario
of tests. We checked some of the sequence of the essential parts... we continue
to extend the test scenario, probably with some pause or stop in the middle and
resume it or inject some errors to see if the errors can be handled correctly”
(P9-3).

2.3.8 Verification and improvement

Execution logs help developers to verify and optimize different aspects of the
software. In addition to running tests against requirements, developers exten-
sively inspect logs to verify whether the software behaves as expected: “I need
to develop some new functionality and we can add some tracing code to the
production code then we can look into the tracing whether the behaviors are
expected” (P13-1). In particular, logs help verify that the undesired events do
not occur: “We have a list of events that we say those are not allowed to occur
during a regular test, that’s where we use the event logs” (P12-1). In order to
achieve high throughput performance, execution logs are also used to verify
if actions are finished within their time budget: “It helps us see how much
time a function takes and this throughput tracing is helping us to determine
if we are within the time budget for every action that is going on” (P16-2),

An interview study about the use of logs in embedded software engineering* 11

and identify if any optimizations can be done: “Often we get the request to
reduce the overall timing, so to do that, you need to know the time it takes
and where to and how to reduce that” (P7-2). Moreover, as part of quality
control, developers also check the quality of logs: “We check whether there is
too much logging going on, you know, log pollution” (P19-1), or correctness
of logged information: “In a project you want to log some events or want to
look into some errors, then you need to check if those errors end up in the log”
(P14-1). Since traces and logs represent the behavior of systems, it is also used
as part of the test documentation: “Sometimes we also use this produced trace
as content for our test documents that we produced to prove that the change
has the intended behavior” (P16-3).

2.3.4 Issue analysis

Execution logs play an important role in analyzing issues. The issues could be
anything that threatens the quality of production, identified by the customers
or by in-house test executions. When an issue is reported, as the very first step,
developers need to classify it in one of the predefined classes such as functional
issues, software issues, or infrastructure issues: “So it’s really first thing what
we try to do. It is to classify the issue. This classification helps us to know how
to start debugging the code” (P21-2). By inspecting logs, developers also get
a rough idea of which group or person has the expertise to fix the issue: “We
still need to find to whom the issue is related, and then start communicating
with them to check if our assumption about the issue is correct or not” (P4-1).
After the analysis and communication, developers can localize the problems by
identifying the suspicious chunk of code that produces error messages shown in
event logs: “The event log gives me an indication that something is going wrong
in this component, in this particular file and I cannot understand more from
it other than that ”(P1-1). Problem localization helps reduce the scope of the
further investigation and answers the question of where the issue occurs. An
important step then is to reproduce the field issues in-house with simulation
and testing. Based on error messages shown in event logs, developers can
confirm that the field issues are correctly reproduced locally: “We try to mimic
the scenario and try to reproduce the error messages as much as we can” (P3-
2). After reproducing the issue, to further identify the root cause of issues
(i.e., answer the question of why the issue occurs), more execution details are
needed: “So then I will turn on the tracing for that specific component for
details [of the field issue/” (P1-2). Sometimes, to understand a certain issue
better, developers analyze the occurrence rate and the prevalence of the issues:
“when you get some issues with error logs, we can connect to our clients and
you can see how many number of times this happened at all the customers...
to see if it’s really gemeric or something specific happens at a customer at
that point” (P22-1). There are various kinds of field issues. Sometimes, the
parameters (e.g., temperature) shown in functional data are useful to support
customers to perform corrections: “We read the functional data. We try to
analyze different kinds of parameters and try to suggest to the customer to run
some certain amount of calibration. Because it could be (that) the machine is a

12 Yang et al.

bit uncalibrated” (P22-2). For issues found by testing, developers analyze logs
to identify the root cause of regressions: “Once there are some strange things
that we obtain that weren’t present in the release before, we need to be pretty
sure on what kind of discrepancy is in the error log or the trace” (P13-2), and
flakiness [62]: “ That means they have good runs and bad runs on the same test
case. Then we want to know where the instability comes from” (P12-2).

2.3.5 Other observations

The four types of logs serve different purposes. Event logs show high-level
events that help developers map the high-level behavior to components. Func-
tion traces provide the low-level execution details of components. Function
data are particularly used for issue analysis while performance data are often
used for performance-related purposes. A closer look at Table 4 reveals that
execution logs are primarily used to analyze issues: indeed, logs are usually the
only artifact providing the information about field issues. Applying traditional
debugging approaches to obtain low-level execution information (e.g., variable
values) can be infeasible; setting up debuggers for the software executed in
the simulation environment requires additional expertise and effort (P24-1).
Moreover, debuggers can interfere with timing behaviour and synchronisation
between multiple processes: “What might happen is that you have some time-
out, so some processes hanging waiting for the process you are debugging. If he
doesn’t answer in a short time, it stops. Basically it throws an error” (P24-2).
This requires developers to log and analyze execution details in function traces
to debug such software systems.

We observed differences between software developers. P6, P10 and P20
consider function traces as the last resort when analyzing issues: “In tracing
you can see all the steps within that component, and it can be a lot of data
there... if you really cannot see what is wrong then you enable that tracing.
But that’s really last resort” (P6-1). P20 indicated that the use of execution
logs also depends on the type of component, e.g., analyzing components re-
sponsible for algorithms requires different logging than to control components:
“[the component developed by] my current team is all about calculations, which
is not really about control sequence or timing. It just about the numbers. It’s
a completely different domain. For example, we need that much better [func-
tional] data logging” (P20-2). Furthermore, the usage of execution logs can
be changed with the shift of their roles, e.g., to a product owner: “I'm more
responsible for making sure that the team is executing their work correctly. I
myself will not look at logs anymore” (P21-3).

RQ2 summary: Developers rely on logs to obtain low-level execution in-
formation for issue analysis that cannot be easily obtained using traditional
debugging approaches. Our findings complement the literature and provide
empirical evidences for some additional purposes (e.g., test development).

An interview study about the use of logs in embedded software engineering* 13

Table 5: Information needs from execution logs. “#I” the number of interviewees who
mention the information need during interviews.

Information needs and sources #1I | Quote
ID
Context of issues (EL and FT)
What are the settings of the machines? 3 P3-3
How does the error propagate? 10 P7-3

At which time point does the error occur? What is the machine | 12 P13-3
doing when the error is raised?

Data flow and executed sequence (FT)
In which order are functions being executed? 6 P22-4
What is being executed under current configuration? 4 P1-3
What are the values of variables and how do they flow from one | 10 P22-4

function/module to another?

State and interaction (FT)

How do software components interact with each other? 10 P3-4

How does the function sequence change the state of software? 2 P14-2
Timing performance (PD and FT)

Is there any time gaps between actions? 2 P7-4

Is the software action finished within the time budget? 3 P16-4
Difference between executions (EL, FT and FD)

What additional errors does the change introduce? 5 P19-2

How do the control sequences from different executions differ? 12 P3-5

How do the functional data from different executions differ? 7 P7-5

2.4 Information needs (RQ3)

We grouped information needs into five categories as shown in Table 5. We
observed that developers tend to have common information needs; five types of
information are mentioned by more than 10 developers (> 40% interviewees).

2.4.1 Context of issues

As discussed in the previous section, developers use logs for issue analysis.
Many of these issue analysis activities (e.g., identifying responsibilities) require
developers to get the context of the issues: “To be able to create this picture,
and later you try to somehow understand based on this picture what went wrong
with this run” (P22-3).

First, developers inspect event logs and functional data to know the set-
tings of the systems: “we try to look which type of machine, which type of ser-
vice pack it was, which part of and which type of patch it was” (P3-3). Second,
developers need to understand how the error propagates through the system
based on event logs: this requires knowledge of the system architecture and
the error handling mechanism. The systems that our interviewees work with
employ a Client-Server architecture [70]. ASML implements an error linking
mechanism, that is, when an exception occurs in the server component, the
server component must notify the client components. Since the same compo-
nent can play the role of a server towards a group of components, and the role
of a client towards other components, it is common that an error propagates
from one component to a set of other components that have direct or indirect
dependencies on it. Developers inspect logs for records of error propagation to

14 Yang et al.

identify the components that might contain the root cause, inferring for which
components they need to further inspect low-level details: “in the error logging
it has a tree. The errors are linked together, so from the error, I can trace back
to the root error and to see when and where actually it happened” (P7-3).

To further understand the behavior of a component when errors occur, de-
velopers need the timestamp associated with the error messages, which serves
as a linker between high-level information from event logs and low-level details
from function traces: “we can search the timestamp in the software trace to
find, let’s say, around that moment what had happened” (P13-3).

2.4.2 Data flow and executed sequence

Inspecting the low-level details shown in function traces, developers identify
the parts of code that have been executed given a particular setting: “So a
machine to us is sometimes a black bozx, like you have so many configurations
and so many possible inputs, and that changes the output or execution. So to
really understand what is being executed under the current configuration [we
looked into function traces]” (P1-3). The order of function execution and the
flow of data are important for developers to verify software behavior against
their expectations: “You check two things. If the sequence of the function call
is as you expected, given a certain case... and second you check if the generated
output which is input for other function, so data moving from one function to
another function, is as you expected” (P22-4).

2.4.83 Software state and interaction

To understand the software system, developers analyze the interactions be-
tween software components based on the function traces:“Just to know how
the component behaves and what calls went through for example the external
boundary of that component and how the component reacts with other compo-
nents” (P3-4). P3, P6, P14, P15 and P22 consolidate the interaction informa-
tion by means of sequence diagrams.

Developers also analyze how the state of software changes based on function
traces. For the components developed with the MDSE approach, each of them
consists of multiple state machines that interact with each other. Interactions
are realized as function calls and recorded in function traces. Working with
such components, developers inspect the interactions between state machines
that change the states of the system, and compare them with function traces:
“it might go to the wrong path in the state diagram. For example, when it
should go back to initialize state, but it’s going to the different state and then
going to initialize state... so I can look at that trace to see what is the sequence
and then look at the model to see if they are matched or there’s something
wrong” (P14-2).

2.4.4 Timing performance
Developers analyze throughput traces to improve timing performance: “Gap is
the time between software actions. We can see that there is a gap somewhere

in the sequence [in the throughput trace] and then you need to understand
where the gap comes from... gaps can be the result of a function calling another

An interview study about the use of logs in embedded software engineering* 15

function in another task. If the other task is busy doing something else function
execution is blocked” (P7-4), and to verify the timing behavior:“It helps us see
how much time a function takes, and this throughput tracing is helping us
to determine if we are within the time budget for every action that is going
on” (P16-4).

2.4.5 Differences between executions

Developers need the information about the differences between the logs gener-
ated from multiple executions in order to, e.g., identify regressions, and under-
stand software changes. This would require one to compare error messages: “So
especially if an error seems to be not consistently appearing, like that caused
by some kind of instability, then I want to know which change set most likely
introduced it, and then it makes sense to run also older versions of the code to
see if it never occurred earlier or not” (P19-2), function traces: “Everything is
inside one module and then the only thing that we can do is to generate traces
in this case, before the change and after the change. And then we say, hey,
before the change, the tracing of the external behavior of that component says
that it did 12345. But after the change it did 123, and then it jumped into 6,
and then 4 and 5 are missing.” (P3-5), and functional data: “we will look at this
reference output of the calculation and compare it to the output that will be
generated by the software after it does the implementation. And if they match
each other, we say yes indeed that the calculation and itmplementation went
well” (P7-5).

Often, developers compare logs generated from multiple executions of one
software version to identify the root cause of flaky tests [62]:“So for those
instable test cases, this comparison is also very helpful... so we can compare
the bad run with the good run. Then we can know where the instability comes
from. Otherwise, sometimes it’s really time costly” (P12-3).

Moreover, the differences between executions can also help identify when
machines start deviating from the expected behavior. In machines, produced
by ASML wafers move through the production line in batches. The produc-
tion machines repeatedly perform the same sequence of actions in order to
process all elements in the same way. These repeated actions are controlled
by sequences of function calls and eventually captured in the function trace.
Sometimes, the issue in the machines result in inconsistent actions for these el-
ements. To identify where and when the inconsistency occurs, developers need
to identify the differences between the sequences of function calls associated
with different elements.

RQ3 summary: Five types of information from logs are mentioned by more
than 10 developers. Inspecting the propagation of errors is essential to local-
ize the problem. With the timestamp information, developers can establish
the relations between different types of log. The information about data
flow and the interaction of software components is useful to comprehend
the complexity of systems. Particularly, developers need the differences be-
tween executions for identifying the cause of flaky tests or the deviation from
expected behavior.

16 Yang et al.

2.5 Tool support for log analysis (RQ4)

In this section we discuss the tools developers use, the challenges they are
facing when analyzing logs, and the tools they would like to have for log
analysis.

2.5.1 Tools used

The interviewed developers are very similar in their choice of tools to ana-
lyzing logs. All developers stated that text editors are commonly used. The
developers also adopt traditional approaches such as Linux grep or their own
scripts: “if I want to do a bit more smarter analysis other than grep and I can
do it in Python.” (P14-3). Although filtering and searching are commonly used
to extract information from the log data, there is no joint effort on making a
generic tool: “Now you find a lot of scripts that are used by X by Y by ZXY who
don’t know each other, but they create the script at a different time” (P21-4).
When comparing logs generated from different executions, developers either
manually inspect the two logs which “takes a lot of time and it’s not really
productive” (P23-1) or use text difference analyzers (e.g., KDiff3, Beyond Com-
pare and Linux diff): “Sometimes I use Beyond Compare for comparing logs.
It compares data line by line” (P2-1).

2.5.2 Challenges in log analysis
Table 6 summarizes the challenges identified.
Log availability and quality

In order to enable log analysis, developers first need to collect logs. As men-
tioned in Section 2.2, due to the needs of a physical or simulated environment
for software executions, log collection can be a time-consuming process. Par-
ticularly, when it comes to log collection from the field, logs are sometimes
unavailable due to the performance concerns: “If you turn on tracing then it
slows down the system so heavily that you impact production. It’s not some-
thing you can do at a customer [site] very easily” (P9-4); or confidentiality:
“customers are very vulnerable to expose that to us because they don’t want
that data to become visible to other customers” (P8-2). The quality of logs is
also known to influence the developers’ ability to perform the analysis effi-
ciently [30, 55, 99]. Indeed, we have the same observations in our context.
According to the interviewees, there is no standard way of tracing functions:
“For each software component, they [(i.e., developers)] have their own prefer-
ence for the format of the tracing. You should be able to read that trace first.
Otherwise, it’s really not easy” (P12-4). Where to log and what to log is de-
termined by developers who wrote the code and their peers who analyze the
logs might find logging to be excessive (P8-3) or scant (P9-5).

Moreover, working with logs generated from metrology software compo-
nents comes with a particular challenge. The function calls in such compo-
nents have numerous parameters recording measurement and modeling data,
and subsequently requiring developers to format functions and parameters in
logs: “we have functions with a lot of parameters, and often they’re big struc-

An interview study about the use of logs in embedded software engineering* 17

tures and big arrays and everything is converted into text in trace... Sometimes
I really spend time formatting data in a way that I can understand it” (P24-3).

Given that logs are in size of gigabytes, and not accompanied by any kind
of summary, developers spend a lot of effort and time navigating through
them: “right now all the error messages they are combined or mized in one
file... if the event log can be structured in a better way, then it could improve
the efficiency for us to analyze” (P13-4). Another quality related challenge
mentioned by developers is that errors raised by servers are not always linked
to their clients due to implementation bugs of error logging and linking: “Often
what we experience right now is that the error links are broken. And I think
this misleads the developer quite a lot 7 (P1-4).

Complexity

Many challenges are related to complexity of the system: presence of multiple
interacting components, multidisciplinary context and concurrency.

Indeed, P15 has indicated that “You have tracing from multiple software
components. They all talk to each other and that makes it so difficult to under-
stand what was the context of the software before it got there” (P15-1). For the
components that are responsible for process control and implemented using
interacting state machines (cf. Section 2.4.3), analyzing logs requires tracking
the change of states in multiple state machines: “we have 200 different models.
Then you need to check, ok, this model was in this state and then it calls that
model which calls another model and then at some point you’re looking at 10
different models and different states, and it’s so difficult to understand all the
different states.” (P15-2).

The multidisciplinary character of the software requires developers to an-
alyze the logs capturing the behavior of components from different technical
domains: “sometime maybe the analysis takes days... for example, especially
if it is related to other functional clusters [i.e., other functional domains]... I
could say that it is the most time-consuming part” (P5-1).

The machines developed by this company have high competence in pro-
cessing multiple elements concurrently. This high-level machine requirement
is realised by the underlying concurrent software: “all those process elements
they end up in different lists, and then the lists are emptied by different sub-
processes... and they all do their things separately and they synchronize on
certain moments. So that makes it difficult, and that is represented and logged
in the same trace file in the sequence” (P14-4). The function trace records
function calls from different concurrent executions sequentially, i.e., develop-
ers should disentangle interleaved executions.

Complexity does not only hinder comprehension but also introduce irrel-
evant differences between logs. Such differences can be introduced by time
variation because“you can see the execution time of functions are sometimes
different for different runs” (P17-1), and uninitialized variables since the val-
ues of these variables “will appear on the trace statement is a random, it’s
garbage. And if you put this in a tool like Beyond Compare, it will take it as a
difference, but in reality, it’s not” (P17-2) Similarly, irrelevant differences can

18 Yang et al.

be introduced by concurrency: “Some events are not necessarily happening in
the same order in different executions” (P11-1), refactoring or implementation
of new features: “You could also see many differences because of refactoring
or some development changes we made” (P11-2). Excluding irrelevant differ-
ences requires domain knowledge: “So if you understand what should be the
sequences, then you can basically see, ok, in this case the sequence was flipped
but functionally it’s the same” (P15-3), effort and time: “more and more pre-
processing until you remove the most of them... It costs time. And it can even
lead you to wrong conclusions” (P17-3).

Expertise

The systems are not only complex but also multidisciplinary. Working with
logs generated from such systems requires domain knowledge (e.g., how ma-
chines expose wafers to the light): “We can dive into the trace files etc. It is not
enough. You have to know what is actually going on here with those traces and
what is the component doing” (P11-3). The analysis is particularly challenging
for newcomers: “Let’s say if you have really huge experience in software, but
without any ASML knowledge, I would say it is useless... I remember the first
year it was really hard for me somehow to understand what’s really happening”
(P22-5). Different from newcomers who get lost in the large amount of infor-
mation in logs, experienced developers such as P14 tend to take a top-down
approach: P14 first inspects the interactions between the components that
control and coordinate machine actions, and other components. This allows
P14 to comprehend how machines were functioning and what functionalities
each component have, and to conjecture which parts of machines exhibit faulty
behavior. Only then P14 examines execution details for relevant components.

Eight developers stress importance of not only discussion with senior soft-
ware developers as well as collaboration with functional developers from other
engineering disciplines “peer working at minimum two, it really helps a lot.
Especially when one with nice software skills and the other one with nice func-
tional skills” (P22-6).

The lack of familiarity with the code base and software design also hinder
log understanding: “you often see a trace of code you never worked on. That’s
what consumes most of the time” (P7-6). For example, in order to under-
stand the interactions between software components based on function traces,
developers should be familiar with the communication mechanisms between
components: “some of the interactions are based on subscriptions. So you sub-
scribe to event and once that event happened there’s a callback. In software
tracing you just see there’s a handler of the event. If you are not familiar with
the structure of the software, you couldn’t link that trace [line] with the other
component [that gives the callback]” (P15-4).

2.5.3 Expected tools
Creating multi-level abstraction

Developers would like to have a tool that can help them inspect different levels
of details from logs: “On certain levels you can open and close those functions

An interview study about the use of logs in embedded software engineering* 19

Table 6: Challenges in log analysis. “#I1” indicates the number of interviewees who mention
the challenge during interviews.

Challenges #I | Quote ID
Log availability and quality
Absence of logs 8 P9-4, P8-2
Non-standard logging 5 P12-4
Incompleteness of trace 8 P9-5
Presence of noise 18 P8-3
Unreadable format for functions with a lot of parameters 2 P24-3
Missing categorization and overview 3 P13-4
Broken error linking 4 P1-4
Complexity
Involvement of components from different groups and domains 6 P15-1
Involvement of many state machines 2 P15-2
Presence of concurrency 8 P14-4
Presence of irrelevant differences between logs 5 P17-1,P11-1,P11-
2,P15-3,P17-2,P17-3
Expertise
Lack of domain knowledge 10 P11-3,P22-5,P22-6
Unfamiliar with code base and software design 9 P7-6,P15-4

to see what’s internally there so that you can maintain a high level overview
and details where you need them, instead of only having all the details now,
but that’s what’s happening now, you got a whole bunch of data, and it’s all
detail” (P14-5). To provide a “bird’s-eye view”, the tool can visualize high-level
function calls with sequence diagrams, state machines or Gantt charts: “Usu-
ally I end up with drawing the sequence diagrams myself to understand it, but
if you could drag and drop traces into a tool and then get a sequence diagram,
that would also be nice” (P9-6). The tool should allow developers to select the
level of details they would like to inspect: “I tend to do that by hand... The
problem is that if you generate it, you get everything, not interesting stuff...
And then I do it by hand, I just leave that out and only put the interesting
sequences in there” (P17-4). For example, as discussed in Section 2.4.3, when
dealing with state machine based components, developers inspect the function
calls that change the state of state machines. The tool should support devel-
opers performing this task by visualizing the sequence diagrams only for these
important interactions.

Automatic log comparison

Developers would like automatic log comparison tools to provide differences
at different levels of details: “I think presenting all those [comparison] results
in a single graphical user interface will be polluting... Maybe we could have
maybe multiple options or multiple levels based on what you want to check”
(P18-2). Furthermore, developers envision tools supporting identification of
the cause(s) of log differences such as concurrency, refactoring or uninitialized
variables.

Providing generic and unified facilities

Instead of multiple scripts with (partially) duplicated functionality, developers
envision a tool supporting formulation of different queries to different types

20 Yang et al.

of logs: “Such kind of facility would help engineer to start talk to data instead
of spending time on parsing” (P22-6), as well as inspection of the relations
between different logs generated from the same execution: “if we can show
different logs in one GUI or one window, then it is easier for us... Currently we
Just manually go through these logs and find the relationships between logs” (P2-
2). For analyzing errors based on logs, developers expect a knowledge base that
stores error patterns identified from historical logs so that the knowledge about
errors can be shared across groups.

The tools envisioned should be unified with test and log generation facil-
ities (i.e., DevBench and TestBench) to reduce switching between tools: “I
need to connect to DevBench, fire up my test, then look at each of those files
individually, write them to my local files, open the tools like the text editor
and then go through each one of them. So basically, if you can unify all of
these things at one places, which becomes seamless to go between them, then
it becomes super awesome” (P1-3).

RQ4 summary: Developers mainly use text-based tools to analyze logs.
In addition to log quality concerns, concurrency and irrelevant differences
between logs bring additional challenges in log analysis. Developers indicate
that they need a tool that creates multi-level abstraction of executions, allows
them to compare logs at different levels of abstraction and provides generic
facilities that can be shared among developers.

3 Replication at other companies

In this section, we present our replication study at four companies. This repli-
cation study aims at understanding to what extent our findings at ASML
are generalizable to other companies (RQ5). We start with our methodology
(Section 3.1) and then report our findings (Section 3.2).

3.1 Methodology

To understand to what extent our findings at ASML are transferable to other
companies, we conducted a replication study. We adopted convenience sam-
pling to recruit four companies. Shull et al. [82] discuss two types of replication
study, namely dependent replication and independent replication. The depen-
dent replication relies on the design of the original study as the basis for the
design of the replication, controlling the variations between the original study
and the replication. In contrast, the independent replication uses different
experimental procedures to reproduce the results. The large number of chang-
ing factors make it difficult to interpret the observed differences between the
original study and the replication. Hence, dependent replications are recom-
mended to come before independent replications to gain more insights [82]. In
this study, we opted for dependent replications by changing the study context
while following the same research method (i.e., interviews).

Next, we introduce the design of our interviews, context and participants
as well as data collection and analysis.

An interview study about the use of logs in embedded software engineering* 21

3.1.1 Semi-structured interviews

We used the same research method adopted in our previous study at ASML
(Section 2). However, instead of asking open questions only, we asked two
types of questions during interviews. First, we asked open questions to trigger
in-depth discussion without biasing developers. These questions are the same
set of questions that were asked in our previous study at ASML (Table 1).

The open questions are then followed by a set of closed questions. The goal
of asking closed questions is to validate whether developers from other compa-
nies share the experiences of their ASML peers. To this end we compiled the
codes that we derived from our previous study at ASML (i.e., codes shown
in Tables 3-6 and codes discussed in Section 2.5.3) with a survey-like form:
Figure 1 shows an example with the closed questions about the type of used
logs. During the interview, we first explained the codes to our interviewees
and then asked if they share the same experience. We note that we did not in-
clude two challenges (i.e., Broken error linking and Involvement of many state
machines) in the validation form because they are specific to the modeling
tool and error handling mechanism adopted by ASML. We conducted a pilot
study with an industrial embedded engineer to examine whether the questions
are well phrased and presented. The engineer suggested that engineers may
tend to select all the options about possible tool support (codes discussed
in Section 2.5.3) especially if their current tools are primitive. Therefore, we
dropped the closed questions related to tool suggestions (codes presented in
Section 2.5.3). In this study, we aim at collecting more ideas about tool sup-
port with the open questions related to the used tools, challenges, and tool
suggestions.

By asking these two types of questions in this specific order, we aimed to
confirm our previous findings while still being able to trigger new insights with-
out biasing interviewees. This replication study was approved by the ethical
review board of the Eindhoven University of Technology and the participating
companies.

Log analysis practice

* Required

Types of log

2.What type of logs do you use? *
] Event logs that capture high-level system behavior
[Execution traces that capture function calls and parameters
() Logs that capture performance (e.g. throughput) of systems
() Logs that capture functional data (i.e., functional aspects of the systems)

() None of the above

Fig. 1: Closed question about type of logs used in practice

22 Yang et al.

Table 7: Participants

Company (product) D Role* Experience® Focus
26 D 2 Vision components
27 D <1
(ACOmrol systems) gg ﬁ é.S Motion control systems
30 D <1 Data collection platform
31 A 38 Real-time control systems
B 32 Q 28 System-wide quality control
(Electronic products) 33 A&P 2 Supervisory controller
34 A&R 10 System-wide design and relia-
bility
C 35 A 3 Data collection platform & test
(Consumer electronics) automation
36 A 24.5 Controller and system inter-
faces
D 37 S 14 System-wide service
(Code quality checker) 38 D 21 Back-end
39 D 9 Front-end

4. D: developer, A: architect, P: product owner, S: service engineer, QQ: quality engineer, R: reliability
engineer 5. Years of experience at the company

3.1.2 Context and participants

In this study, we involved three companies which develop different types of
embedded products and one company which develops code quality checkers.
By interviewing both embedded software companies and the company which
develops non-embedded products, we would like to get a better idea of the
scope of our previous findings.

In this replication study, we aim for reaching a broader audience from
several companies. Therefore, we opt for recruiting a smaller number of devel-
opers from each company. This replication study is different from our previous
in-depth study of a single company (Section 2) where a larger number of de-
velopers (i.e., 25 developers) are interviewed to ensure that the theoretical
saturation is reached. Following the same recruitment procedure as the previ-
ous study at ASML, we contacted the managers in the software development
division of these companies. We encouraged the managers to recommend six
developers to us, while taking into account seniority and diversity of software
engineering roles. If the company prefers to provide a smaller number of de-
velopers due to the availability of developers, we encouraged the managers to
recommend the developers who are experienced with log analysis and knowl-
edgeable of company practices. In total, 14 developers accepted our interviews.
Table 7 shows the overview of the invited companies and participants.

An interview study about the use of logs in embedded software engineering* 23

Company A

Company A is a manufacturer of essential components that are required by
electronic designs. To produce a high volume of electronic components, the
company has built control systems to handle customer orders, logistics and
process control. We interviewed six engineers of different seniority levels and
roles working on these control systems. The interviewed engineers use the Ada
programming language in their development work.

Company B

Company B develops various kinds of electronic products which include but
are not limit to consumer electronics. In this study, we recruited three en-
gineers. The three engineers work as architect, product owner, and quality
engineer, providing different perspectives on the use of logs. The system is
mostly developed using C# and C++.

Company C

Company C is specialized in developing a certain consumer electronic®. Two
engineers were recruited. One of them is responsible for a data platform that
collects data generated from the machines. Meanwhile, the engineer also con-
tributes to the investigation of potential test tooling by studying the state-of-
the-art and attending academic conferences. The other engineer is responsible
for the software layer for high-level action control and error handling. The
system is mostly developed using C# and C++.

Company D

Company D is developing code quality checkers that are used in various kinds
of software systems. We recruited three engineers. Two of them are responsible
for developing the back-end and front-end of the system, respectively. The
other engineer is responsible for making sure that products at customer side
are working as expected. The front-end of the system is developed using Java
and the back-end is developed using Perl.

3.1.83 Data collection and analysis

To collect and analyze the data, we applied the same method as our study
at ASML (Section 2.1.4). We collected data by recording audio and making
transcripts available. We then applied closed coding, which is a process of
identifying and marking interesting information using a pre-established cod-
ing scheme [79]. In this study, we used the coding scheme established in our
previous study at ASML. We created new codes if the information related
to our research questions cannot be labeled with the established codes. We
present our explanation of the derived codes in the following sections. The
codes are explained with quotes of developers. We give an ID for each quote
to help readers link these codes and the explanations. An ID has a format of
PX-Y where PX indicates the participant ID and Y indicates the sequence
number of quotes from the corresponding particiapnt.

6 Company B and C are developing different kinds of consumer electronics.

24 Yang et al.

3.2 Generalizability (RQ5)

In this section, we present the results of the replication study. As discussed,
the study has both exploratory and confirmatory in nature, supported by both
open and closed interview questions. By asking these questions, we explore
the generalizability of the findings we obtained from ASML with respect to
the types of logs (RQ1), information needs (RQ2), challenges (RQ3) and tool
support (RQ4).

3.2.1 Types of logs

As identified in ASML (Section 2.2), developers use event logs, function traces,
functional data and performance data which are generated separately to sup-
port different maintenance activities. Each type of log has its own logging
policy and format. In the replication study, we learned that event logs and
functional data are commonly generated by companies from ES domain (com-
pany A, B and C). Similar to ASML, event logs in these ES companies are
generated in a loose text format, while functional data is usually formally de-
fined and formatted through the discussions between software and functional
engineers.

However, not all companies generate and use function traces and perfor-
mance data as ASML. In company A, the functional data and performance
data can be generated with an in-house instrumentation technique: “Develop-
ers can put statements in the code where they log certain variables in their ring
buffer and that ring buffer is visualized by means of a graphical interface. So
you can see how certain, for instance, the X&Y position of a motor or piece
of equipment is changing, and also software signals how long certain messages
take to get from A to B. All kinds of user defined signals can be in there. There
you can see the performance of the machine” (P29-1). Function traces are not
logged at company A due to performance concerns: “The machines we make
are typically very fast. They produce 20 products per second. I estimated (that)
each line of log introduces maybe 100 nanoseconds overhead” (P31-1).

Similar to ASML, company B generates event logs, function traces, and
functional data with separate logging formats and mechanisms. The perfor-
mance data is not logged as a separate type of log. However, according to the
interviewed developers from company B, when needed, the duration of actions
and events can be inferred from other types of logs (e.g., event logs) based on
the recorded timestamps.

The developers from company C shared that the company used to generate
one single log file containing different kinds of data in a loose format. But in
recent years, the company has separated functional data from the debugging
logs. The logged functional data is well formalized and automatically instru-
mented, and hence can be further analyzed with built-in tools: “We created
the metamodel, so we actually modeled the data that should be logged and how
the data relates with each other, and we are trying to define that more ac-
curately by creating a domain specific language and then within that domain
specific language we will specify what logging we expect. So in that way it is
formalized. We have also the logging API that’s actually integrated into the

An interview study about the use of logs in embedded software engineering* 25

embedded software and then used by the software developers”(P35-1). In con-
trast, the debugging log is manually created by software developers in a loose
format: “There’s also no structures, just a string. So, basically all the infor-
mation that they can come up with, they can just log there” (P35-2). The free
and flexible logging mechanism of this debugging log makes automatic analysis
very difficult.

Different from these ES companies where functional data is systematically
logged, logging is less formal in company D. The developers at company D
manually insert logging statements that capture information, such as events,
memory consumption and function invocations, that software developers con-
sider useful. The information is then logged in a single log file at runtime.

RQ5-a summary: Event logs and functional data are commonly generated
by embedded software companies. Similar to ASML, the embedded software
companies usually formalize functional data for further domain-specific anal-
ysis. Not all the embedded software companies log function traces due to
performance concerns. Contrary to the separate logging for different kinds

of data, company D logs various kinds of useful information into one single
file.

3.2.2 Purpose of log analysis

Figure 2 shows the results obtained from the closed questions about the pur-
poses of log analysis. It can be seen that 8 out of 14 purposes have been selected
by more than ten developers, and 11 by more than half of the developers, indi-
cating the purposes identified in the study at ASML largely resonate with the
developers from other companies. Among these purposes, problem localization
and performance improvement are selected by all the interviewees (=14). Such
purposes as test documentation, log-quality qualification, developing test sce-
narios and code, identifying responsibilities, reverse-engineering requirements,
and familiarizing with existing software are mentioned less often (<10). Fig-
ure 3 shows the distribution of votes for these less frequent purposes over the
companies. We can observe the differences between companies; all developers
from company B have reported that log quality qualification before delivery is
one of the reasons for inspecting logs, while none of the developers from com-
pany C recognized it as a common practice. We conjecture that this difference
may be due to the different quality control policies implemented at different
companies. Furthermore, it can be observed that none of the participants from
company D use logs for responsibility identification and code familiarization.
As explained by the participants, they can easily perform these tasks by com-
municating with colleagues because the code base of their system is maintained
by a small group of developers.

As we have observed in ASML (Section 2.3.5), logs are heavily used for
issue analysis for retrieving execution details because the traditional debugger
is often not applicable due to the synchronization errors introduced by break-
points. Our replication study confirms that logs are indeed essential in issue
analysis for embedded systems where timing requirements are critical: “We
typically have a watch dog running, so that gives you like a couple of seconds

26 Yang et al.

and then the system will automatically reboot, so breakpoint is not an option...
not trying to debug with breakpoints but always with logging” (P36-1).

With the discussion triggered by open questions, we identified three pur-
poses not previously discovered in our study at ASML. Participant P34 shared
that Company B has gradually started using logs for more data-driven ac-
tivities such as liability analysis: “we also started using it to derive some
utilization related information, liability related information and also look at
obsolescence of certain parts. If some old PC is there in the field, you know
that that PC doesn’t support a newer version of the software or the operating
system. Then you should also need to understand how many of those getting
obsolete, how should we program the replacement and what is the cost... And
then we can also correlate and say how long it’s been running. Is it meeting
what the vendor is promising in terms of reliability?” (P34-1). As shared by
all participants (P32-34) from company B and participant P35 from company
C, use case analysis is emerging as a purpose of analyzing logs: “if you have
let’s say 1000 machines at customers, they would want to see what are now
the typical applications that run on the machines. And so that information is
gathered by data analysis from the functional data to see what the customers
are doing actually and then to be able to improve our products for that” (P35-
3). Additionally, according to participant P35, logs are also used for testing:
“in our testing, we write down a couple of steps with synchronization points.
So if we have a machine action. We know that if we send a machine action, we
first have to wait until the machine is heated up, and then we do the machine
action and then maybe the machine needs to cool down, and then we are done.
So what you see now with test cases is that we send a command to ezecute the
action. And then in a test case, it says wait until in the logging it shows that
the machines are warmed up and then say OK now do the action” (P35-4).

We do not observe these additional purposes at company D. Therefore,
we conjecture that using logs for liability analysis, use case analysis and test-
ing might be specific to embedded software companies where the machines
are composed of many hardware components, interacting with the machine
operators and performing actions based on the state of the machines.

RQ5-b summary: The purposes of log analysis collected from the pre-
vious study are largely shared by other ES companies. Among these pur-
poses, problem localization and performance improvement are voted by all
the participants. Consistently with the previous observation, the traditional
debugger is often not applicable in ES context, emphasising the importance
of logs in issue analysis. Additionally, we identified that embedded software
companies use logs for liability analysis, use case analysis and testing, which
were not discovered in the previous study.

3.2.8 Information needs

Figure 4 shows the results obtained from the closed questions about informa-
tion needs. Out of 13 information needs, 10 have been voted for by at least
10 developers, indicating that the information needs identified in the previous
study (Section 2.4) are greatly generalizable to other companies. These most

An interview study about the use of logs in embedded software engineering* 27

[
[SIS

Number of interviewees
[N
onN s o ®6

o . -
£ w8 5§ 8 s 8 8 2 3 % g g¢ £ §
2 £¢ 5 g 5 25 & s 2 3 S E 3232 3 £
x o E S S5 2 £ 8 c o 3 e 3 = 4 <} S
o) o o = & g < o > 1] 22 <] S 2 it ° 2
<o £ = = s 5 22 3w § 2 o = 2 528 5 3
= W 3] g9 £ -G 2T Lo 4]] 5 og 3 o o
B S8 c] 3 2o 28 5° S s 2 -3 w - < Ed
w2 o2 > S s <} S Lo 39 = v 2 2 = £
% Qo 2 c ° g w2 S e w <2 4 £ 6% = £
£ 0 o o= = c £ [c £ °g < + o i S o
2 % o S [£ = ki x 9 = ® w 2 s W g 14 E 3% g a
= Q3 S Eo 3 v g =3 <] o c 2 £ €9 S a
8 &£ g S 5 = 3 2 S 3 < € = T w 2
= x5 = £ © £33] Sp = £ 5 S & a
£ a S o} = 3 T S =y & € =L
© = a e g 3 c @ b3 o -
find 5 < B 5] =
> =} ©
Software comprehension Verification and improvement Test development Issue analysis
Purposes of log analysis
Fig. 2: Frequency of purposes in log analysis
w0
]
25
2
c 4
9]
2
£3
—
)
o2
]
o)
€1
=]
=2
0
o 9] c c (] "
@ © 2 9 3 @
3 3 w© © o =
& & O = kel s
o o = N c 2
2 [= © © W Company A
o0 w £ [£ o S
k= £ 0 o 8 kel Io% & Company B
k7] o € > s) 5 a
= O O = o c b 4 Company C
9] £ £ © 2 (] 1)
- o 3 > O b c W Company D
=] c o o [- =
2 o S o0 “n =]
O =]
o0 a 9 = c
c o 0o 9]
£ o k= =
2 z =
= o< o
= [
3]
i o
Software comprehension Verification and improvement Test Issue analysis

development

Infrequent purposes of log analysis

Fig. 3: Infrequent purposes of log analysis over companies

voted information needs are related to context of issues, state and interaction
and timing performance. It can also be observed that configuration of executed
systems, component interactions and duration of software actions against time
budget are voted by all the developers. By discussing the procedure of log
inspection, we have also confirmed the findings at ASML that experienced
developers often adopt a top-down approach to first get an overview of the
execution flow and then drill down to the details.

28 Yang et al.

2o e
o~ &

Number of interviewees
on s o ®

the time budget?
with each other?
executed?
configuration?
from different executions differ?
introduce?

change the state of software?
the error is raised?

Is the software action finished within
Is there any time gaps between actions?
How do software components interact
How does the function sequence
In which order are functions being
What are the values of variables and
how do they flow from one
function/module to another?
What is being executed under current
How do the functional data from
different executions differ?
How do the sequences of function calls
What additional errors does the change
At which time point does the error
occur? What the system is doing when
How does the error propagate across
software components?
What are the settings/configurations of
the executed software?

Timing State and Low-level execution details Difference between Context of issues
performance interaction executions

Information needs of log analysis

Fig. 4: Frequency of information needs

We also found that not all developers inspect the difference between execu-
tions in practice; there are seven developers comparing logs in their practice
for investigating regression problems or verifying the correctness of behavioral
changes. Particularly, three developers from company A shared that they are
not only comparing the sequences of function calls and the values of functional
data but also the timing behavior. We identified that obtaining information of
how the timing behaviors from different executions vary is important
for embedded systems used in a fast manufacturing process: “We have fast
machines, so you want actually the variants of the cycle” also be minimum,
because if something is intervening sometimes, and you don’t know, that is
difficult to oversee. You can measure the cycle. How long does it take? How
does that fluctuate? Usually this is very valuable information to see if the re-
sponsiveness inside the system is not tampered by something special” (P31-2).

RQ5-c summary: More than 10 out of 14 interviewees need information
related to context of issues, state and interaction and timing performance
in their practice. Half of the developers compare logs in their practice for
regression investigation and behavioral verification. In addition to the in-
formation needs related to difference between executions identified in the
previous study, we further identify that developers extract the wvariants of
timing behavior among executions when comparing logs.

3.2.4 Used tools

The used tools by the interviewees in companies A-D are similar to the used
tools identified at ASML. When it comes to information inspection, search-

7 cycle time is the time spent on producing an item

An interview study about the use of logs in embedded software engineering* 29

Boe e
[SERNEES

Number of interviewees

onN & o ®
Timestamps -

Absence of logs
Presence of noise

Non-standard logging _
Presence of concurrency [N

a lot of parameters

Lack of domain knowledge
design

Diffs caused by new features -
Diffs caused by refactoring activities -
information is not logged)
Involvement of components from
different groups and domains

Diff caused by concurrent executions -
Incompleteness of log (i.e., necessary
Missing categorization and overview
Unreadable log format for functions with
Unfamiliar with code base and software

Presence of irrelevant diffs in logs Log availability and quality Expertise Complexity

Challenges of log analysis

Fig. 5: Frequency of challenges

ing, extraction and comparison, the text-based tools such as a text editor
and Linux grep are most commonly mentioned. In-house tools have also been
developed in the companies to inspect logs that capture domain-specific infor-
mation (e.g., functional and performance logs). For example, company A has
developed a tool that can visualize the value of variables over time, which for
instance can help developers understand how the temperature of materials in
production changes over time. Similarly, company C has also provided tools
for developers to analyze the measurements collected in their machines. As
explained by developer P35, it is easier to provide tools for functional logs as
the collected functional data is usually well-defined against the requirements
of systems and the interests of customers. In contrast, it is difficult to provide
analysis tools for event logs because these logs are usually loosely formatted
as natural language text and cannot be easily parsed automatically. Similar to
what we identified at ASML, individual efforts have been made by developers
in all these companies to develop customized scripts for parsing and processing
these loosely formatted logs. These customized scripts are usually used by an
individual developer or a small group of developers who work on the same part
of software and share the same needs in practice: “I made some tooling for
myself where I can just visualize the interaction with the controller in sequence
diagrams” (P39-1).

RQ5-d summary: Consistent with the observations at ASML, text-based
editors and self-made scripts are dominant when it comes to tooling in log
analysis practice.

30 Yang et al.

3.2.5 Challenges

As shown in Figure 5, almost all interviewees (13 out of 14) consider incom-
pleteness of logs as a challenge in log analysis. According to these interviewees,
the challenges of log analysis are often rooted in the challenges of log compo-
sition and generation, i.e., if a suitable logging strategy is not applied in the
log composition and generation process, then developers have to work with
bad quality logs that hinder developing or adopting log analysis tools. With
the open questions, we identified challenges related to logging trade-off, lack of
abstraction layer for logging, and co-evolution problems in logging, which were
not discussed in our previous study at ASML. Furthermore, the challenges
related to expertise and complexity are recognized by more than half of the
interviewees (>7). Through the open discussion, we further identify that the
coupling between hardware and software in embedded systems has contributed
to the complexity of systems.

Logging trade-off.

The developers shared several trade-offs in logging. Similar to the challenges
reported at ASML, it is often the case that necessary information is missing or
incomplete in the log files: “I encountered a lot of scenarios that there was just
no logging available, and I could not conclude what happens here” (P36-2). A
possible solution could be adding more logging statements, but this may lead
to an overwhelming amount of information:“ the problem is you never know
which part is going to be relevant beforehand, so that’s why we put in a lot of
logging and then hope when there is a problem that we have captured the correct
logging and the correct detail and the correct state. But this can lead to a lot of
data and moving around to get to the relevant part” (P36-3). Moreover, adding
more logging code might not be trivial due to project organization: “you need
to formalize request change... it can take years before adding extra logging code
due to project organization (P32-1), long release cycle: “If you want to insert
logging code, you have to go through the software release process ”(P33-1),
or performance concern (see a quote from P31 in Section 3.2.1). As pointed
out by the interviewees, this problem reflects the questions of what-to-log and
where-to-log that developers need to answer when logging.

Developers have also reported the trade-off related to logging policy and
governance: “The other challenge, I think, is to have the right balance between
complete freedom for the developer to log whatever they want and there’s some-
thing restricting formalized on the other side” (P35-5). On the one hand, giving
the complete freedom of logging without restriction on the information and
format could cause bad log quality such as incomplete logging, non-standard
logging format and inconsistent granularity, which results in great difficulties in
comprehension and automated analysis. On the other hand, enforcing a strict
formalization on logging on what-to-log and where-to-log disallows developers
flexibly to add information that they consider useful, which subsequently may
also result in missing needed information.

An interview study about the use of logs in embedded software engineering* 31

Lack of abstraction layer for logging.

Automated logging is considered by developers as one of the ways to avoid
mistakes and inconsistencies introduced by manual logging. However, as elab-
orated by interviewee P29, automated logging requires developers to find a
right level of abstraction in the system: “You may want to automate the gen-
eration of log files on the interface level. Then of course, in order to not drown
into too many log files at low level interfaces, you have to have a certain right
abstraction level” (P29-2). The participant further explained that in order to
automate logging at the right level of abstraction, the right level of interfaces
has to be clearly defined in the architecture of the systems: “There’s no prop-
erly defined abstraction level at Company A, where we can do that logging.
That is also a challenge because you do not want to do that at very high level
or very low level interfaces. You have to find the sweet spot there. We do
have interfaces between modules or packages. They’re very granular to very
low level. Somewhere you have to find a bit of a higher-level to define your
interface, so you can trace them without generating too much noise, but still
have enough information to follow the internal state of your program” (P29-3).

Co-evolution problems in logging.

Three companies (B, C and D) have shared the challenges regarding logging
evolution. Indeed, not only is code that realizes the functionalities of software
products evolving, but also the logging code. As a consequence, when log-
ging code is changed, the related entity might require adaptions to preserve
its consistency or correctness. For example, as indicated by interviewees P32
and P34, the evolution of logging code affects the maintenance of behavioral
patterns that they derived from logs for characterizing known software issues.
Developers from company B have been deriving log patterns of the known
issues, and storing the log patterns and the corresponding solutions into a
knowledge base. The log pattern could be any information that characterizes
the issue, such as a sequence of events that manifest the issue. The knowledge
database is then shared with developers across different groups and teams for
quickly identifying the existence of the known issue in the subsequent ver-
sions of software by automatic pattern matching. That is, if an instance of the
pattern is detected in the logs generated from the subsequent versions of soft-
ware, then an issue is found and needs to be resolved with the recommended
solution. However, evolution of the software and the logging code threatens
to invalidate the patterns derived from a previous version of software: “Typ-
ically these pattern models are affected because of accidental changes in the
log statements in the code, or because developers refactored the existing imple-
mentation, redesigned components, merged components, or introduced a new
feature... these things are quite challenging for the maintenance of the mod-
els and patterns” (P34-2). Moreover, the evolution of logging code also raises
the challenges in updating analytical tools: “data analysis scripts are affected
by the change in the logging” (P35-6), updating customer about new releases:
“We cannot tell our external stakeholders that in this release these are the new
logs, these are the existing logs, and these logs we have made obsolete, so stop

32 Yang et al.

using them” (P34-3), and comparing logs: “so if more logging was added or log
statements were changed, then you get these differences. But these are not a
reason for different behavior or a failure” (P35-7).

Coupling between hardware and software.

In our previous study (Section 2.5.2), we identified that log comparison is dif-
ficult in practice due to the presence of differences that are irrelevant to their
software engineering tasks. These irrelevant differences could be introduced by
concurrent execution, subtle timing variations, refactoring, uninitialized vari-
ables and new feature implementation. In the replication study, we learned
that the coupling between hardware and software in embedded systems intro-
duces additional challenges in log comparison. As indicated by the developers
from company A, the status of hardware can influence the behavior of soft-
ware: “The difference does not always indicate a problem because there is some
natural difference in hardware. If you’re comparing a log from a machine that
was just started between one that has been running for some time, then the
motor signals would be different” (P26-1). Similarly, the variations of software
behavior can also influence the behavior of hardware: “If the software takes
too long to do something, then the hardware has to correct it by turning back
or stopping... that will change the sequence of function calls from the point
on” (P26-2). As a result, the coupling between software and hardware results
in a lot of irrelevant differences in logs generated from different executions.

RQ5-e summary: We identified additional challenges related to the cou-
pling between hardware and software, logging trade-off, lack of abstraction
layer for logging, and co-evolution problems in logging.

3.2.6 Expected tools

With the discussion triggered by the open questions, we identify three sugges-
tions on tool development which were not discussed in our previous interviews

at ASML.
Identifying and visualizing dependency between events.

As agreed by interviewees from both ASML and companies A-D, comprehend-
ing the interleaving of events introduced by concurrency in logs is difficult.
Constructing the dependency between events requires a lot of manual efforts
: “It all relies on the mental model. There is no explicit dependencies in logs.
You cannot infer the exact temporal dependency. You see a lot of interleaving
but do not know the causality between actions” (P29-4). This is agreed by not
only developers of embedded systems but also a web-developer from Company
D who indicated the difficulty of grouping events based on their dependen-
cies: “The difficulty is that sometimes a certain request is not handled by one
thread but multiple. And there are many user requests interleaving. So, it is
hard to automatically group a certain request and its response for each user”
(P38-1). Not only concurrency, but also the composition of actions introduces
the dependency between events: “Based on our architecture we also have an
action administration, so you could imagine for example if you have a ma-

An interview study about the use of logs in embedded software engineering* 33

chine action then actually a lot of things need to happen. So maybe in the end
point the action is decomposed over 500 sub-actions. ” (P35-8). To solve the
problems, developers suggest developing a tool that can automatically identify
and visualize the dependency between events.

Deriving behavioral fingerprints.

As we identified at ASML, developers often manually sketch behavioral mod-
els from logs, using them as a vehicle for team communications and software
comprehension (Section 2.5.3). In the replication study, developers from mul-
tiple ES companies consistently suggest that deriving behavioral fingerprints
such as behavioral models for known issues or expected behavior could be very
useful for anomaly identification and analysis: “It’s a temporal process that’s
repeating. It’s a cyclical process. So you can easily create a model that we can
visualize behavior of the normal execution. So there could be the fingerprint of
the process because the same processes are repeatedly occurring” (P29-5). In
fact, as we discussed in Section 3.2.5, company B has been deriving patterns
for known issues to build a knowledge database that is shared across groups
within the company. These patterns serve as fingerprints of known issues. How-
ever, developers face the maintenance problem introduced by the evolution of
logging code when adopting pattern recognition and matching. To facilitate
the use of behavioral fingerprints, there is a need to develop and implement a
logging strategy and policy.

Strategic logging.

The developers suggest that the process of logging should be defined and
governed with company-wide strategies and policies, and tools are required to
facilitate the following activities:

(a) Creating parsable logs. As observed, these companies are still widely adopt-
ing a conventional logging approach [40] where logs are loosely formatted.
Loosely formatted logs cannot be easily parsed automatically, and are sub-
sequently hard to be processed and analyzed by automatic tools. Indeed,
as indicated by the interviewees, it is currently difficult to create generic
parsers that can be used by different groups. Therefore, a better approach
could be formatting the contents of log messages in the logging code to
generate parsable logs. For large-scale companies, the conventional logging
approaches and libraries have often been used for decades in a large code
base. Hence, it requires tremendous efforts to manually format all the log-
ging code or migrate to a new logging mechanism: “our logging library is
flexible enough that people have used it in different ways and there is no one
pattern to look at how the logs are written in the code” (P34-4). Therefore,
interviewees expect tools that can automate the re-engineering activity. As
interviewee P34 suggested, the re-engineering activity may require apply-
ing code analysis techniques (e.g., static analysis) to recognize the logged
information (e.g., parameters in each event) and migrating an old logging
library to a new one automatically.

34 Yang et al.

(b) Identifying logging changes. To cope with the problems during the evolution
of logging code, identifying the changes that developers made to logging
code becomes essential. Developers expect a tool that can identify the
changes in logging code and generate an overview of the made changes:
“Did you accidentally remove the entire logging? Did you just change the
meaning of the log itself? So every bit of information in the log should
be checked. And that should be checked at the development time itself. So
when you deliver your code, you should be able to quickly check and say
you are breaking an existing log. They should be able to go back and, revert
the change and provide justification if they want to go ahead with changes.
7(P34-5). The generated overview of logging changes can enable further
analysis, such as interpreting the differences in the logs generated from
two versions of software.

(¢) Impact analysis of logging changes. As identified, developers face co-evolution
problems in logging. The entities such as analytical tools, behavioral fin-
gerprints, and knowledge databases are impacted by the changes in logging
code. In order to evolve these entities to preserve their consistency and cor-
rectness, developers expect a tool that can analyze the dependency between
the changed logging code and these log-dependent entities, suggesting the
required adaptions to developers.

RQ5-f summary: In order to tackle the challenges, the interviewees sug-
gested tools that can identify dependencies between events in logs, derive
behavioral fingerprints from logs and support strategic logging. In particu-
lar, tools are suggested to support the adaptions of log-dependent entities
that are affected by the evolution of logging code.

4 Result synthesis

In this section, we synthesize the two studies presented in Sections 2 and 3.
We first discuss the main scenarios of software logging identified in these two
studies. As presented in Section 3, the findings about types of logs, and pur-
poses, information needs, and challenges of log analysis identified in ASML are
applicable in other companies. However, we also observe that some contextual
factors (e.g., different types of components and programming languages) may
lead to variations of logging and log analysis practices (e.g., using a certain
type of logs more often). In this study, with a limited number of interviewees
from different development groups and companies, we do not focus on the ex-
ploration of these influencing factors. Instead, we report our observations and
formulate our hypotheses that can further be validated later by a survey or
repository mining study.

4.1 Main scenarios of software logging

By synthesizing the data collected from 39 engineers, we observe a main sce-
nario of logging. As we discussed in Sections 2.3 and 3.2.2, Issue analysis is the
main purpose for which engineers analyze logs. We observe that this purpose
often appears with information needs Context of issues, State and interac-

An interview study about the use of logs in embedded software engineering* 35

tion, Data flow and executed sequence and Difference between executions. The
co-occurrence indicates that these types of information are most essential for
analyzing software issues. This is aligned with the general procedure that de-
velopers often follow to analyze software issues. Understanding the context of
issues is an important step to recognize the symptoms and localize the issues
(i.e., identifying the suspicious components). This involves the inspection of
error propagation shown in the event logs with a top-down approach: “so usu-
ally we start with the error message that is important on the highest layer... It
might be that always something went wrong there and there is no lower layer
inwvolved. And if it’s indeed going down one layer... and then we go to hardware
layer, what’s going on there” (P11-4). As indicated by developers, understand-
ing the context of issues requires developers to have a very broad knowledge
of systems and their architecture. Once the suspicious layer and components
in the layer are identified, the interactions between these components (shown
in function traces) are inspected by filtering function traces on the function
calls across components. This activity helps developers inspect the external
behavior of components, requiring them to have a mental model of how a clus-
ter of components interacts with each together. If the interactions between
components deviate from the expected high-level system behavior, developers
further dive into the internal behavior of components by inspecting Data flow
and executed sequence shown in function traces and functional data. We can
observe that the architectural knowledge of systems plays an essential role in
scoping and localizing the issue for such complex and heterogeneous systems,
while knowledge of low-level code behavior is essential for identifying the root
cause of issues.

Often times, developers may not have sufficient architectural and code
knowledge (especially junior developers). Comparing logs generated from fail-
ing and passing executions serves as a way to identify the log information that
may point to the location and root cause of issues. This comparison is often
performed for different types of logs, as discussed in Section 2.4. For example,
by comparing the function sequences that show component interactions of two
executions, one can identify if the issue is caused by the violations of inter-
action protocols between components. The comparison practice, however, is
challenging due to the large number of irrelevant differences returned by text
comparison tools (as discussed in sections 2.5.3 and 3.2.6). Log comparison
is particularly effective for analyzing the root cause of flakiness. In this case,
logs are generated from multiple executions of one software version (see quote
P12-4). The comparison result between them does not contain the differences
caused by software modifications, but only the differences that are likely to
uncover the non-deterministic runtime behavior.

Apart from log comparison, junior developers leverage additional informa-
tion to complement their partial knowledge of the domain and architecture. As
discussed in Section 2.5.2, peer-working with functional engineers is useful to
interpret log information. Moreover, correlating the log information with the
development activities can help them identify the cause and effect. The inter-
viewees often check the software repositories to identify recent code changes

36 Yang et al.

that may introduce the issues. Being aware of the development activities of
other groups that are responsible for the interfaced components is also use-
ful for developers to quickly identify the possible violations of the specified
interaction protocol.

It is worth noting that, as the interviewees indicated, there is no fixed way
to analyze software issues. Depending on the types of issues, the pre-knowledge
developers have about the issues, and the type of software components which
cause the issues, the procedure may vary.

4.2 Contextual factors in logging practice

Based on our interviews with the developers from different companies, domains
and development groups within a company, we hypothesize that types of sys-
tems, types of components, architecture and complexity of systems, and used
programming languages are contextual factors that may influence developers’
practices. In this subsection, we provide observed evidence that support this
hypothesis, which should be further explored and validated with a systematic
empirical approach.

4.2.1 Types of systems

To explore the scope of our findings, we involved four embedded software
companies (i.e., ASML and companies A-C) and one company that develops
general applications (i.e., company D). Since no new insights about the types
of logs, purposes of log analysis, information needs, challenges and expected
tool support are identified from the interviews with company D, we conjecture
that most of our findings from embedded software companies are not specific
to the context of embedded systems. However, we expect that companies which
develop different types of systems may perceive the severity of these challenges
differently. As observed, on the one hand, log analysis is essential because it is
often the only way to inspect the internal states and execution details of em-
bedded systems. Logs are heavily used by developers for such systems because
of the difficulties of using a traditional debugging approach. This observation
concurs with the theory of probe effects—traditional debuggers are ill-suited
for concurrent systems because the injection of breakpoints (i.e., delays) may
change the system behavior [31]. On the other hand, logging statements intro-
duce overhead that may violate the critical timing requirements of embedded
systems. On top of that, it can be a very iterative, and resource and time
consuming process to execute the systems and collect logs (as discussed in
Section 2.2). It is therefore considered by most interviewees a challenging task
to log minimal but sufficient information for embedded systems. This para-
doxical observation emphasizes the importance of effective logging techniques
and guidelines for embedded systems. In contrast, developers from company D
stress less concern on performance overhead but more on identifying relevant
information from a large amount of log information.

An interview study about the use of logs in embedded software engineering* 37

4.2.2 Types of components

An embedded system is composed of many types of components. Often, dif-
ferent types of components have different logging strategies and for analyzing
the issues caused by them a different log analysis practice is followed. For
example, P20 has worked in two different groups of the company. According
to P20, different types of components require different testing strategies to
expose issues, use different logging approaches, and rely on different kinds of
log information, and use different logging approaches and strategies. The pre-
vious group is responsible for the control actions of the machines, while the
current group is responsible for the algorithmic applications (e.g., calibration
algorithms) running on the machines: “it is a completely different domain with
different problems. Their way of testing is very different. They usually need
some online system tests where you actually expose wafers in order to find
problems in testing. And in my current team it’s all about calculations, which
is not really about asynchronicity or timing. It is just about the numbers...we
tried to set things up as like small modules without any external dependencies,
like standalone stuff and that does allow us to make more unit tests” (P20-3).
Due to the differences, the previous group relies on event logs, funtion traces
and performance data which show action synchronization and timing while
the current group relies on functional data produced by the calculations and
measurements (see quote P20-2). The properties and requirements of compo-
nents also influence how much logging a component allows without impacting
the overall performance of machines.

4.2.83 Architecture and complexity

Different embedded systems may have different architectural designs, and ex-
hibit different levels of complexity. P29, who is currently working in Company
A, has worked at ASML before. The interviewee shares views about the sys-
tems developed by these two companies: “The architecture of ASML systems
definitely makes tracing easier because they have a natural interface. They ex-
plicitly defined their interfaces for components, and that makes a very natural
boundary for tracing... But ASML systems are much bigger. So it’s easier for
our company in that sense because our systems are less complicated” (P29-
6). Indeed, ASML defines the interface between components and traces the
function calls at the interface, which allows developers to inspect the interac-
tions between components. In contrast, Company A has interfaces at a more
granular level, which may generate too many details (see quote P29-3). This
comparison shows that architectural design and complexity of systems are im-
portant factors that contribute to the difficulties of software logging practices.
It emphasizes the importance of taking logging into account at the design phase
of systems, and properly defining the abstraction level for software logging.

38 Yang et al.

4.2.4 Programming languages

Embedded systems can be implemented by different programming languages,
which may lead to different software logging practices. P30 from Company A,
who uses the Ada programming language, shares that the ability of specifying
constraints in the language may lead to less logging: “ so, I was grown up
with C and C++. But Ada is way better in its type system. Now you can
define all the constraints on the type, and then you can always be sure that
your type is correctly constructed and then if you set these pre-conditions or
post-conditions for your function correctly, then there is no need to log these
parameters and functions in my perception” (P30-1). We observed similar ideas
in ASML where a state machine modeling language is adopted to verify the
correctness of software behavior. P14, who adopted this modeling language
in their project, expects the verification will reduce the needs for software
logs: “Maybe the question is how relevant are event logs and traces? Because
it’s expected that there will be fewer issues, in the sense that it prevents the
developer from adding logic errors in software, but we are not sure yet if that
is indeed the case. Let’s say, at least from a practical point of view, we need
to live with it for a while and see what happens” (P14-6). This hypothesis is
supported by P3 and P7, who have used the modeling language for a while:
“we use state machine models and these state machine models are formally
verified. We are let’s say 95% sure that the problem is not in the generated
code” (P3-6).

5 Discussion

There are two lines of work in the field of software logging. One line of
work is empirical studies which aim to help researchers understand develop-
ers’ practices, gaining design knowledge for the development of techniques that
can solve real-world problems. This line of work collects empirical evidence by
mining software repositories or surveying developers. Another line of work fo-
cuses on proposing techniques that solve a certain problem in software logging.
Our work, collecting the perceptions from industrial developers, contributes
to the first line of software logging research.

We study the relevant empirical studies about software logging practices
that appear in several literature studies about software logging [32, 40, 18]. In
particular, we compare our work against recent empirical studies on software
logging practices. We compare our work against the relevant empirical work in
three ways. First, we summarize the context and topic of the relevant studies
and discuss the complementary nature of our work to the existing body of
research (Section 5.1). Second, we provide the refined taxonomy obtained from
our work and compare the taxonomy with relevant work (Section 5.2). Third,
we highlight the main findings of our work and discuss their alignment with
relevant empirical work (section 5.3 and 5.4).

Finally, we discuss the recent research about log analysis techniques at
ASML (Section 5.5) since the completion of our exploratory study at ASML.
These research studies confirm the usefulness of our findings and implications

An interview study about the use of logs in embedded software engineering*

39

Table 8: Literature about logging practices.

in the corresponding paper.

131}

indicates that the information is unspecified

Reference Topic Method Context Domain Language
Yuan et al. [95] Log prevalence and modifi- A mining study of four OSS Various -
cation projects
Chen et al. [19] Log prevalence and modifi- A mining study of 21 OSS Various Java,
cation Apache projects C and
CH++
Pecchia et al. [72] Logging ponits, purposes A mining of three systems, Industry Critical C and
and challenges inspection of 2.3 millions system CH+
log entries and query feed-
back from the development
team
Li et al. [56] Benefit and cost of logging A survey of 66 develop- OSS - -
ers and a case study of
223 logging-related issue
reports.
Rong et al. [76] Logging intentions and A series of interviews and Industry Big-data Java
concerns a mining study of three technology
projects
Rong et al. [75] Consistency of logging A mining study of 28 OSS Various Java
practice projects
Harty et al. [39] Logging prevalence and in- A mining study of 57 OSS Mobile Java
formation projects App
Fu et al. [30] Logging points A mining study of two sys- Industry Cloud ap-C#
tems and a questionnaire plication
survey with 54 developers
Zeng et al. [98] Logging purposes A mining study of 1,444 OSS Mobile Java
projects and an email in- App
terview
Barik et al. [11] Logging purposes and chal- Interviews with 28 software Industry Cloud ap--
lenges engineers, and a quantita- plication
tive survey of 1,823 respon-
dents
Kabinna et al. [46] Impact of logging library A mining study of 233 OSS Various Java
migration Apache projects
Gholamian et al. [33] Logging overhead An experimental study on OSS Distributedlava
seven Spark benchmarks system
Kabinna et al. [47] Logging modification and A mining study of four OSS Various Java
stability projects
Shang et al. [81] Information needs of users A qualitative analysis of OSS Distributed
15 email inquiries and 73 system

inquiries from web search
about different log lines

for researchers and tool builders. Furthermore, they demonstrate how the re-
search outcome of our study can be transferred by other researchers to solve
real-world problems.

5.1 Topic and context of relevant work

Table 8 summarizes the research approach, type of research, context, and type
of application. Our work is complementary to existing literature.

40 Yang et al.

First, our work focuses on a different phase of software logging practices.
Chen et al. [18] conduct a systematic literature review on software instrumen-
tation and divide software logging into two main phases: log instrumentation
and log management. Log instrumentation refers to the steps of the integra-
tion of a logging library and the composition of logging code. Log management
refers to the steps where logs are generated, collected and used for the anal-
ysis of system behavior. The majority of existing work focuses on the phase
of log instrumentation (e.g., where-to-log, what-to-log and how-to-log). Our
study focuses on log management phase, where log collection and analysis are
involved to achieve developers’ intentions with logging. We focus on this phase
because we believe that by understanding the challenges that developers (as
end users) face in log analysis, we can better recognize the problems that lie in
the phase of log instrumentation (e.g., how well is the logging?) and identify
the techniques that can aid developers in the log management.

Second, our study contributes to the understanding of log analysis practices
for embedded systems. We can see from Table 8 that previous studies are
conducted for various types of systems (e.g., cloud applications and Mobile
App). As identified by Gholamian et al. [32], who conduct a comprehensive
systematic review on the subject of software logging, including practices and
analysis techniques, domain-specific studies about software logging practices
are needed because different types of systems may require different practices
(e.g., recording different types of information).

Table 9: Refined taxonomy for log analysis. “x¥” indicates the codes that are newly dis-
covered in the replication study but not in the exploratory study. “Ref./New” indicates the
reference of related literature that is aligned with the corresponding code or a new code that
has not been observed in prior work.

Types of logs Ref./New Quote ID
Event log [72] P20-1
Function trace [72] P18-1
Performance data New P7-1
Functional data [72] P8-1
Purposes Ref./new Quote ID

Software comprehension

Familiarizing with existing software [56] P9-2
Reverse-engineering software requirements New P3-1
Test development
Developing test scenarios and code New P9-3
Verification and improvement
Verifying executed behavior vs expected behavior [56, 11] P13-1
Performance verification and improvement
Verifying timing (throughput) performance [98] P16-2
Identifying opportunities of throughput improvement [98] P7-2
Log-quality qualification
Identifying log pollution New P19-1
Verifying correctness of the logged information New P14-1
Test documentation New P16-3
Testing* 1] P35-4
Use case analysis* [11] P35-3

Liability analysis* New P34-1

An interview study about the use of logs in embedded software engineering* 41
Issue analysis
Classifying the type of issues New P21-2
Identifying responsibilities [56] P4-1
Localizing problems [98] P1-1
Confirming reproduced field issues New P3-2
Identifying root cause
Identifying root cause of field issues [5?, 76,19, 98, P1-2
11
Identifying root cause of test issues [56, 11] P13-2
Identifying root cause of flaky (test) executions New P12-2
Analyzing occurrence and prevalence of issues New P22-1
Supporting customers [56, 11] P22-2
Information needs Ref./new Quote ID
Context of issues
What are the settings of the machines? New P3-3
How does the error propagate? New P7-3
At which time point does the error occur? What is the machine New P13-3
doing when the error is raised?
Data flow and executed sequence
In which order are functions being executed? New P22-4
What is being executed under current configuration? New P1-3
What are the values of variables and how do they flow from New P22-4
one function/module to another?
State and interaction
How do software components interact with each other? New P3-4
How does the function sequence change the state of software? New P14-2
Timing performance
Is there any time gaps between actions? New P7-4
Is the software action finished within the time budget? New P16-4
Difference between executions
What additional errors does the change introduce? New P19-2
How do the control sequences from different executions differ? New P3-5
How do the functional data from different executions differ? New P7-5
How do the timing behavior from different executions differ?* New P31-2
Challenges Ref./new Quote ID
Log availability and quality
Absence of logs [56] P9-4,P8-2
Non-standard logging [72, 75] P12-4
Incompleteness of log [56] P9-5
Presence of noise [56] P8-3
Unreadable format for functions with a lot of parameters New P24-3
Missing categorization and overview New P13-4
Broken error linking New P1-4
Complexity
Involvement of components from different groups and domains [11] P15-1
Presence of concurrency New P15-2
Presence of various kinds of differences between logs caused by:
Uninitialized variables New P17-2
Concurrent execution [37] P11-1,P15-
3,P17-3
Timing variation [37] P17-1
Refactoring [37] P11-2
New feature implementation [37] P11-2
Coupling between software and hardware* New P26-1, P26-2
Change of logging code* New P35-7

Expertise

42 Yang et al.

Lack of domain knowledge New P11-3,P22-
5,P22-6
Unfamiliar with code base and software design New P7-6,P15-4
Logging*
Logging trade-off* (56, 72] P35-5
Lack of abstraction layer for logging* New P29-2,P29-3
Co-evolution problems in logging* New P34-2,P35-
6,P34-3,P35-7
Tool support Ref./new Quote ID
Creating multi-level abstraction New P14-5,P9-
6,P17-4
Automatic log comparison [37] P18-2
Providing generic and unified facilities New P2-2,P1-3
Identifying and visualizing dependency between events* New P29-4,P38-
1,P35-8
Deriving behavioral fingerprint* New P29-5
Strategic logging* [72, 76, 56] P34-4,P34-5

5.2 Refined taxonomy for log analysis

As we can see from Table 8, we study several overlapping topics (e.g., logging
purposes and challenges) with existing work in a different context. Next, we
discuss the alignment in details. We revise the taxonomy for log analysis pre-
sented in Section 2 and augment it with the results of the replication study
presented in Section 3. Table 9 shows a refined taxonomy. The replication study
added three additional purposes related to verification and improvement, one
information need related to difference between executions, two challenges re-
lated to presence of various kinds of log differences, three challenges related
to logging and three suggestions on tool support.

When comparing the refined taxonomy with recent studies on logging prac-
tices, we can see that our study adds new codes to existing empirical literature
of logging practices in terms of types of logs, purposes, information needs, chal-
lenges and tool support. Table 10 summarizes the main findings of our study
and their alignment with existing literature. Our findings are related to the
phases of both log instrumentation and log management. Next, we discuss the
findings in details.

43

An interview study about the use of logs in embedded software engineering*

‘(yg) jyusweSeurwr Fof
pue uorjejuULWINI}SUl 0] JO 3IB-27[}-JO-938BIS puUR
9o110RId-Jj0-99€)s oY) usemilaq sde8 Juikjrpuspl

‘[T ‘12] seruedwoo 1oyjo ur paaies
-qO u99q SBY SIOYIPd 3X9] UM SISA[eRUR [RNURIN

‘seruedwiod paipngs ayj ur 9o130vid uowr
-WOD ' 91 SI0}IPd 3X83 Y3IM SISA[euUr [enuen

(yg) sisAreue 8o ur uornjoas-od Surjroddng

‘swef
-qoid uorIn[oA®-00 jOo ooueplad sapraoad Apnjs
snoraaxd ou ‘1eaemoH '[9F ‘6T ‘g6 siodoeasp £q
poaijipouw st 9pod SuidSo[3'Y) MOYS sOIpNIs AU

‘opoo Sur38o[jo uornjoas
213 03 anp sInodo saIjrjus juspusadep-Jol pue
s80] ueomiaq uoIjN[OAS-0D jJjo wa[qoad oy.,I,

“(4z1) uoryewioy
-ur [euonppe yim s8of SurjuewSne (g pue ‘(I,)
uostredwod pue uoirjoadsur Sof jroddns 09 suory
-nooxa JO uorjorIsqe [oad[-I3nw Suryeein (T

ruorsusyaiduwos Fof
jnoqe sSurpuiy pejiodea sey Apnjs [eorardwe oN

*s8o7
uo poseq s[@epow [eIolAeyaq Sulysjlaxs Aq uoIl}
-orIjsqe uiejqo pue ‘yorvoadde uorjoedsur umop
-doy © jdope 031 pudaj siodo[aadp poadusarradxy
'SWI9)SAS JO SUOIINOOXS JUSIINDUOD JOo odduasaxd
213} pue ‘oIpe[mOouUl UIRWOP pur 2POd JO IOe[
oy3 £q petepuly uoj3jo st uoisuaysadwod Jog

(1) s¥sey eourusjurew jroddns o3 seous
-19JJ1p 80 JO sosned pue s92IN0Ss 27 SuIlkJryuspl

‘oo130®Id
ur ooej Koy saSuo[eyo ayy pue aiedwod siaedo
-[9aep uorjewrojur jo odA3 oYy [1elOp om ‘Apnjgs
ino ug ‘[Lg] °1800D pue [[T] 330SOIdIN Ul pay}
-usp! os[e usaq sey uosireduwrod 307 10J pesu 9y,

‘S9OULILJJIP JURAD[DIIL
Auew jo edouaseid oy} 03 onp 3[NOIFJIP st s30] 3ur
-1eduwod ‘I9A9MOY] 'SSOUINR[J] PU® UOISSOIS9I o1em
-3JO0s JO uoI3e3I3SOAUI SB ONS SOIITAI}OR SNOLIRA
103 siadofjesap Aq peorjoreid st uostaeduwood 3o

(1) swogshs jo aanjord oarsuayead
-wod ' ureyqo o3y sfof jo sadAy ordijnwx Juryuiry

‘swegsAs pappaquie JO 3X23U0D 9Yj Ul UOoIl}
-ewaojul urwr} jo souejrioduwir a9yl smoys Apnis
InQ °S3X9jU0d jueIdfjip ur pewsojrod [Tg] ‘Te
1o Sueyg pue ‘[eg] ‘1e 10 LpeH ‘[gL] T 30
eryodaJ Aq SOIpPNj}s oY} Ul PaAIISqO OS[e SI
uorgewiojur o] jo soedA3 odijnur jo esn ayJ,

*oo190®1Id 11973 UI 90URBUIIOJ
-1od SurwIr} pue UOI}ORISJUI PUR 93BIS ‘SONSSI JO
3X03U0D 03 Pajer[dI 3}SOW UOI}RUWIIOJUI JORIIXD O}
siadojeaap £q posn oie s8o0] jo sadAy ordig3InIn

uorjeorjduy

sanjeaslry

juasweSeuew 307

*(d) sS8of jo sivploy
-oxess yim juswrdoessp wejyshs jo aseyd A(ies
a3 je A8ojeiys Sur8Fo] ajqermns e Surdojsaa

roangeu Aq Areurd
SIOSIpI[nW ST yotym urewop pesppaquis oyj ul
[erjuassa Arre[norjred st siopoyaxe)s yirm aseyd
ugisep je suoisioeop Sui830[SurjrwW 3G SOSSOI}S
Apnjs INo ‘so[0l JULILIIIP YIIM sIsouISus pappaq
-wo jo uorjdeosed oYy uo peseq ‘[9.L] '[e 30 Suoy
woay uorgyse838ns e yYrim poulife st soseyd ulris
-op oyj ul suorsioop Sur380] Sulyrw Jo ®AOPI 9y],

ruory
-oevIlsqe Jo [9a9] a[qejmns & je Jui83oy jioddns
03 Po3dejIydIe-[[oM ©(O3 Ppodu suwoajlsds ‘Alre[n
-o13IRg ‘SMSe) I8} I0J uoljewWIOjuUl SO [RIJUSS
-so Buissiwt ooualrodxo [[® OYym sIoaulSue pappoq
-we Jo so[ol juaisjjip Aq pauordweyd SI SWajsAs
Jo swuiy uS8isep 03 suolsioap Sui88o] Suryiys

“(v)

speou uorjewiojul siodo[oAdp poppaquie SaIJSI
-1es 9o170e1d 3urS30[JULIIND 9YJ JUDIXD JBYM O
(z pue ‘(yg) swolsds poppoquo jo sjied juoisj
-31p uo 3uid8og jo joeduwit ayy (T :swejshs pappaq
-wo ur 9o130evad Jui83o[jo sarpnjys Juronpuod

‘swe)sAs pappaquio
Jo 3x03uo0d oyj ul warqoad oYy jo AJI[DIILID oYI
soziseydwe Apnys anQ ‘[9g ‘0F] serpnsgs reorarduws
Auew Aq possnosip uoaq sey peoytsao JurS3or

‘o[qIseaj 30U uU03ljo
a1k s1088NQep [RUOI}IPRI} dsnedaq sisA[eur aNssI
10J [RIJUOSSD SI ‘puUBY I9YJ0 9} UO PUR ‘OAISSOOXD
st 3ui33071 1 309jj9 aqoad oYyj WOIJ SILJJNS UD3JO
‘puey suo uo ‘swajsAs pappequa ul SuiSSo]

uorjeodijduwy

sanjeaslr

uorjejuswinajsur o

3
10} T, ‘SIoyoressal Ioj suoryedtjdwr sejedipul 3,

‘s1ouonpoelrd 10] g, pue ‘sIepmg [003

‘uwnjoo uorjesrdwt ur jexorIq oY) U] ‘Apnjs o jo suorjesidwt pue ssurpuy Ioley :0T 9[qETL

44 Yang et al.

5.3 Log instrumentation

Among the challenges identified in Table 9, seven are related to log avail-
ability and quality. The interviewed companies largely follow the method of
conventional logging [18] that gives developers a lot of freedom to manually
place logging statements scattering across the code base and generates free-
formed logs, which subsequently introduces difficulties in the analysis steps.
This observation triggers the difficult question of to what extent and how
logging policies should be enforced. Indeed, as discussed by the interviewed
developers, when logging software systems, developers need to make several
trade-offs. A significant amount of effort has been made in the research com-
munity to study such questions as where to log [30, 55], what to log [99], how
to log [19] and how to use logs [38]; and such challenges as absence of logs [56],
non-standard logging [72], and presence of noise and incomplete logging [56].

5.3.1 Logging in embedded systems

Embedded systems are comprised of various types of components, structured
in different abstraction layers, and implemented with multiple programming
languages [89, 35, 51]. As we discussed in Section 4, the major challenges of
software logging faced by developers from Company D and Companies A-C are
different. Performance overhead remains the major concern when it comes to
logging for embedded systems. Indeed, it has been shown that different types
of systems have different logging practices. Zeng et al. [98] find that logging
in mobile apps is less pervasive and modified than server and desktop appli-
cations. By comparing the app performance between enabling and disabling
logging, they find that logging can induce a statistically significant perfor-
mance overhead. Another example can be seen in the mining study conducted
by Gholamian et al. [33] where the impact of different logging granularities
are evaluated in the context of distributed systems. As a result, they observe
on average 8.01% and 268X overhead in the execution time and storage when
the trace log level (e.g., the more detailed logging level) is enabled versus the
info level (e.g., the coarser logging level).

There is no quantitative study (e.g., repository mining) on the logging
practice for embedded systems. The relevant questions remain unanswered:
what developers actually log in their systems, to what extent logging impacts
the performance of such systems, and whether the logged information satisfies
developers’ information needs that are identified in this study. Getting insights
into these questions can help researchers propose techniques and guidelines to
resolve the logging trade-off for embedded systems. Our study further suggests
that the type of components and programming languages should be taken into
account while conducting such studies.

As observed in our study, different types of components in an embedded
system and different used programming languages lead to different logging
needs (see Section 4.2). It is conjectured in the literature that OSS projects

An interview study about the use of logs in embedded software engineering* 45

with a different programming language may have different logging practices:
Chen and Jang [19] conducted a replication study with Java projects and
obtained quite different results from the original study which was conducted
with C/C++ projects by Yuan et al. [95]. With the evidence shown in our
study and the literature, we suggest researchers to deepen the understanding
of software logging for embedded systems by taking these contextual factors
into account.

5.3.2 Logging decisions at design phase

The interviewees suggest that the design and implementation of logging ap-
proaches should be considered at the design phase of system development.
This suggestion from interviewees is aligned with a suggestion from Rong et
al. [74]. Moreover, missing logging guidelines that systematize the logging pro-
cess have been reported by existing studies [74, 72]. Indeed, this follows the
conventional wisdom in data-intensive activities: garbage in, garbage out. We
compile two suggestions for practitioners about logging practices based on our
observations in this study.

By nature, embedded systems are developed and maintained by multidisci-
plinary groups of engineers. As observed, not only software developers but also
engineers who are responsible for function design, customer service and qual-
ity assurance also use logs in their daily work. These engineers with different
roles have experienced difficulties in log analysis, such as information missing
in logs. This observation emphasizes the need for defining what-to-log and
where-to-log with the stakeholders who use logs for their engineering tasks.
Furthermore, a set of terms and their semantics should be defined through
discussions to represent the domain-specific concepts. Furthermore, consistent
with a suggestion provided by literature [18], the developers suggest consider-
ing automatic logging at certain locations (e.g., interfaces of software modules)
following designated rules. As further discussed by the interviewees, in order
to automatically instrument software with an appropriate and consistent gran-
ularity, the systems need to be well-architected with an appropriate level of
abstraction. This idea concurs with the widely accepted software engineering
practice that various stakeholders should be actively involved in requirement
engineering activities [69, 71]. That is, the requirements of logging should be
considered as system requirements which are discussed at the phase of system
design with stakeholders. Particularly, the heterogeneous nature of systems
and logging needs also lead to questions about how to standardize software logs
that are generated from components using different logging libraries in differ-
ent programming languages. Moreover, to ensure the quality of logs, methods
and practices such as automatic checkers or code review should be adopted to
identify and govern the modification of logging code.

46 Yang et al.

5.4 Log management

In addition to the findings about log instrumentation, we have several findings
related to the management and analysis of logs.

5.4.1 Multiple types of logs

As shown in Table 9, we observed that developers use four types of execution
logs and five categories of log information in their embedded software engineer-
ing practice. Pecchia et al. [72] analyzed the codebase of an industrial critical
system and found that developers logged the value of critical variables, invo-
cations of functions, and occurrence of events of interest, which corresponds
to the event logs, function traces and functional data identified in our study.
Harty et al. [39] identified four types of information are usually logged in Mo-
bile Apps: business events, user interface events, failures and/or unexpected
situations, and other information. By analyzing 15 email inquires and 73 in-
quiries from web searches for three open source systems, Shang et al. [81]
identified five types of information (i.e., meaning, cause, context, solution and
impact) that users needed about logs. The users, who are not necessarily famil-
iar with the underlying details of the systems, query diagnostic information
about the unexpected log lines while monitoring the health of systems. We
have taken a complementary perspective and focused on information needs
of an engineer. As opposed to users, engineers, responsible for maintaining
the systems, not only need the diagnostic information (e.g., the context of
error messages) but also execution details (e.g., interactions between compo-
nents). Moreover, our study identified that performance data, which captures
the duration of software and hardware actions, is essential for improvement
and verification on timing performance for embedded systems.

We observe that developers often need to manually recover the links be-
tween different types of logs (see Section 2.4.1 and 2.5.3) to gain a more com-
prehensive understanding of an execution. Tool builders can consider recov-
ering the links between different types of logs, e.g., using timestamps. Such
tools would allow developers to inspect what functions and software actions are
executed, and what critical functional data are produced when a specific high-
level event occurs. In addition, we suggest tool builders to leverage semantic
information (i.e., the textual elements in logs) to recover the links. Estab-
lishing links between software artifacts using the concept of semantic coupling
(i.e., the semantic similarity between entities) has been demonstrated for many
maintenance tasks such as traceability [8] and change impact analysis [48].

5.4.2 Log comparison

Our study suggests that developers inspect not only one single log, but also
a set of logs generated from multiple executions. To support developers in
comparing logs, techniques have been developed to compare behavioral mod-
els extracted from logs generated from multiple executions [34, 4, 10, 63].
However, these techniques may not meet our developers’ expectations because
these tools require non-trivial configuration, e.g., the length of the minimal

An interview study about the use of logs in embedded software engineering* 47

“interesting” sequence that differentiates two logs. For example, 2KDiff [4]
compares two logs by highlighting the sequences of length k that belong to
one log but not the other. All the differences based on the user-defined k
are visualized on the models. Given the size of industrial logs (in gigabytes),
inspecting such differences for two large executions might require significant
cognitive effort to identify interesting information. Having concerns that it
might require a lot of cognitive effort to identify interesting information from
all the k-differences, Bao et al. [10] extend 2KDiff by taking the frequencies
of behavior found in logs into account. The proposed tool visualizes statis-
tically interesting differences by requesting users to set the target distance
between probabilities, and the statistical significance value, in addition to the
parameter k. However, configuring such tools properly might be difficult and
require iterations of parameter tuning because these parameters are related to
the underlying statistical differencing model rather than to the nature of the
software.

Based on the interviews, we believe that linking log differences to their
sources and providing automatic categorization of log differences can help de-
velopers perform maintenance tasks: whether a log difference is introduced by
change of software code, logging code or variants of runtime behavior (e.g.,
concurrency). For example, when identifying a root cause of regression based
on logs, developers can ignore the differences belonging to the categories of
concurrency because these differences are not expected to influence the final
outcome. To recognize the differences caused by code modifications such as
refactoring and functional modifications, tool builders may consider to lever-
age existing tools from the fields of code differencing [28] and refactoring de-
tection [88]. Chen et al. [19] demonstrate how to identify the change of logging
code among all kind of code changes using regular expressions to match the
source code. To identify log differences related to concurrency, tool builders
can leverage previous work on log analysis that identifies interleaving events by
logging the partial ordering relations between events [12, 22, 59]. The partial
ordering relation between events can be captured with logical clock times-
tamps [26, 66] with which logical timestamps are generated for events in the
system, and their causal relationship is determined by comparing those times-
tamps. Tool builders can consider adopting the methods from these studies to
identify the differences caused by concurrency. The obtained information can
be incorporated into log comparison to help developers recognize the useful
log differences for their tasks.

5.4.83 Log comprehension

No previous study has investigated how developers comprehend logs. As dis-
cussed in Section 2.5.2, lack of familiarity with existing code and lack of do-
main knowledge can hinder log comprehension, especially for multidisciplinary
systems: interpreting information from logs might require expertise from mul-
tiple engineering disciplines, while communicating with engineers of different
disciplines is the commonly used method to obtain the expertise. Indeed, as

48 Yang et al.

observed (Section 2.5.2), working with logs from such systems requires soft-
ware engineers to work with colleagues from other engineering disciplines to
understand functional requirements of the systems and to interpret the infor-
mation shown in logs. This observation is consistent with earlier findings [35]:
the combination of software engineering with other engineering disciplines re-
quires communication between engineers of different disciplines. In addition,
we learned from the study at ASML (Section 2.5.2) and other ES companies
(Section 3.2.2) that concurrent design and time-out mechanisms, implemented
in embedded systems to optimize and limit software execution time [84, 42],
also hinder log comprehension. We further observed that interleaving of con-
current executions incurs challenges not only in program comprehension [6, 27|
but also in log comprehension (see Section 2.5.2). Indeed, when inspecting logs,
developers need to reconstruct the logical relations and order between inter-
leaved function executions, as well as identify the differences between multiple
executions that affect the execution outcome.

To cope with the complexity, we learned that experienced developers tend
to adopt a top-down approach when inspecting logs. This concurs with a
study on the relevance of application domain knowledge in program compre-
hension [80]—developers who are familiar with the application domain use a
top-down approach to conserve efforts, developing a global hypothesis about
the overall program based on high-level information, and then verify their hy-
potheses with more program details. The top-down method is known to be
effective for system comprehension, which requires developers to understand
the structure of the system: the main components and the communication
paths between these components [54]. As opposed to code comprehension,
system comprehension shifts the focus from the code to its structure, which is
essential to comprehend large volumes of code. This is in line with our obser-
vation on developers’ information needs—to understand the behavior of large
scale software systems based on logs, developers need both structure informa-
tion such as interactions between modules, and low level execution details (see
Section 2.4).

Another coping strategy experienced developers adopt for log comprehen-
sion is to sketch and derive behavioral models based on logs. The derived mod-
els and patterns abstract the details of execution away, and are subsequently
used for system comprehension, communications between team members and
issue detection. There has been a lot of studies on automatically inferring
models and patterns from logs [61, 90, 14, 91, 65, 13] for various software
engineering activities. Beschastnikh et al. [13] designed a tool that helps de-
velopers comprehend distributed systems by visualizing the communication
patterns between hosts. To help the debugging process, Mashhadi et al.[65]
proposed a semi-automated technique that automatically abstracts the con-
trol flow from an execution trace with state machines, and then asks developers
to interactively configure the tool to abstract the data-specific behavior. The
empirical evidence collected from our study emphasizes the practical value of
model inference techniques, and calls for more industrial applications of these
existing techniques.

An interview study about the use of logs in embedded software engineering* 49

Our findings about log comprehension have two implications. First, our
findings stress the importance of establishing multi-level abstraction of ex-
ecutions to support log inspection and log comparison. Many tools aim at
abstracting away details from execution logs by deriving state machines [60,
90, 49], sets of temporal properties [53], and execution patterns [96]. These
kinds of trace abstraction tools often rely on heuristics to create abstraction.
For example, in order to extract a compact state machine model from traces,
the underlying algorithms iteratively merge similar states based on heuristics,
which can result in overgeneralization (e.g., containing behavior that is not
observed in the trace) or under-generalization (e.g., without abstraction) in
models [92]. Moreover, these tools provide only one level of abstraction, not
meeting the expectations of the interviewees (see Section 2.5.3) because the
important information might be lost by showing only a certain level of detail.
Several studies addressed this limitation [45, 13, 25] by allowing developers to
inspect information at different levels of detail. However, these tools do not
guide developers in information navigation, e.g., one needs to manually iden-
tify the relevant component interactions when analyzing issues with tools that
generate sequence diagrams [45, 13].

This leads us to the second implication that tool builders may take the con-
text of use into account, incorporating information from other sources (e.g.,
source code or bug reports) to guide developers to navigate through infor-
mation at different abstractions for their tasks. In literature, the knowledge
obtained from different software artifacts, e.g., source code and documentation,
has been leveraged to assist software maintenance tasks, such as de-duplicating
bug reports [3], ranking relevant files for bug reports [94], mining requirement
knowledge [58] and code summarization [67].

We believe that a similar research effort is required to understand what
code and domain knowledge developers need for log analysis and to leverage
code and domain knowledge in log analysis tools. An example of such domain
knowledge required for log analysis is the communication mechanism between
components (see quote P15-4 in Section 2.5.2). We expect that augmenting
logs with additional knowledge derived from source code and documentation,
can reduce the time and effort that developers spend in searching for infor-
mation that is currently spread over multiple sources such as source code,
documentation and logs.

5.4.4 The problem of co-evolution

Our work extends the discussion of the evolution of logging code [95, 19, 46].
Kabinna [47] mined four open source projects and found that 20-45% of the
logging statements are modified by developers at least once during their life-
time. Our study further provides empirical evidence on the co-evolution prob-
lems in software logging (Section 3.2.5), such as the challenges in maintaining
the behavioral fingerprints of software issues derived from logs. Our finding
implies the need for a deeper understanding of evolution of logging code and
supporting the co-evolution of log-dependent entities. There have been some

50 Yang et al.

studies focusing on evolution of logging code. Studies of Yuan et al. [95] and
Li et al. [57] have shown that most of the modifications of logging code are
made to the content of log messages such as verbosity, variables and text.
Li et al. [57] further discovered that logging code with similar context may
need similar modifications. Therefore, the authors trained a machine learn-
ing model to predict modifications of logging code based on logging revisions,
achieving a promising result. Unlike co-evolution of other software artifacts
such as production and test code [97], metamodels and models [20, 68], and
requirements of different components [24] that have been widely studied to help
developer adapt these co-dependent artifacts, co-evolution of logging code and
log-dependent artifacts is rarely addressed in the scientific literature. Research
efforts are needed to aid developers in co-evolving log-dependent entities (e.g.,
behavioral fingerprints). Moreover, researchers should take the evolutionary
nature of software logging into account when designing log analysis techniques
(e.g., to what extent would the accuracy of the machine learning models be
affected by the evolution of logging code?).

5.4.5 Manual analysis with text editors

Consistently with the previous study at Microsoft [11], we found that devel-
opers mainly use text editors for their log analysis activities. Given that many
log analysis tools have been proposed over the years, the observation implies
a gap between research prototypes and industrial practice. The reason why
developers use text-based tools could be that 1) practitioners are not aware of
other existing techniques, 2) the existing techniques proposed by researchers
cannot address the challenges that developers face, 3) the techniques that ad-
dress the challenges have not been turned into products by tool builders, or
4) the tool adoption is hindered by extensive training and additional cost. To
address these problems, we propose three types of studies for researchers to
further identify and bridge the gaps between the state-of-practice and state-
of-the-art.

First, we propose researchers to gain more insights into current practice
of software logging. As collected by He et al. [40], over the years, commercial
(e.g., Splunk [1]) and open-source tools (e.g., GrayLog [2]) have been made
available for practitioners. Empirical studies should be conducted to get a
comprehensive overview of the technical and non-technical influencing factors
in the adoption of log analysis tools. One of the possible obstacles implied
in our study is the difficulty of obtaining structured logs to enable the use
of advanced analysis tools (i.e., the cost of parsing logs or migrating logging
code for a large code base). The observation shows that many challenges stem
from other steps of software logging (e.g., log instrumentation). Therefore, we
believe research efforts should also be made to dive into the industrial practice
of log instrumentation (e.g., logging approach and library) and management
(e.g., log collection and analysis). For example, interesting research questions
about log instrumentation could be: what logging methods and libraries do
companies use? what is the rationale behind their decisions? what kind of

An interview study about the use of logs in embedded software engineering* 51

challenges are they facing with the used methods? We believe that gaining
more understanding about the practice, challenges and tool adoption is the
first step toward solving the problems.

Second, we suggest researchers to create a mapping of the industrial chal-
lenges and the existing techniques that could potentially address the chal-
lenges. To achieve this goal, it is essential to obtain an overview of the state-of-
the-art techniques that support log instrumentation and management through
a literature study (e.g., systematic literature review and systematic mapping
study). Many literature studies have been conducted to understand different
activities in software logging and log analysis, such as log instrumentation [18]
and log abstraction [23]. However, a systematic and in-depth mapping of cur-
rent practice and existing techniques is still missing. We believe such mapping
studies are important for researchers and tool builders to understand the gaps
and the potential useful techniques that deserve further explorations and im-
provements.

However, the mapping studies may only give indications on promising tech-
niques. In order to transfer the state-of-the-art techniques to practice, it is im-
portant to conduct experimental studies in the field [85] where researchers can
apply the techniques in a natural software development setting and study the
possibility of integrating the techniques into the existing development process
and infrastructure. To understand the impact of different solutions and envi-
ronment settings, researchers can consider to conduct field experiments [85],
which allows them to controls certain aspects of the setting (e.g., human fac-
tors). For example, to explore whether the state-of-the-art log comparison
techniques can help developers efficiently identify the root cause of regressions,
researchers can design a field experiment which involves the comparison of the
promising techniques to the text-based comparison tools that developers used
in their natural development setting. By experimenting with the techniques in
the field, researchers can better understand the limitations of the techniques
and the additional cost (e.g., training) the techniques may require. Iterations
of refinement and experiment should be expected before the techniques are
matured enough to be integrated into the development process.

With these three types of studies, we can better understand the nature
of challenges in logging and log analysis, and the real-world design contexts,
producing design knowledge to guide the development or improvement of tech-
niques that address the identified challenges.

5.5 Technique development at ASML

ASML has been developing techniques that address some of the challenges pre-
sented in our exploratory study at ASML (Section 2). Hooimeijer et al. [44]
present a technique that infers multi-level state machine models from execu-
tion logs generated by component-based systems. Instead of using heuristics
that often don’t match system characteristics and are difficult to configure for
practitioners, the technique learns multi-level state machine models that rep-
resent the behavior of systems, using the knowledge of the component-based

52 Yang et al.

software architecture. By showing the learned models to ASML developers,
the authors validate that the models adequately provide ASML developers
the software behavior abstraction that they currently lack (see discussion in
Section 2.5.3).

As suggested by the interviewees in our study, such learned models can
be used for software comprehension or serve as behavioral fingerprints of sys-
tems. To utilize the potential benefits of the learned multi-level state machine
models, Hendriks et al. [41] extended this technique with a methodology that
allows developers to automatically compare state machine models learned from
execution logs, e.g., from different software versions, and to inspect the com-
parison results at various levels of details. By comparing software logs at six
levels of abstraction with this methodology, developers can zoom in on rele-
vant differences, and manage the complexity of large systems. The effective-
ness of this methodology is demostrated with several case studies using ASML
(sub-)systems. It is shown that the root cause of software regressions can be
identified with the comparison methodology. Based on our study, we further
suggest researchers to extend this methodology to link the behavioral differ-
ences obtained from the comparison to their sources, and to provide developers
with actionable insights (as discussed in Section 5.4.2).

The existence of these techniques, as well as their positive empirical valida-
tions, confirm that our findings and implications are insightful for researchers
and tool builders to address log analysis challenges for embedded systems.
Furthermore, they provide an example of how the research outcome of our
study can be transferred to solve real-world problems.

6 Threats to validity

As any empirical study, ours is subject to threats to validity.

Threats to construct validity examine the relation between the concept
being studied and its observation. One threat could be that developers have
different definitions of logs. To migrate this risk, we provided our definitions
of software logs.

Threats to internal validity concern factors that might have influenced
the results. First, developers might have misunderstood our interview ques-
tions. For the first study, we mitigate this risk by conducting a pilot interview
with a developer who works at ASML, and rewording the questions as nec-
essary. For the second study, we piloted both open and closed questions with
an industrial embedded software developer and provided the explanation of
individual options (i.e., codes) in the closed questions.

Second, our interviewees might hesitate to discuss the difficulties in their
current practice or the issues in the tools they use. For example, it could be
because that they were aware that the result will be published. We reduced
their concern by explaining data privacy rights and guaranteeing them full
anonymity. Third, the coding we applied to the interview transcripts is an
interpretive procedure. Moreover, the coding tasks were single-handedly per-
formed by the first author. This decision was made because of the technical
knowledge, such as the state machine modeling language used by developers,

An interview study about the use of logs in embedded software engineering* 53

required to interpret the information shared by our interviewees. To limit the
researcher bias, we performed member checking. Developers were encouraged
to correct our interpretations and add additional thoughts. For the first study
at ASML, we have obtained 20 replies out of 25 interviewees, and the revisions
requested by the interviewees were minor, suggesting high degree of validity
of our interpretation. In addition, the recent research at ASML related to log
analysis techniques has shown the usefulness of our suggestions for researchers,
increasing our confidence in our findings.

Threats to external validity concern the generalizability of our conclu-
sions beyond the studied context. For our first study at ASML, we opted for
convenience sampling selecting the company that we have on-going collabo-
ration with. We expect that this company provides a representative context
because the products of this company have been considered as a typical ex-
ample of complex embedded systems in many studies [35]. In this study, we
explored log analysis practices for control and metrology software which is
a typical module in complex embedded systems. To select interviewees from
the division that is responsible for the module, we opted for purposive sam-
pling [9] by encouraging each group lead from this division to recommend
developers with different education backgrounds, genders, and roles. However,
there is a risk that group leads might prioritize other factors (i.e., develop-
ers’ availability) over diversity. To ensure saturation, we conducted interviews
and coding tasks in an interleaved manner. We made a detailed report on the
study context to support the transfer of results to other similar contexts. To
increase external validity of our findings, we conducted a dependent replica-
tion study at multiple companies using the same method (i.e., interviews).
Convenience sampling is adopted to recruit companies that we have contact
with. The selected companies from embedded domain are developing different
kinds of embedded products.We discussed the contextual factors of logging in
embedded systems (Section 4) that deserve further investigation to increase
external validity and build theories. A future work could be conducting an in-
dependent replication study which uses different experimental procedures and
involves more changing factors.

7 Conclusion

We explored how developers use logs in embedded software engineering by con-
ducting an exploratory study at ASML. To refine the findings, the study was
then replicated at four other companies. As the final result obtained by inter-
viewing 39 developers in total, we identified four types of logs developers use,
21 purposes for which developers use logs, 14 types of information developers
search in logs, 17 challenges faced by developers in log analysis, and six sug-
gestions on tool support. The most prevalent information needs are related to
context of issues, state and interaction and timing performance. We observed
that text-based tools (e.g., Notepad++ and Linux diff) are commonly used
for inspecting and comparing logs, despite that many log analysis tools have
been proposed in literature. Our study identifies the challenges in log anal-
ysis. We observed that the unsatisfactorily log quality, lack of expertise and

54 Yang et al.

high complexity of systems raise major challenges in log analysis. Moreover,
our study provides evidence that the evolution of logging code also introduces
challenges. For example, log-dependent entities (e.g., log analysis tools) are
affected by the change made to logging code.

Based on the study, we provide suggestions for practitioners on logging
practices, tool builders on how to further improve log analysis tools, and re-
searchers on the research directions. Our observations suggest practitioners
to design and implement a suitable logging process where logging approach,
library, content and location as well as log generation and collection are sys-
tematized. We suggest tool builders to develop advanced log comparison tools
that can categorize log differences to provide actionable insights for develop-
ers. Furthermore, our study also calls for more research efforts in supporting
the evolution of log-dependent entities.

8 Data availability

The interview transcripts that support the findings of this study are not openly
available due to the confidentiality agreement made with the participating
companies.

9 Conflict of interest
The authors declare no conflicts of interest.
References

1. (2005) Splunk. Http://www.splunk.com

2. (2020) A leading centralized log management solution.
Https://www.graylog.org

3. Aggarwal K, Timbers F, Rutgers T, Hindle A, Stroulia E, Greiner R (2017)
Detecting duplicate bug reports with software engineering domain knowl-
edge. Journal of Software: Evolution and Process 29(3):e1821

4. Amar H, Bao L, Busany N, Lo D, Maoz S (2018) Using finite-state models
for log differencing. In: ESEC/FSE, pp 49-59

5. Antonino PO, Morgenstern A, Kuhn T (2016) Embedded-software archi-
tects: It’s not only about the software. IEEE Software 33(6):56—62

6. Artho C, Havelund K, Honiden S (2007) Visualization of concurrent pro-
gram executions. In: COMPSAC, pp 541-546

7. Asadollah SA, Inam R, Hansson H (2015) A survey on testing for cyber
physical system. In: ICTSS, pp 194-207

8. Asuncion H, Asuncion A, Taylor R (2010) Software traceability with topic
modeling. In: ICSE (1), pp 95-104

9. Baltes S, Ralph P (2020) Sampling in software engineering research: A
critical review and guidelines. arXiv preprint arXiv:200207764

10. Bao L, Busany N, Lo D, Maoz S (2019) Statistical log differencing. In:
ASE, pp 851-862
11. Barik T, DeLine R, Drucker S, Fisher D (2016) The bones of the system: A

case study of logging and telemetry at microsoft. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C),
IEEE, pp 92-101

An interview study about the use of logs in embedded software engineering* 55

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Beschastnikh I, Liu P, Xing A, Wang P, Brun Y, Ernst MD (2020) Visu-
alizing Distributed System Executions, vol 29. DOI 10.1145/3375633
Beschastnikh I, Liu P, Xing A, Wang P, Brun Y, Ernst MD (2020) Visu-
alizing distributed system executions. TOSEM 29(2):1-38

Biermann A, Feldman J (1972) On the synthesis of finite-state ma-
chines from samples of their behavior. IEEE transactions on Computers
100(6):592-597

Bird C (2016) Interviews. In: Perspectives on Data Science for Software
Engineering, Morgan Kaufmann

Broadfoot GH (2005) Asd case notes: Costs and benefits of applying formal
methods to industrial control software. In: International Symposium on
Formal Methods, Springer, pp 548-551

Buchbinder E (2011) Beyond checking: Experiences of the validation in-
terview. Qualitative Social Work 10(1):106-122

Chen B, Jiang ZM (2021) A survey of software log instrumentation. ACM
Computing Surveys (CSUR) 54(4):1-34

Chen B, et al (2017) Characterizing logging practices in java-based open
source software projects—a replication study in apache software foundation.
Empirical Software Engineering 22(1):330-374

Cicchetti A, Di Ruscio D, Eramo R, Pierantonio A (2008) Automating co-
evolution in model-driven engineering. In: 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, IEEE, pp 222-231
Dallmeier V, Knopp N, Mallon C, Hack S, Zeller A (2010) Generating test
cases for specification mining. In: ISSTA, pp 85-96

Edwards D, Simmons S, Wilde N (2006) An approach to feature location
in distributed systems. Journal of Systems and Software 79(1):57-68, DOI
10.1016/j.jss.2004.12.018

El-Masri D, Petrillo F, Guéhéneuc YG, Hamou-Lhadj A, Bouziane A
(2020) A systematic literature review on automated log abstraction tech-
niques. Information and Software Technology 122:106276

Etien A, Salinesi C (2005) Managing requirements in a co-evolution con-
text. In: 13th IEEE International 31 Conference on Requirements Engi-
neering (RE’05), IEEE, pp 125-134

Feng Y, Dreef K, Jones JA, van Deursen A (2018) Hierarchical abstraction
of execution traces for program comprehension. In: ICPC, pp 86-96
Fidge CJ (1987) Timestamps in message-passing systems that preserve the
partial ordering. Australian National University. Department of Computer
Science

Fleming SD, Stirewalt R (2009) Successful strategies for debugging con-
current software: an empirical investigation. Michigan State University.
Computer Science

Fluri B, Wursch M, PInzger M, Gall H (2007) Change distilling: Tree dif-
ferencing for fine-grained source code change extraction. TSE 33(11):725-
743

Flyvbjerg B (2007) Five Misunderstandings about Case-Study Research.
Sage

56

Yang et al.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T (2014) Where
do developers log? an empirical study on logging practices in industry. In:
ICSE, pp 24-33

Gait J (1986) A probe effect in concurrent programs. Software: Practice
and Experience 16(3):225-233

Gholamian S, Ward PA (2021) A comprehensive survey of logging in soft-
ware: From logging statements automation to log mining and analysis.
arXiv preprint arXiv:211012489

Gholamian S, Ward PA (2021) What distributed systems say: A study of
seven spark application logs. In: 2021 40th International Symposium on
Reliable Distributed Systems (SRDS), IEEE, pp 222232

Goldstein M, Raz D, Segall I (2017) Experience report: Log-based behav-
ioral differencing. In: ISSRE, pp 282-293

Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering:
the state of the practice. IEEE Softw 20(6):61-69

Gu S, Rong G, Zhang H, Shen H (2022) Logging practices in software
engineering: A systematic mapping study. IEEE Transactions on Software
Engineering

Gulzar MA, Zhu Y, Han X (2019) Perception and practices of differential
testing. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE, pp
71-80

Gupta M, Mandal A, Dasgupta G, Serebrenik A (2018) Runtime
monitoring in continuous deployment by differencing execution be-
havior model. In: Pahl C, Vukovic M, Yin J, Yu Q (eds) ICSOC,
Springer, Lecture Notes in Computer Science, vol 11236, pp 812-827,
DOIT 10.1007/978-3-030-03596-9_58, URL https://doi.org/10.1007/
978-3-030-03596-9_58

Harty J, Zhang H, Wei L, Pascarella L, Aniche M, Shang W (2021) Logging
practices with mobile analytics: An empirical study on firebase. In: 2021
IEEE/ACM 8th International Conference on Mobile Software Engineering
and Systems (MobileSoft), IEEE, pp 56-60

He S, He P, Chen Z, Yang T, Su'Y, Lyu MR (2021) A survey on automated
log analysis for reliability engineering. ACM Computing Surveys (CSUR)
54(6):1-37

Hendriks D, Meer Avd, Oortwijn W (2022) A multi-level methodology
for behavioral comparison of software-intensive systems. In: International
Conference on Formal Methods for Industrial Critical Systems, Springer,
pp 226243

Henzinger TA, Sifakis J (2007) The discipline of embedded systems design.
Computer 40(10):32-40

Holton JA (2007) The coding process and its challenges. The Sage hand-
book of grounded theory 3:265-289

Hooimeijer B, Geilen M, Groote JF, Hendriks D, Schiffelers R (2022) Con-
structive Model Inference: Model learning for component-based software

An interview study about the use of logs in embedded software engineering* 57

45.

46.

47.

48.

49.

50.

ol.

52.

93.

54.

95.

56.

o7.

58.

99.

60.

architectures. In: 17th International Conference on Software Technologies
(ICSOFT), pp 146-158

Jerding DF, Stasko JT, Ball T (1997) Visualizing interactions in program
executions. In: ICSE, pp 360-370

Kabinna S, Bezemer CP, Shang W, Hassan AE (2016) Logging library
migrations: A case study for the apache software foundation projects. In:
2016 IEEE/ACM 13th Working Conference on Mining Software Reposi-
tories (MSR), IEEE, pp 154-164

Kabinna S, Bezemer CP, Shang W, Syer MD, Hassan AE (2018) Exam-
ining the stability of logging statements. Empirical Software Engineering
23(1):290-333

Kagdi H, Gethers M, Poshyvanyk D, Collard ML (2010) Blending con-
ceptual and evolutionary couplings to support change impact analysis in
source code. In: RE, pp 119-128

Krka I, Brun Y, Medvidovic N (2014) Automatic mining of specifications
from invocation traces and method invariants. In: ESEC/FSE, pp 178-189
Kurfess TR, Hodgson TJ (2007) Metrology, sensors and control. In: Mi-
cromanufacturing, Springer, pp 89-109

Lee EA (2008) Cyber physical systems: Design challenges. In: 2008 11th
IEEE international symposium on object and component-oriented real-
time distributed computing (ISORC), IEEE, pp 363-369

Legunsen O, Hassan WU, Xu X, Rosu G, Marinov D (2016) How good
are the specs? a study of the bug-finding effectiveness of existing java api
specifications. In: ASE, pp 602-613

Lemieux C, Park D, Beschastnikh I (2015) General ITL specification min-
ing. In: ASE, pp 81-92

Levy O, Feitelson D (2019) Understanding large-scale software—a hierar-
chical view. In: ICPC, pp 283-293

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging
using topic models. EMSE 23(5):2655-2694

Li H, Shang W, Adams B, Sayagh M, Hassan AE (2020) A qualitative
study of the benefits and costs of logging from developers’ perspectives.
TSE

Li S, Niu X, Jia Z, Liao X, Wang J, Li T (2020) Guiding log revisions by
learning from software evolution history. Empirical Software Engineering
25(3):2302-2340

Lian X, Rahimi M, Cleland-Huang J, Zhang L, Ferrai R, Smith M (2016)
Mining requirements knowledge from collections of domain documents.
In: 2016 TEEE 24th International Requirements Engineering Conference
(RE), pp 156-165

Liu X, Lin W, Pan A, Zhang Z (2007) WiDS checker: Combating bugs in
distributed systems. 4th Symposium on Networked Systems Design and
Implementation, NSDI 2007 pp 257270

Lo D, Maoz S (2012) Scenario-based and value-based specification mining;:
better together. In: ASE, vol 19, pp 423-458

58

Yang et al.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Lo D, Mariani L, Pezze M (2009) Automatic steering of behavioral model
inference. In: Proceedings of the 7th Joint Meeting Of The European Soft-
ware Engineering Conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pp 345-354

Luo Q, Hariri F, Eloussi L, Marinov D (2014) An empirical analysis of
flaky tests. In: FSE, pp 643-653

Maoz S, Ringert JO, Rumpe B (2010) A manifesto for semantic model
differencing. In: MODELS, Springer, pp 194-203

Mashhadi MJ, Hemmati H (2019) An empirical study on practicality of
specification mining algorithms on a real-world application. In: ICPC, pp
65—69

Mashhadi MJ, Siddiqui TR, Hemmati H, Loewen H (2019) Interactive
semi-automated specification mining for debugging: An experience report.
Information and Software Technology 113:20-38

Mattern F, et al (1988) Virtual time and global states of distributed sys-
tems. Univ., Department of Computer Science

McBurney PW, Liu C, McMillan C, Weninger T (2014) Improving topic
model source code summarization. In: Proceedings of the 22nd interna-
tional conference on program comprehension, pp 291-294

Mengerink J, Schiffelers RRH, Serebrenik A, van den Brand M (2016)
Dsl/model co-evolution in industrial emf-based MDSE ecosystems. In:
Mayerhofer T, Pierantonio A, Schétz B, Tamzalit D (eds) Proceedings of
the 10th Workshop on Models and Evolution co-located with ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2016), Saint-Malo, France, October 2, 2016,
CEUR-WS.org, CEUR Workshop Proceedings, vol 1706, pp 2-7, URL
http://ceur-ws.org/Vol-1706/paperl.pdf

Mishra D, Mishra A, Yazici A (2008) Successful requirement elicitation
by combining requirement engineering techniques. In: 2008 First Inter-
national Conference on the Applications of Digital Information and Web
Technologies (ICADIWT), IEEE, pp 258263

Noergaard T (2012) Embedded systems architecture: a comprehensive
guide for engineers and programmers. Newnes

Pandey D, Suman U, Ramani AK (2010) An effective requirement engi-
neering process model for software development and requirements man-
agement. In: 2010 International Conference on Advances in Recent Tech-
nologies in Communication and Computing, IEEE, pp 287-291

Pecchia A, Cinque M, Carrozza G, Cotroneo D (2015) Industry practices
and event logging: Assessment of a critical software development process.
In: ICSE (2), IEEE, pp 169-178

Pradel M, Gross TR (2012) Leveraging test generation and specification
mining for automated bug detection without false positives. In: ICSE, pp
288-298

Rong G, Zhang Q, Liu X, Gu S (2017) A systematic review of logging
practice in software engineering. In: 2017 24th Asia-Pacific Software En-
gineering Conference (APSEC), IEEE, pp 534-539

An interview study about the use of logs in embedded software engineering* 59

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Rong G, Gu S, Zhang H, Shao D, Liu W (2018) How is logging practice
implemented in open source software projects? a preliminary exploration.
In: 2018 25th Australasian Software Engineering Conference (ASWEC),
IEEE, pp 171-180

Rong G, Xu Y, Gu S, Zhang H, Shao D (2020) Can you capture infor-
mation as you intend to? a case study on logging practice in industry. In:
2020 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), IEEE, pp 12-22

Runeson P, Host M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering
14(2):131

Said W, Quante J, Koschke R (2018) Towards interactive mining of un-
derstandable state machine models from embedded software. In: MODEL-
SWARD, pp 117-128

Seaman CB (1999) Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25(4):557-572
Shaft TM, Vessey I (1995) The relevance of application domain knowledge:
the case of computer program comprehension. ISR 6(3):286-299

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014) Understanding log
lines using development knowledge. In: ICSME, pp 21-30

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in
empirical software engineering. Empirical software engineering 13(2):211-
218

da Silva AJ, Linhares MV, Padilha R, Roqueiro N, de Oliveira RS (2006)
An empirical study of sysml in the modeling of embedded systems. In:
2006 TEEE International Conference on Systems, Man and Cybernetics,
IEEE, vol 6, pp 4569-4574

Silva E, Freitas EP, Wagner FR, Carvalho FC, Pereira CE (2006) Java
framework for distributed real-time embedded systems. In: Ninth IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’06), IEEE, pp 8-pp

Storey MA, Ernst NA, Williams C, Kalliamvakou E (2020) The who, what,
how of software engineering research: a socio-technical framework. Empir-
ical Software Engineering 25(5):4097-4129

Strandberg PE, Enoiu EP, Afzal W, Sundmark D, Feldt R (2019) Informa-
tion flow in software testing—an interview study with embedded software
engineering practitioners. IEEE Access 7:46434-46453

Strauss A, Corbin JM (1997) Grounded theory in practice. Sage

Tan L, Bockisch C (2019) A survey of refactoring detection tools. In:
EMLS, pp 100-105

Vogel-Heuser B, Fay A, Schaefer I, Tichy M (2015) Evolution of software in
automated production systems: Challenges and research directions. Jour-
nal of Systems and Software 110:54-84

Walkinshaw N, Taylor R, Derrick J (2016) Inferring extended finite state
machine models from software executions. Empirical Software Engineering

21(3):811-853

60

Yang et al.

91.

92.

93.

94.

95.

96.

97.

98.

99.

van der Werf JMEM, van Dongen BF, Hurkens CAJ, Serebrenik A (2009)
Process Discovery using Integer Linear Programming. Fundam Inform
94(3-4):387-412

Yang N, Aslam K, Schiffelers R, Lensink L, Hendriks D, Cleophas L, Sere-
brenik A (2019) Improving model inference in industry by combining ac-
tive and passive learning. In: SANER, pp 253-263

Yang N, Cuijpers PJL, Schiffelers RRH, Lukkien J, Serebrenik A (2021)
An interview study of how developers use execution logs in embed-
ded software engineering. In: 43rd IEEE/ACM International Confer-
ence on Software Engineering: Software Engineering in Practice, ICSE
(SEIP) 2021, Madrid, Spain, May 25-28, 2021, IEEE, pp 61-70, DOI
10.1109/ICSE-SEIP52600.2021.00015, URL https://doi.org/10.1109/
ICSE-SEIP52600.2021.00015

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug
reports using domain knowledge. In: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
pp 689-699

Yuan D, Park S, Zhou Y (2012) Characterizing logging practices in open-
source software. In: 2012 34th International Conference on Software En-
gineering (ICSE), IEEE, pp 102-112

Zaidman A, Demeyer S (2004) Managing trace data volume through
a heuristical clustering process based on event execution frequency. In:
CSMR, pp 329-338

Zaidman A, Van Rompaey B, van Deursen A, Demeyer S (2011) Studying
the co-evolution of production and test code in open source and industrial
developer test processes through repository mining. Empirical Software
Engineering 16(3):325-364

Zeng Y, Chen J, Shang W, Chen THP (2019) Studying the characteristics
of logging practices in mobile apps: a case study on f-droid. Empirical
Software Engineering 24(6):3394-3434

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log:
Helping developers make informed logging decisions. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, IEEE, vol 1,
pp 415-425

